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1.  Introduction

A protein sequence motif of a protein family is a pattern-
sequence of amino-acids that is conserved in most proteins 
of that protein-family, and is thought to be biologically 
significant for those proteins in exhibiting their structure 
or function. A protein family motif therefore can be said 
to be a representative pattern of that protein family, and 
most proteins in the said family shall conform to this 
pattern. The PROSITE1 database is a database consisting 
of manually curated motifs, identifying various protein 
families. The motifs help in the identification of short 
well-conserved regions of proteins from various species. 
Such conserved regions may be the result of a shared 
phylogenetic relationship among the species. But more 
importantly, such conserved regions often serve either 
to provide a support to the structure of the protein, or 
to serve as functionally important parts of the protein. 
Discovery of such motifs then, is a precursor to better 
understanding the tertiary structure of a protein, and also 
to predict the function of that protein in those species.

In this paper, we propose a new algorithm, hereinafter 
called ProMot, which can efficiently and automatically 
generate motifs given a multiple sequence alignment of 
related protein sequences. The usually tedious process of 
manually generating motifs for protein families can then 
be automated using the proposed algorithm. Armed with 
such motifs, we can then recover other related proteins 
from protein databases that are similar to those in a given 
protein family. Such motifs can be useful in uncovering the 
signature of a protein family, which can then be used to 
quickly identify whether a new protein belongs to a specific 
family or not. By analyzing the strength of a motif, we can 
also estimate whether or not the concerned protein family 
is concrete or whether it is heterogenous and its constituent 
proteins need to be further sub-divided into sub-families. 
In other words, if a strong well conserved region is reflected 
in the generated motif, we can say with a high degree of 
confidence that the proteins belong to a single family. The 
motif strength can be gauged using the number of false-
positives and false-negatives generated when that motif is 
used for searching against a protein database.
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There are several existing algorithms for identification 
of motifs from protein sequences. Most of the 
algorithms2–4 in this field work by dividing regions into 
k-tuples. Identification of conserved regions happens in 
groups of k-amino acids, and longer regions are found by 
concatenation of adjacent groups. Longer regions may be 
interspersed by variable-length wildcard regions allowing 
for any amino-acid to be present. Koza and Andre5 
developed an algorithm based on genetic programming, 
while Smith et al.6 used fixed-spacing between adjacent 
groups of conserved blocks. The latter work was important 
in the sense that it provided the initial conserved segments 
to the BLOCKS database7. The primary disadvantage 
of most algorithms is that they provide some or other 
constraints on the motifs, with users having to specify 
either the minimum and maximum length of the motif, 
or the number of motif components, or the number of 
variable spacing, etc. Putting these restrictions allow the 
algorithms to execute faster, but presume that the user 
already has some knowledge of the structure of patterns 
present in the sequences. In terms of spacing lengths, 
variable-spacing is biologically more meaningful than 
fixed spacing because a number of insertion-deletion 
events may have happened during the evolution of the 
species from a common ancestor, and therefore, gap 
lengths may not be uniform among two related species 
between adjacent conserved regions.

A popular algorithm in this field is PRATT8. The 
primary advantage of this algorithm over our proposed 
one is that it does not require aligned sequences; however 
as we shall see in Section 4, our proposed method is better 
at identifying conserved patterns. HMMER9 and MEME10 
are two other very widely used algorithms in this field 
whose results we also compare in the next section. The 
HMMER algorithm does not generate a motif in the sense 
of a consensus pattern of amino-acids, but produces a 

profile based on the hidden Markov model. This profile 
can then be used to search any protein database. Like our 
algorithm, it also requires a multiple sequence alignment 
to start with. A multiple sequence alignment of a set of 
protein sequences is a way of arranging those proteins 
in a way so as to identify regions of similarity between 
them, which is widely believed to be the result of some 
evolutionary relationship between the said proteins. 
MEME is another tool for motif discovery, and it does not 
require an aligned set of sequences as well; however, it can 
only produce ungapped fixed-length motifs, and hence 
is mostly unsuitable for discovering complex patterns. 
Another algorithm, DRIMust11 also generates motifs 
from unaligned sequences; however it is sensitive to the 
order of the input sequences and finds sequences that are 
over-represented in the sequences that appear first in the 
input. Another disadvantage of the DRIMust web server 
interface12 is that it cannot produce motifs of length 
greater than 20. A brief summary of these four algorithms 
are presented in Table 1. 

