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Abstract
Objectives: An algorithm has been developed to find Pareto Optimal solutions of the fuzzy bicriteria sheet metal problem 
with pairwise nesting of designs. Methods and Statistical Analysis: The sheet metal problem has been solved by many 
workers, all of whom have considered the entities of cost and time as crisp numbers. However, in practical situations since 
cost and time are imprecise, the present work considers them as interval fuzzy numbers. Ordering between overlapping 
interval numbers is obtained by applying a fuzzy membership approach and a modified Hungarian algorithm is developed 
to obtain fuzzy Pareto Optimal solutions of the bicriteria problem. The newly developed algorithm is explained by a 
numerical example. Findings and Results: The set of both fuzzy Pareto optimal and other solutions obtained by applying 
the proposed algorithm, provide the Decision maker a lot of flexibility in making decisions. He can select the solution 
according to his priority. From amongst the fuzzy Pareto Optimal solutions obtained, he can select the solution which 
minimizes the cost or the solution which minimizes the time or take the middle path and select the solution which 
minimizes both cost and time as much as possible. Apart from the three fuzzy Pareto Optimal solutions, other solutions 
obtained by the proposed method can also be selected by the decision maker as per requirement and conditions. The 
problem being NP hard, it is very difficult and expensive to find fuzzy Pareto Optimal solutions of the bicriteria problem 
by analytical methods. The newly developed algorithm is not only easy to understand and implement but also gives good 
fuzzy Pareto optimal solutions. Improvements: The method can also be applied to costs and times being triangular and 
trapezoidal fuzzy numbers and it can be extended to nesting of up to three designs on a sheet. 
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1. Introduction

Sheet metal is a very useful form of metal which is 
formed by mechanically flattening metal. This metal 
formation has high surface area to volume ratio. The 
usage of sheet metal spreads over manufacturing various 
automobile parts and home and office appliances. Sheet 
metal is sheared or cut into desired shapes with the use 
of machines and dies. The process of loading the sheet 
metal on a machine and cutting out pieces from the sheet 

metal with the help of dies is called blanking. The cut out 
pieces are used to make objects of daily use and the left 
out portion of sheet metal which cannot be used for any 
other purpose is called scrap. In order to fulfill a certain 
demand, the manufacturers are required to load sheet 
metal on the machine where the desired shape is punched. 
This procedure requires time for loading and processing 
the sheet and results in production of scrap. Profits can 
maximize only if these two quantities can be controlled. 
In recent times, manufacturers have adopted the process 
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of nesting, which combines various shapes thereby reduc-
ing the cost of scrap and total set up and processing time. 
It can be observed from Figures (1a), (1b) and (1c) that 
when two designs D1 and D2 are nested on a metal sheet, 
the amount of scrap reduces.

 

Figure (1a). showing Design D1.

 

Figure (1b). showing Design D2.

 

Figure (1c). showing nesting of Designs D1 and D2.

Numerous workers have solved the nesting problem 
by different techniques.In1,2 have developed a pseudo 
polynomial dynamic programming algorithm to solve the 
sheet metal nesting problem.

In3,4 have developed intelligent algorithms to give 
optimal nesting. In5 have applied a compact neighbor-
hood algorithm on large scale nestingand6–9 have applied 
genetic algorithms to find optimal solutions of the nest-
ing problem. All the workers have solved the sheet metal 
nesting problem with a single objective either to minimize 
the cost or total set up and processing time. In10 were the 
first workers to have considered the bicriteria sheet metal 
nesting problem. They developed a heuristic method to 
find Pareto optimal solutions of the problem with the two 
criteria being minimization of scrap and total set up and 
processing time.

