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Abstract
Objectives: The work is to learn the impingement of tangential periodic magnetic field on the interface in the middle of 
two superposed ferrofluids with the rotation through a nonlinear perturbation analysis. Methods or Statistical Analysis: 
A nonlinear instability due to streaming superposed ferrofluids stressed by rotation and a periodic tangential magnetic 
field is examined by employing the mode of multiple scales. The fluids are taken to be incompressible. Using the boundary 
conditions, the solutions of the linearized equations of motion lead to the linear dispersion equation. Findings: From 
this work, it is clearly seen the unfolding of amplitude of waves was influenced by an equation of nonlinear Schrodinger. 
Applications or Improvements: The rotation and a periodic tangential magnetic field have enormous important effects 
over the stability of the system. 

Keywords: Dispersion Relation and Schrodinger Equation, Ferrofluids, Linear Dispersion Relation, Method of Multiple 
Scales, Rotation

1.  Introduction
Ferrofluids (called magnetic fluids) are stable colloidal 
cessation of magnetic nanoparticles. Brownian motion 
maintains the particles from settling and their surface 
is coated with a dispersant in order to stop them from 
sticking together. An applied magnetic field yields a new 
external parameter that can be stabilize or destabilize the 
fluid interface producing hydrodynamic instabilities.The 
liquid carrier in commericially produced ferrofluids are 
kerosene, toluene, water or one of several other fluids.

The ferromagnetic particles are typically 30-150 A in 
diameter and are magnetite, iron or cobalt. The electri-
cal conductivity of a ferrofluid was in the same order as 
that of the liquid carrier, which is typically quite small. 
The Brownian motion also keeps the tiny magnets ran-
domly oriented so the ferrofluid has no natural magnetic 
moment. Magnetic fluids are used in vacuum which seals 
around the rotating shafts and in loudspeakers to keep 
them cool and to damp vibrations. Experiments of mag-

netic fluids with rotation and magnetic field have shown 
in a wide range of interesting phenomena.

RTI happens when a weighty fluid is assisted by a 
light-weight fluid. Because of the wide applications of the 
RTI in planetary and steller atmospheres etc, several stud-
ies have been addressed. Kelvin-Helmholtz Instability 
(KHI) arises when fluids are in a relative motion.

The hydrodynamic stability for RTI, KHI and other 
has been reported through the pioneer book of1–3 investi-
gated the interfacial stability of a ferromagnetic fluid. An 
excellent book on the stability theory is given by4. They 
reported the analysis of RHI, KHI and capillary instability 
of perfect fluids. The linear KHI of flow in porous media 
is studied by5. He derived the instability conditions in 
KHI for Darcian and non-Darcian flows. Non linear sta-
bility of surface waves in magnetic fluids with tangential 
periodic magnetic field was analyzed by6. Nonlinear KHI 
of two miscible ferrofluids in porous media was investi-
gated by7. He analyzed linear as well as nonlinear aspects 
of stability theory of the interface in middle of two super-
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posed magnetic fluids. Kelvin–Helmholtz instabilities 
in smoothed particle hydrodynamics have been treated 
extensively by8. KHI in a fluid layer bounded by a porous 
layer above and below by a rigid surface in the presence of 
magnetic field was discussed by9. 

In10 experimented the stability analysis on Kelvin-
Helmholtz flow of an electrified horizontal sheet through 
porous media investigated the instability of Kelvin-
Helmholtz flows in magnetic fluids have examined the 
nonlinear KHI of superposed ferrofluids under rotation 
and magnetic field11–13.

2.  Fluid-field Configuration
Let us imagine a heavy fluid (r1) supported by a light fluid 
(r2) under the gravity. The interface in between the two 
fluids is described as z = h (x, t). From the undisturbed 
position, the elevation of the wave is measured and is 
denoted by h (x, t). When the interface is completely flat 
then z = h (x, t) = 0. A fluid with density (r1) and perme-
ability (m1) hold the region z < 0 whereas z > 0 is occupied 
by a fluid density (r2), magnetic permeability (m2). Here 
Cartesian coordinate system is chosen. It is assumed that 
X-axis rest in the unperturbed interface. Z-axis is taken 
perpendicular which is pointed from the lower level fluid 
to the upper fluid. The fluids are taken to be inviscid mag-
netic fluids moving with uniform velocity U1 and U2 in 
the x – direction and the fluid is assumed to rotate in the 
uniform angular velocity Ω about Z-axis. The physical 
quantities are undertake to differ with respect to x and z 
coordinates except ‘t’, since the disturbances are con-
stricted to two dimensional plane waves. The system is 
emphasized by a tangential periodic magnetic field 

H = ε ω
1
2

0H cos t i  in the direction of X-axis. Here ε
denotes the small non-dimensional parameter, H0  shows 
the magnetic field amplitude, ω  marks the field fre-
quency and along the direction of X-axis the unit vector is 
taken as i .