In this paper, we compare our proposed algorithm 
against all four of these, as well as against the standard 
PROSITE motif, for each protein family under 
consideration. Among the four algorithms: HMMER 
is not a motif generation algorithm per-se but it is used 
for searching databases for homologs. However, our goal 
of developing ProMot is not only to develop sequence 
motifs but to ultimately search protein databases using 
those generated motifs to find all proteins in a given 
family. In doing so, both HMMER and ProMot can be 
said to be contributing to the same purpose. As far as 
DRIMust is concerned, it can only work when the input 
sequences are ranked, and it returns motifs that are 
over-represented in those sequences which are at the 
top. To maintain comparability with our algorithm, the 
sequences which remained mostly undetected (i.e. false 

Table 1.    Summary of the algorithms compared against our proposed algorithm
Algorithm Strength Weakness Methodology
Pratt Can work with both 

aligned and unaligned 
sequences

Precision not as good Uses enumeration of triplets consisting of conserved 
residues with variable spacing between the residues

HMMER Good precision, excel-
lent sample fitness

Does not generate patterns; instead 
builds profiles

Uses hidden Markov models to build profiles

MEME High precision Cannot produce gapped motifs Uses expectation-maximization by iteratively fitting a 
mixture-model to the sample

DRIMust - Unsatisfactory precision, motif 
length limited to 20

Uses suffix trees for enumeration of k-mers, which are 
assessed using mHG statistics
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negatives) by the algorithms compared in this paper, were 
put at the end of the sequence lists before being presented 
to DRIMust so that it gives priority to those sequences 
which are detected by almost all motifs for that family. 
Regarding those proteins containing multiple conserved 
regions separated by unconserved regions, ProMot is well 
capable of handling them as well, where MEME fails as it 
only finds ungapped motifs. For the purposes of aligning 
the sequences whenever required, we used MUSCLE13 
because it is quite fast.

In Section 2, we discuss the proposed algorithm for 
motif generation along with the various parameters that 
can be used to tune its performance. In Section 3, we 
discuss about the sample data that have been used to test 
our algorithm. In Section 4, the results of motif generation 
using the sample data with our proposed algorithm as well 
as some commonly used algorithms have been discussed. 
In Section 5, we compare and contrast the quality of 
the motifs generated by the various algorithms. We also 
discuss the runtime performance of our algorithm and 
its software availability. Finally we conclude with our 
findings in Section 6.

2.   Method: The Proposed 
Algorithm

2.1 User Parameters
The proposed algorithm, hereinafter called ProMot, 
takes three user specified parameters to search for 
motifs. Besides these, it also uses two constants in the 
algorithm. All of these are listed in Table 2. The FITNESS_
THRESHOLD is the minimum required percentage of 
sample coverage (see Eqn. (1)). The MAX_CHOICES is 
the maximum number of allowed amino-acid choices in 
each motif-element.

)1(%100×=
N
HCoverageSample    (1)

Where, H is the number of motif hits in the sample; 
and N is the sample size (number of sequences in the 
sample)>

2.2 The Method
The proposed algorithm is outlined in Figure 1. The input 
to the algorithm is a list of aligned protein sequences. 
The first step is determining a group for each column. 
The amino-acid choices for each group are the number 
of distinct amino-acids present in that column. The min 
and max values for a group are the minimum length of 
the group present in the motif; both are initially set to 
1. Consecutive groups are merged by forming the union 
of the amino-acid choices, updating their contributions 
(probability of occurrence, see Eqn. (2)), and their min and 
max values appropriately. Gaps in the alignment result in 
setting min to 0. After the initial grouping, the algorithm 
enters the second phase, wherein for each group, the 
standard deviation (σ) is calculated (see Eqn. (3)).  Groups 
are treated differently based on their σ values. If σ is more 
than the SD_THRESHOLD, the choice-list for that group 
are replaced with the complement of the choice-list, but 
only if it is shorter in length than the original list. If not, 
the group is replaced by a wildcard region (“x” in the 
motif) but only if the all the amino-acids in the choice-list 
are not contained in the same functional group according 
to the two of the classification types possible for proteins, 
as listed in Table 3.

On the other hand, if σ is more than SD_THRESHOLD, 
the choice-list is arranged in ascending order of their 
contributions. The cumulative sum of the normalized 
contributions of each amino-acid in the choice-list, are 
then computed using Eqn. (6).

Table 2.    User Parameters and Constants
Parameters Range/Values Default Meaning
FITNESS_THRESHOLD 1-100 - The minimum percentage of the sequences that the motif must match
MAX_CHOICES 1-22 4 The maximum no. of dissimilar amino-acid choices per position allowed
ALLOW_GROUPING Y / N Y Whether to check for grouping of amino-acids based on similar phys-

io-chemical properties
Constants Value Meaning
SD_THRESHOLD 0.1 The cutoff Standard Deviation value determining the group treatment
CON_NORM_THRESH-
OLD

0.001 The cutoff Normalized Contribution value below which amino-acids are 
removed from a group
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Where, A and B denote amino-acids, Con refers to 
the Contribution, Cum_Con refers to the cumulative 
sum of the Contributions, Norm_Cum_Con refers to 

the cumulative sum of the normalized contributions, N 
refers to the total number of sequences for that column 
(including where gaps are present), freq(A,col) refers to 
the frequency of occurrence of A in column col, M(col) 
is the mean-contribution of a column, and σ(col) is the 
Standard-Deviation of a column.