None of the above workers have considered cost and 
time as fuzzy numbers. However in real life situations the 
two entities of cost and time are not crisp but imprecise. 
To overcome this difficulty the present work considers 
the bicriteria problem with the two entities of cost and 
time as fuzzy interval numbers. In solving problems with 
fuzzy numbers one of the most difficult parts is to define 

a suitable ordering or ranking approach. Fuzzy numbers 
were first introduced by11 and one of the frontrunners in 
defining ranking approach of interval fuzzy numbers12, 
followed by13–19 to name a few.

In the present work, ordering between overlapping 
interval numbers is obtained by applying a fuzzy mem-
bership approach and a modified Hungarian algorithm is 
developed to obtain Pareto Optimal solutions of the bicri-
teria problem. A constraint of the problem is that orders 
are nested at most in pairs. The problem being NP hard, 
it is very difficult and expensive to find Pareto Optimal 
solutions by analytical methods. The newly developed 
heuristic technique is not only easy to understand and 
implement but also gives good Pareto optimal solutions.

The rest of the paper is organized as follows: Section 
2 of the paper gives some definitions, in Section 3 math-
ematical formulation of the problem is discussed, in 
Section 4 the proposed algorithm is discussed, in Section 
5 a numerical example is given in detail to explain the 
proposed algorithm and Section 6 is the conclusion fol-
lowed by Acknowledgements and References.

2. Definitions

Definition 1: Interval numbers arithmetic
If A= [aL ,aR] and B = [bL , bR] are two interval numbers 
then

(i) Center of A= [aL , aR] is Ac = (aR + aL)/2
(ii) Width of A= [aL ,aR] is Aw = (aR –aL)/2.  
(iii) A + B = [aL + bL, aR + bR ]
(iv) A - B = [aL - bR, aR - bL]

Definition 2: Interval ordering
According to13, A  B (Interval A is less than or equal 
to interval B)  iffaL  bL and aR  bR as shown in Figures 
(2a) and (2b).

Figure (2a). showing A  B.

Figure (2b). showing A  B.
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However for intervals A and B satisfying Aw>Bw, aL

 bL and aR  bR the above mentioned approach fails to 
define the ordering. In such a case the approach discussed 
by19 is considered. In this approach a fuzzy membership 
function f(A, B)is defined as 

f(A,B) = 

f(A, B) = 1 implies A  B [Figure (3a)] and f(A, B) = 
0 implies B  A [Figure (3b)].

For , f(A, B) =   

gives the degree of acceptability of A  B, if 0.5 <

< 1 then A  B and if 0 < < 

0.5 then B  A. If  = 0.5 then either A  

B or B  A can be considered [Figure (3c)].

Figure (3a). showing A  B.

Figure (3b) showing B  A.

Figure (3c). showing A  B with a degree of acceptability  

f(A, B) = .

Definition 3: Pareto optimal solutions
Bicriteria solutions (C1, T1) and (C2, T2) to minimize 
cost C and time T are said to be Pareto Optimal (Ignizio20; 
Steuer21) if C1 ≤ C2 and T1 ≥ T2 with strict inequality 
holding in at least one of the two cases. 

3. Mathematical Formulation of 
Problem

A sheet metal problem with n different designs of dies to 
be made is considered. The constraint is that no more than 
two orders can be nested on a sheet. The two objectives 
are to minimize the total cost of scrap and to minimize 
total set up and processing time of nesting and blanking. 
Two tables are formed, the first one showing the total cost 
of scrap and the second one showing the total set up and 
processing time in case of no nesting and nesting. Cost 
and time are taken as interval numbers.

Let  be the cost of scrap and 

denote total set up and processing 
time in the blanking operation when designs i (i= 1,2,…n) 
and j (j =1,2,…n) are nested; let C denote the total cost of 
scrap and T denote the total set up and processing time 
after nesting of designs, let xijbe the integer variable tak-
ing the values 1 or 0 according as allocation is made or 
not made to the cell (i, j) in the cost table.

The objective of the problem is to minimize 

C =  (1)

T =  (2)

Subject to the constraints

xij = 1 or 0 (3)
Cij = Cji,Tij = Tji (4)

 ≤ n (5)

Constraint (5) ensures pairwise nesting of some or all 
designs.