Analysis begins with the basic equations, the Navier-
Stokes equation:

ρ ρ
d
dt
q
+ 2 (Ω × q) = −∇ + + + ⋅∇p Á Á( )δ µg  M H0 � (1)

Here q  = +( )u U v w, , , Ω = (0, 0, Ω), the final term 
µ0  M H.∇  describes the magnetic body force on the fluid 
element, M is the magnetization vector and ∝0  takes the 
value 1. 

From a potential function, assume that an additional 
magnetic field ‘h’ is derived.

i.e. ψ ( , )x z  exists with h = − ∇ε ψ
1
2 .

The magnetic potential ψ  satisfies the equation:

∇ = −∞ < <2 1 0ψ η( ) , ( , )z x t � (2)

∇ = < <∞2 2 0ψ η( ) , ( , )x t z � (3)

The kinematic boundary condition is defined at z is 
equal to h (x, t).

∂
∂

+ +
∂
∂

− =
η η
t

u U
x

wi i i( ) 0 , i = 1, 2.� (4)

Here u represents the tangential velocity and w indi-
cates the normal velocity. U U1 2,  represents the speed of 
the fluid in region (1) and (2) respectively.

Non viscous fluid satisfies ⋅ = ⋅(1) (2)ˆ ˆn nq q � (5)
Continuity of normal and tangential components of 

the magnetic field at:
z = h (x, t), are

µ µ1 n
(1)

2 n
(2)H H= � (6)

H Ht
(1)

t
(2)= � (7)

Normal stress is balanced on the system at the divid-
ing surface. 

[[ ( )]]
( )

− + − =
−

+
p H H

T
n t

xx

x

µ η

η
2

1

2 2

2
3
2

 at z = h (x, t)� (8)

Where p indicates the magnetic strictive pressure, T 
shows the coefficient of the surface tension , [[]] signify-
ing the jump in the amount across the regions 1 and 2. 

3.  Perturbation Methodology
By applying the mode of multiple scales, the perturbed 
equations are solved by taking ε  which represents the 
steepness ratio of the wave. The values of tn  and xn  
interpreted as:

t t x x n ton nn n= = =− −

1 1 0 2
ε ε

, ( ) � (9)
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where ε = −










U
Um

1

1
2

 and Um  denotes the marginal 

velocity. 
In order to examine the transition of a carrier wave 

with wave number k, frequency ω , pretend the depen-
dence of h( , )x t  to be:

η ε η ε( , ) ( , , ; , , ) ( )x t x x x t t t On
n

n

= +
=
∑ 0

1

3

1 2 0 1 2
4 � (10)

and η ω1 1 2 1 2 0 0 0= − +A( , ; , )exp ( ) .x x t t i kx t C C � (11)

Here C.C represents the complex conjugate of all pre-
vious terms and A marks amplitude of the propagating 
wave which is slowly varying function. k denotes the wave 
number, ω0  marks the frequency of the disturbance.

Expand the physical quantities q and ψ  as,

q q( , , ) ( , , , ; , , ) ( )x z t x x x z t t t On
n

n

= +
=
∑ε ε

1

3

0 1 2 0 1 2
4 � (12)

ψ ε ψ ε( , , ) ( , , , ; , , ) ( )x z t x x x z t t t On
n

n

= +
=
∑ 0

1

3

1 2 0 1 2
4 � (13)

The scale x0  stands for the wavelength; the scale t0  
marks the frequency of the wave. The scales of the phase, 
amplitude are denoted by t1  and t2  respectively whereas 
spatial modulations of the phase is denoted by x1  and the 
amplitude is noted by x2

Utility the series of Maclaurins at z = 0 for the quanti-
ties, the boundary conditions are evaluated. Replacing the 
above equations (9) – (13) into a series (1) – (8) and com-
paring the particulars of same powers of ε , ε 2 , ε 3  etc, to 
reach 3 consequent equations. 