4. Solution Procedure 

The sheet metal problem with n different designs of dies 
is considered. Two symmetric tables are formed – the 
first one denoting total cost of scrap left after the blank-
ing operation and the second one denoting the total set 
up and processing times when either designs i(i =1,2,…n) 
and j(1,2,…n) are pairwise nested or there is no nest-
ing. The costs and durations are taken as interval fuzzy  
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numbers. A modified Hungarian algorithm is developed 
and the ordering between intervals numbers is obtained 
as defined in Section2.

Step 1: In the cost table with costs as interval num-
bers, select the smallest number in each row and subtract 
it from every other number. The selection of smallest 
interval number and subsequent subtraction are done 
by applying the ordering and subtraction formula as 
explained in Section 2.

Step 2: In the row reduced Cost table, select the small-
est interval number in each column and subtract it from 
every other number in that column using the ordering 
used in Step 1.

Step 3: In the row reduced and column reduced cost 
table reduce each interval number to its center as defined 
in Section 2. 

Step 4: Select the row having a single cell whose 
interval cost has center at 0 and make assignment in the 
corresponding cell( i, j).

Step 5: After making assignment in the cell (i, j) 
delete the ith row and column and jth row and col-
umn. This is because allocation in cell (i, j) implies that 
designs i and j have been nested. In case allocation is in 
cell (i, i) it implies no nesting. Delete the ith row and 
ith column.

Step 6: Repeat Steps 4 and 5with all the rows and col-
umns to obtain all the assignments.

Step 7: Find the total interval cost from the cost table 
and the corresponding interval time from the time table 
to get the 1stPareto Optimal solution (C1, T1). 

Step 8: To obtain the 2ndPareto Optimal solution, 
the assignment table obtained in Step 4 is considered 
and the cell with next minimum (non-zero) cost is 
identified. The first assignment is made in this cell and 
thereafter assignments are made in the zero cost cells 
by applying Steps 5-7 to get the second Pareto optimal 
solution denoted by (C2, T2) with C1≤ C2 and T1≥ T2. 
In case the solution obtained is not Pareto Optimal 
then the cell with second next minimum (non-zero) 
cost is identified. Assignment is first made to this 
cell and then to the zero cost cells by applying Steps 
5-7. In case there is a tie in the next minimum (non-
zero) cost cells corresponding to different nestings of 
designs both the cells are considered one at a time with 
the remaining zero cost cells and of all the solutions 
obtained the Pareto optimal solutions are considered. 
In case there is a tie in the next minimum cost cells 
corresponding to the same nestings of designs then any 

one cell is chosen arbitrarily and the remaining 0 cost 
cells are considered for assignment. To obtain 3rdPareto 
Optimal solution the third next minimum (non-zero) 
cost cell is selected in the assignment Table obtained 
in Step 4 and allocations are first made to that cell and 
then to the zero cost cells. The fourth and subsequent 
efficient solutions are obtained by proceeding exactly 
as in case of the third efficient solution by selecting 
the next higher minimum (non-zero) cost cell in the 
assignment Table obtained in Step 4.The process ter-
minates when all cases are exhausted. The third and 
subsequent Pareto Optimal solutions obtained are 
denoted by (C3, T3), (C4, T4),… satisfying C1 ≤ C2 ≤ C3 
≤ C4≤…  and T1 ≥ T2≥ T3≥ T4≥ T5≥ …

5. Numerical Example

Let there be 5 designs of dies. Table 1 shows the cost of 
scrap and Table 2 shows the total set up and processing 
times in case of no nesting and pairwise nesting of the 
designs of dies on the metal sheet. Both cost and time are 
interval fuzzy numbers.

Table 1. Denoting cost of scrap in case of no nesting and 
nesting

Design →
↓

D1 D2 D3 D4 D5

D1 [4 5] [1 2] [2 3] [3 6] [1 3]

D2 [1 2] [3 4] [1 4] [2 3] [2 5]

D3 [2 3] [1 4] [3 5] [1 4] [2 4]

D4 [3 6] [2 3] [1 4] [2 3] [2 7]

D5 [1 3] [2 5] [2 4] [2 7] [1 2]

Table 2. Denoting total set up and processing time in case 
of no nesting and nesting

Design →
↓

D1 D2 D3 D4 D5

D1 [1 2] [3 4] [3 5] [4 7] [5 8]
D2 [3 4] [2 3] [3 4] [2 5] [3 6]
D3 [3 5] [3 4] [2 4] [3 4] [1 2]
D4 [4 7] [2 5] [3 4] [1 2] [2 4]
D5 [5 8] [3 6] [1 2] [2 4] [2 3]
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On applying Step 1 to Table 1 the row reduced Table 
3 is obtained.

Table 3. Row reduced cost table
Design →
↓

D1 D2 D3 D4 D5

D1 [2 4] [-1 1] [0 2] [1 5] [-1 2]
D2 [-1 1] [1 3] [-1 3] [0 2] [0 4]
D3 [-2 2] [-3 3] [-1 4] [-3 3] [-2 3]
D4 [-1 5] [-2 2] [-3 3] [-2 2] [-2 6]
D5 [-1 2] [0 4] [0 3] [0 6] [-1 1]

On applying Step 2 on Table 3 the column reduced 
Table 4 is obtained.

Table 4. Column reduced cost table
Design →
↓

D1 D2 D3 D4 D5

D1 [1 5] [-2 2] [-3 5] [-2 8] [-2 3]
D2 [-2 2] [0 4] [-4 6] [-3 5] [-1 5]
D3 [-3 3] [-4 4] [-4 7] [-6 6] [-3 4]
D4 [-2 6] [-3 3] [-6 6] [-5 5] [-3 7]
D5 [-2 3] [-1 5] [-3 6] [-3 9] [-2 2]

On applying Step 3 to Table 3 all the interval costs 
reduced to their centers are shown in Table 5.

Table 5. Interval costs in terms of their centers
Design →
↓

D1 D2 D3 D4 D5

D1 3 0 1 3 0.5
D2 0 2 1 1 2
D3 0 0 1.5 0 0.5
D4 2 0 0 0 2
D5 0.5 2 1.5 3 0

5.1 First Pareto Optimal Solution
In Table 5 by applying Step 4 it is observed that Row 1 
has single 0 cost cell. The cell in Row 1- Column 2 with 0 
corresponding to nesting of designs D1 and D2 is selected 
and assignment is made to that cell. Thereafter the rows 
and columns showing scrap costs for designs D1 and D2 
are deleted to obtain Table 6.

Table 6. Rows and columns corresponding to D1 and D2 
deleted

Design →
↓

D1 D2 D3 D4 D5

D1

D2

D3 1.5 0 0.5
D4 0 0 2
D5 1.5 3 0

In Table 6 it is observed that Row 3 has a single 0 cost 
cell corresponding to the nesting of designs D3 and D4. 

Assignment is made to the Row 3- Column 4 cell and the 
rows and columns corresponding to designs D3 and D4 
are deleted to obtain Table 7.

Table 7. Rows and columns corresponding to D3 and D4 
deleted

Design →
↓

D1 D2 D3 D4 D5

D1

D2

D3

D4

D5 0

From Table 7 it is observed that assignment is made 
to Row 5- Column 5 corresponding to Design 5 which 
cannot be nested. The assignments in first Pareto Optimal 
solution are nesting of D1 and D2, nesting of designs D3 
and D4 and no nesting of design D5. From the cost Table 1 
the total cost of scrap C1 = [1 2] + [1 4] + [1 2] = [3 8] and 
from Table2 the total set up and processing time T1= [3 4] 
+ [3 4] + [2 3] = [8 11]. The first Pareto Optimal solution 
obtained is (C1 , T1) = ([3 8] , [8 11]).