4.  Linear Dispersion Relation
By using first order equations, we arrive at the linear dis-
persion relation:

ρ ω2 2 0
2( )U k− 1

1 4 2

2 0
2

1
2

−
−











+
−

Ω
( )U k ω

ρ ω1 1 0
2( )U k− 1

1 4 2

1 0
2

1
2

−
−











−
Ω

( )U k ω

= − − +( )ρ ρ α1 2
2 2 3gk k Tk � (14)

Where α
ω µ µ
µ

2 0
2 2 2

21
1

=
−

+

H tcos ( )
( )

 and µ
µ
µ

= 1

2

The dispersion relation (14) coincides with the result 
of a linear perturbation1 in the absence of both rotation, 
magnetic field for RTI. In addition, if there is no field fre-
quency, then to learn the amplitude modulation of the 
progressive waves, we assume ω0

2 0> . The system is sta-

ble if ( )ρ ρ α1 2
2 2 0− − + >g k Tk .

5.  Second Order Problem
The solution of the linear order is substituted into the 
equations of second order. Solve them by assuming, 

η θ2
2 2=∧ ( ) +A exp .i C C � (15)

Where ∧ =
Nr
Dr

,

Nr H t k

k

= − −
−
+











+ −

0
2 2 2

2

2

2 2 2 2 0

1 1
1

2

cos ( ) ( )
( )

ω µ µ
µ
µ

ρ γ β ω      UU k U k

k

2

2

1 1 1 0 1

2

2

2 2 2 2 1 1 1
2

( ) − −( )





− −( ) +

ρ γ β ω

ρ γ β ρ γ β      

 

Ω

       

      

1

4

2 1 1
2

0 1

2

2 2
2

0 2

2

2

2

k
U k U k

k

ρ β ω ρ β ω

ρ

−( ) − −( )





+
Ω

22 2
2

1 1
2β ρ β−( )

� (16)

Dr
k

U k U k

kH t

= − −( ) + −( )





+

2

2

2 2 2 0 2

2

1 1 0 1

2

0
2 2

ρ γ ω ρ γ ω

ω     cos
(11

1
2

4

2
2

2

2 2 2 1 1

2 1
2

−
+

+ +( )
− − +

µ µ
µ

ρ γ ρ γ

ρ ρ

)
( )

( )

Ω
k

g k T      

� (17)
Where

β
ω1

2

1 0
2

1
2

1 4
= −

−











−

k
U k

Ω
( )

β
ω2

2

2 0
2

1
2

1 4
= −

−











−

k
U k

Ω
( )
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γ
ω1

2

1 0
2

1
2

1= −
−











−

k
U k

Ω
( )

γ
ω2

2

2 0
2

1
2

1= −
−











−

k
U k

Ω
( )

6.  Third Order Problem
The dispersion relation of third order is: 

∂
∂

+








+ +
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

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12 2
A

x k k
s

k k
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2 2 2
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2 2
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22
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7. � Nonlinear Schrodinger 
Equation and Stability 
Conditions

Let the coefficients of the terms ∂
∂

2

1
2
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x
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2

1 1

A
x t

, ∂
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2

1
2
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t
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∂
∂

A
x2

, ∂
∂

A
t2

 in Equation (18) are represented by N1k
*, N2k

*, 

N3k
*, N4k

* and N5k
* respectively.

Third order dispersion relation presumes the form:
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Which is the well-known second order nonlinear 
Schrodinger equation.
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Which are obtained from linear dispersion equation.

The stability criterion is analyzed, using6 by consider-
ing the following time varying solution.

A meiQ mk=
2τ , m is a constant.� (20)

Perturb the Equation (20) by stating:

A m D iE ek k
iQ mk= + +[ ]1 1

2

( , ) ( , )ξ τ ξ τ τ � (21)

Where D k1  and E k1  are real functions.

Using Equation (21) in Equation (19) and neglecting 
the terms which are nonlinear in D k1  and E k1 . 
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Writing
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1
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and E E e C Ck
ik k

1
2 2( , ) .( )ξ τ ξ ω τ= +∗ + � (25)

where D∗  and E∗  are constant values, k2 denotes the 
wave number and ω2k  indicates the disturbance fre-
quency. By using (24) and (25), ω2k  and k2 desire the 
dispersion relation. 
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where the wave number k2  may assume real and pos-
itive values.

which implies
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8.  Discussion and Conclusion
Linear dispersion relation (14) coincides with Rosensweig 
in the absence of rotation, the horizontal magnetic field. 
It also coincides with Chandrasekhar in the non-appear-
ance of rotation, magnetic field.

It is clearly seen from the above values that the system 
is found to be unstable when:
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U k1 0
2 24−( ) >ω Ω , U k2 0

2 24−( ) >ω Ω .

Hence it is concluded that rotation and a periodic tan-
gential magnetic field have great significant effects over 
the stability of the system.
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