5.2 Second Pareto Optimal Solution
To obtain the second Pareto Optimal solution, Table 
5 is considered. The next minimum (non-zero) cost is 
0.5 at Row 1- Column 5, Row 5- Column 1 and Row 3- 
Column5. Since Row 1- Column 5, and Row 5- Column 
1 correspond to the same nesting of designs D1 and D5, 
so the cell in Row 1- Column 5 is considered among 
the two and the cells in Row 1- Column 5 and Row 3- 
Column5 are considered one by one in sections 5.2.1 
and 5.2.2.
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5.2.1
In table 5 the cell in Row 1- Column 5 with 0.5 corre-
sponding to nesting of designs D1 and D5 is selected and 
assignment is made to that cell. Thereafter the rows and 
columns showing scrap costs for designs D1 and D5 are 
deleted to obtain Table 8.

Table 8. Rows and columns corresponding to D1 and D5 
deleted

Design →
↓

D1 D2 D3 D4 D5

D1

D2 2 1 1
D3 0 1.5 0
D4 0 0 0
D5

In table 8 it is observed that Column 3 has a single 0 
cost cell corresponding to the nesting of designs D4 and 
D3. Assignment is made to the Row 4- Column 3 cell and 
the rows and columns corresponding to designs D4 and 
D3 are deleted to obtain Table 9.

Table 9. Rows and columns corresponding to D4 and D3 
deleted

Design →
↓

D1 D2 D3 D4 D5

D1

D2 2
D3

D4

D5

In Table 9, since no zero cost cell remains so assign-
ment is not possible. 

5.2.2
In Table 5 the cell in Row 3 – Column5 with 0.5 corre-
sponding to nesting of designs D3 and D5 is selected and 
assignment is made to that cell. Thereafter the rows and 
columns showing scrap costs for designs D3 and D5 are 
deleted to obtain Table 10.

Table 10. Rows and columns corresponding to D3 and D5 
deleted

Design →
↓

D1 D2 D3 D4 D5

D1 3 0 3
D2 0 2 1
D3

D4 2 0 0
D5

In Table 10, the 0 in cell Row 1-column 2 is considered 
and allocation is made to the cell. The allocation corre-
sponds to nesting of designs D1 and D2. Row and column 
corresponding to designs D1 and D2 are deleted to obtain 
Table 11. 

Table 11. Rows and columns corresponding to D1 and D2 
deleted

Design →
↓

D1 D2 D3 D4 D5

D1

D2

D3

D4 0
D5

From Table 11 it is observed that assignment is made 
to Row 4- Column 4 corresponding to Design 4 which 
cannot be nested. The assignments in the next solution 
are nesting of D1 and D2, nesting of D3 and D5 and no 
nesting of D4. From the Cost Table 1 the total cost of scrap 
C2 = [1 2] + [2 4] + [2 3] = [5 9] and from Table2 the total 
set up and processing time T2 = [3 4] + [1 2] + [1 2] = [5 
8]. On comparing with the Ist Pareto optimal solution (C1 
, T1) = ([3 8] , [8 11] ) it is observed that [3 8]  [5 9] and 
[5 8]  [7 13]. Hence (C2 , T2) = ([5 9] , [5 8] ) is a Pareto 
Optimal solution.

5.3 Third Pareto Optimal Solution
The cells with next higher minimum (non-zero) cost, 
which is 1, are considered. These cells are in Row 1- 
Column 3, Row 2 - Column 3 and Row 2 - Column 4. 
Since the three cells correspond to different nestings of 
designs so they are considered one by one in Sections 
5.3.1, 5.3.2 and 5.3.3.
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5.3.1 
In Table 5 the cell in Row 1- Column3 with 1 corre-
sponding to nesting of designs D1 and D3 is selected and 
assignment is made to that cell. Thereafter the rows and 
columns showing scrap costs for designs D1 and D3 are 
deleted to obtain Table 12.

Table 12. Rows and columns corresponding to designs D1 
and D3 are deleted

Design →
↓

D1 D2 D3 D4 D5

D1

D2 2 1 2
D3

D4 0 0 2
D5 2 3 0

From Table 12 it is observed that assignment is made 
to Row 5- Column 5 corresponding to Design 5 which 
cannot be nested. Row and column corresponding to D5 
are deleted to obtain Table 13.

Table 13. Rows and columns corresponding to design D5 
are deleted

Design →
↓

D1 D2 D3 D4 D5

D1

D2 2 1
D3

D4 0 0
D5

In Table 13 there are two possible assignments, one 
to the 0 in Row 4- Column 2 corresponding to nest-
ing of designs D2 and D4 and the other to the 0 in Row 
4- Column 4 corresponding to no nesting of design D4. 
Since nesting always reduces the scrap cost so assignment 
is made to the 0 in Row 4- Column 2 corresponding to 
nesting of designs D2 and D4. 

The assignments obtained give nesting of designs D1 
and D3, nesting of D2 and D4 and no nesting of D5.From 
the Cost Table 1 the total cost of scrap C3 = [2 3] + [2 3] 
+ [1 2] = [5 8] and from Table2 the total set up and pro-
cessing time T3 = [3 5] + [2 5] + [2 3] = [7 13]. The third 
solution obtained is (C3 , T3) = ([5 8] , [7 13]). Since [3 8] 

 [5 8] and [8 11]  [7 13], hence (C3, T3) is not a Pareto 
Optimal solution.

5.3.2
In Table 5 the cell in Row 2- Column 3 with 1 corre-
sponding to nesting of designs D2 and D3 is selected and 
assignment is made to that cell. Thereafter the rows and 
columns showing scrap costs for designs D2 and D3 are 
deleted to obtain Table 14.

Table 14. Rows and columns corresponding to designs D2 
and D3 are deleted

Design →
↓

D1 D2 D3 D4 D5

D1 3 3 0.5
D2

D3

D4 2 0 2
D5 0.5 3 0

From Table 14 it is observed that assignment is made 
to Row 4- Column 4 corresponding to Design 4 which 
cannot be nested. Row and column corresponding to D4 
are deleted to obtain Table 15.

Table 15. Rows and columns corresponding to design D4

Design →
↓

D1 D2 D3 D4 D5

D1 3 0.5
D2

D3

D4

D5 0.5 0

From Table 15 it is observed that assignment is made 
to Row 5- Column 5 corresponding to Design 5 which 
cannot be nested. The assignments obtained are nesting 
of D2 and D3, no nesting of D4  and no nesting of  D5. From 
the Cost Table 1 the total cost of scrap C4 = [1 4] + [2 3] + 
[1 2] = [4 9] and from Table2 the total set up and process-
ing time T4 = [3 4] + [1 2] + [2 3] = [6 9]. On comparing 
(C4 , T4) =  ([4 9] , [6 9] ) with the Ist Pareto optimal solu-
tion (C1 , T1) = ([3 8] , [8 11] ) it is observed that [3 8] 
[4 9] and  [6 9] [8 11] and on comparing with the sec-
ond Pareto Optimal solution (C2 , T2) =  ([5 9] , [5 8] ) it is 
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observed that [4 9]  [5 9] and  [5 8]  [7 13]. SinceC1

C4 C2 and T2  T4  T1, the solution (C4, T4) = ([4 
9] , [6 9] ) is a Pareto Optimal solution.

5.3.3
In Table 5 the cell in Row 2- Column4 with 1 corre-
sponding to nesting of designs D2 and D4 is selected and 
assignment is made to that cell. Thereafter the rows and 
columns showing scrap costs for designs D2 and D3 are 
deleted to obtain Table 16.

Table 16. Rows and columns corresponding to designs D2 
and D4 are deleted

Design →
↓

D1 D2 D3 D4 D5

D1 3 1 0.5
D2

D3 0 1.5 0.5
D4

D5 0.5 1.5 0

From Table 16 it is observed that assignment can be 
made to Row 3- Column 1 corresponding to the nesting 
of designs D3 and D1. Rows and columns corresponding 
to designs D3 and D1are deleted to obtain Table 17.

Table 17. Rows and columns corresponding to designs D3 
and D1 are deleted

Design →
↓

D1 D2 D3 D4 D5

D1

D2

D3

D4

D5 0

From Table 17 it is observed that assignment can be 
made to Row 5- Column 5 corresponding to Design 5 
which cannot be nested. The assignments obtained are 
nesting of D2 and D4, nesting of D1 and D3 and no nesting 
of  D5. From the cost Table 1 the total cost of scrap C5 = [2 
3] + [2 3] + [1 2] = [5 8] and from Table2 the total set up 
and processing time T5 = [2 5] + [3 5] + [2 3] = [7 13]. On 
comparing (C5 , T5) =  ([5 8] , [713] ) with the Ist Pareto 
optimal solution (C1 , T1) = ([3 8] , [8 11] ) it is observed 
that [3 8] [5 8] and  [8 11] [7 13] . So (C5 , T5) is not 
Pareto Optimal solution.

On proceeding similarly by selecting the cell with the 
next minimum (non-zero) number together with 0 cost 
cells it is observed that no more new Pareto optimal solu-
tions can be obtained.

The results obtained are summarized in Table 18. 

Table 18. Solutions obtained by applying the newly developed algorithm
Sl. No Cells selected for assignment Nesting of designs Solution Pareto Optimal 

solution
1 All the 0 cost cells of table 5 Nesting of D1 and D2, 

nesting of D3 and D4 and 
no nesting of D5.

(C1 , T1) = ([3 8], [8 11]). 1st Pareto optimal 
solution

2 Cell at Row 1 –Column 5 with 
cost 0.5 and all the 0 cost cells 
of table 5

Solution not possible

3 Cell at Row 3 –Column 5 with 
cost 0.5 and all the 0 cost cells 
of table 5

Nesting of D1 and D2 , 
nesting of  D3 and D5 and 
no nesting of D4

(C2 , T2) =  ([5 9] , [5 8] ) 3rd Pareto Optimal 
solution

4 Cell at Row 1 –Column 3 with 
cost 1 and all the 0 cost cells 
of table 5

Nesting of D1 and D3, 
nesting of D2 and D4 and 
no nesting of D5

(C3 , T3) = ([5 8] , [7 13] ) Not Pareto optimal

5 Cell at Row 2 –Column 3 with 
cost 1 and all the 0 cost cells 
of table 5

nesting of D2 and D3 ,no  
nesting of  D4  and no 
nesting of  D5

(C4 , T4) =  ([4 9] , [6 9] ) 2nd Pareto Optimal 
solution

6 Cell at Row 2 –Column 4 with 
cost 1 and all the 0 cost cells 
of table 5

nesting of D2 and D4, 
nesting of D1 and D3 and 
no nesting of  D5

(C5 , T5) =  ([5 8] , [7 13] ) Not Pareto Optimal
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It can be seen that all solutions obtained are not Pareto 
Optimal and in some cases solution is not obtained. The 
set of solutions obtained, both Pareto optimal and other, 
provide the Decision maker a lot of flexibility in mak-
ing decisions. He can select the solution according to his 
requirement. For example if his primary objective is to 
minimize the cost he will select the 1st Pareto Optimal 
solution and do nesting of designs D1 and D2 , nesting 
of designs D3 and D4 and no nesting of design D5.; if his 
primary objective is to minimize the total set up and pro-
cessing time he will select the 3rd Pareto Optimal solution 
and do nesting of designs D1 and D2 , nesting of designs 
D3 and D5 and no nesting of design D4 ; if his objective 
is to minimize both as much as possible he will take the 
middle path and consider the 2nd Pareto Optimal solution 
and do nesting of designs D2 and D3 ,no  nesting of design 
D4  and no nesting of design D5. Apart from the three 

Pareto Optimal solutions the other solutions obtained by 
the proposed method can also be selected by the decision 
maker as per requirement and conditions.

6. Conclusion

The algorithm developed in this paper provides a heuris-
tic technique to find Pareto Optimal solution of the fuzzy 
bicriteria sheet metal problem. The set of Pareto Optimal 
solutions obtained provides flexibility to the DM and 
he can select the solution according to his priority. The 
method can also be applied to costs and times being tri-
angular and trapezoidal fuzzy numbers. By considering a 
proper ranking approach the triangular and trapezoidal 
fuzzy numbers can be converted to crisp numbers and 
thereafter the newly developed algorithm can be applied 
to get Pareto Optimal solutions. The heuristic technique 

7 Cell at Row 3 –Column 3 with 
cost 1.5 and all the 0 cost cells 
of table 5

nesting of D1 and D2 ,no  
nesting of  D3,  no nesting 
of  D4 and no nesting of D5

(C6 , T6) =  ([7 12] , [8 13] ) Not Pareto Optimal

8 Cell at Row 5 –Column 3 with 
cost 1.5 and all the 0 cost cells 
of table 5

nesting of D1 and D2,  
nesting of  D3 and  D5 and 
no nesting of  D4.

(C7 , T7) =  ([5 9] , [5 8] ) 3rd Pareto Optimal 
solution, same as  
(C2 , T2)

9 Cell at Row 2 –Column 5 with 
cost 2 and all the 0 cost cells 
of table 5

nesting of D5 and D2,  
nesting of  D3 and  D1 and 
no nesting of  D4.

(C8 , T8) =  ([6 11] , [7 13] ) Not Pareto Optimal

10 Cell at Row 2 –Column 2 with 
cost 2 and all the 0 cost cells 
of table 5

nesting of D3 and D1 ,  no 
nesting of  D2,  no nesting 
of  D4, no nesting of  D5

(C9 , T9) =  ([8 12] , [8 13] ) Not Pareto Optimal

11 Cell at Row 4 –Column 1 with 
cost 2 and all the 0 cost cells 
of table 5

nesting of D3 and D2 ,  
nesting of D4 and D1 and 
no nesting of  D5

(C10 , T10) =  ([5 12] , [9 14] ) Not Pareto Optimal

12 Cell at Row 4 –Column 5 with 
cost 2 and all the 0 cost cells 
of table 5

Solution not possible

13 Cell at Row 4 –Column 1 with 
cost 2 and all the 0 cost cells of 
table 5

nesting of D3 and D1 ,  
nesting of D5 and D2 and 
no nesting of  D4

(C11 , T11) =  ([6 11] , [7 13] ) Not Pareto Optimal

14 Cell at Row 1 –Column 1 with 
cost 3 and all the 0 cost cells 
of table 5

Solution not possible

15 Cell at Row 1 –Column 4 with 
cost 3 and all the 0 cost cells 
of table 5

nesting of D3 and D2 ,  
nesting of D4 and D1 and 
no nesting of  D5

(C12 , T12) =  ([5 12] , [9 14] ) Not Pareto Optimal

16 Cell at Row 5 –Column 4 with 
cost 3 and all the 0 cost cells 
of table 5

Solution not possible
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developed is very easy to understand and implement and 
can thus be applied extensively in the fuzzy nesting prob-
lem. In the present work the nesting is considered to be at 
most in pairs. However this can be also extended to nest-
ing of up to three designs on a sheet. 
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