All amino-acids having their normalized cumulative 
contributions before a set threshold are removed from the 
choice-list for that group. However, as a special case, if any 
amino-acid has 98% or more contribution in a column, 
all other amino-acids are removed, and the min is set to 1 
for that group. After this phase, the algorithm enters the 

Figure 1.    The ProMot algorithm.

Table 3.    Amino-acid classification
Classification according to the charge & polarity of 
the side-chain

Classification according to the structure of the side-chain

Group Members Group Members
Hydrophobic Alanine, Glycine, Leucine, Valine, 

Isoleucine, Phenylalanine, Tryptophan, 
Methionine, Proline

Aliphatic Glycine, Alanine, Valine, Leucine, Isoleucine

Hydrophilic Asparagine, Glutamine, Cysteine, Ser-
ine, Threonine, Tyrosine

Hydroxyl or 
Sulphur/Selenium 
containing

Serine, Cysteine, Selenocysteine, Threonine, Methi-
onine

Acidic Aspartate, Glutamate Cyclic Proline
Basic Arginine, Histidine, Lysine Aromatic Phenylalanine, Tyrosine, Tryptophan

Basic Arginine, Histidine, Lysine
Acidic Aspartate, Glutamate, Asparagine, Glutamine
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final motif generation phase, which is performed using 
concatenation of the choice-lists of successive groups. All 
non-standard amino-acids are first removed from any 
choice-lists, and the leading and trailing wild-card regions 
are also removed from the generated motif. Finally, it is 
ensured that the starting and ending motif elements have 
min=max, by removing all elements to the left and right of 
the suitable starting and ending elements. The generated 
motif is then matched against the sample and the sample 
coverage is computed, and both the motif and the sample-
coverage are reported to the user.

3.  Materials

3.1 Sample Selection
For the purpose of motif discovery, we have worked with 
three protein families as summarized in Table 4. For 
the first test case however, the sample selected was only 

a subset of all the known proteins in that category. This 
was done to further analyze the fitness of the generated 
motifs to the overall population, so that we can determine 
whether the generated motif is flexible enough.

The SwissProt14 database (2016_04 release) was used 
to find motif hits (except for HMMER, where SwissProt 
(2015_09 release) was used). All statistics, like sample 
coverage, precision, etc. were computed using SwissProt 
(2015_09 release), and all samples were also taken from 
the same release.

3.1.1 Snake Toxins
In this family, we had selected 91 short neurotoxins from 
the SwissProt database, from 45 species of snakes in the 
Elapidae family, as can be seen from Table 5. The shortest 
sequence was of length 58, with the longest sequence 
consisting of 86 amino-acids – the average length being 
72. Most of these snake toxins work by binding to the 

Table 4.    Summary of the three test cases
# Sample Name No. of sequences Min. length Max. length Average length PROSITE ID (Entry Name)
1 Snake venom toxins 91 58 86 71 PS00272 (SNAKE_TOXIN)*
2 Insulin & related peptides 232 44 305 108 PS00262 (INSULIN)
3 Methylated-DNA protein-cyste-

ine methyltransferase active site
55 108 354 173 PS00374 (MGMT)

* There are a total of 445 proteins in this category – only 20% (91 sequences) of them were selected as the sample

Table 5.    List of the 91 short-neurotoxins selected from the 45 species of Elapid snakes
# No. of proteins Species # No. of proteins Species
1 1 Acanthophis antarcticus 24 1 Micrurus pyrrhocryptus
2 4 Aipysurus laevis 25 1 Micrurus surinamensis
3 1 Austrelaps superbus 26 1 Naja annulata annulata
4 2 Bungarus fasciatus 27 4 Naja annulifera
5 3 Bungarus multicinctus 28 1 Naja christyi
6 1 Demansia vestigiata 29 2 Naja haje haje
7 1 Dendroaspis jamesoni kaimosae 30 1 Naja kaouthia
8 1 Dendroaspis polylepis polylepis 31 1 Naja melanoleuca
9 1 Dendroaspis viridis 32 2 Naja mossambica
10 2 Drysdalia coronoides 33 2 Naja nivea
11 2 Hemachatus haemachatus 34 1 Naja oxiana
12 1 Hoplocephalus stephensii 35 1 Naja pallida
13 1 Hydrophis cyanocinctus 36 1 Naja philippinensis
14 3 Hydrophis hardwickii 37 1 Naja samarensis
15 1 Hydrophis lapemoides 38 1 Notechis scutatus scutatus
16 1 Hydrophis ornatus 39 9 Ophiophagus hannah
17 2 Hydrophis peronii 40 2 Oxyuranus microlepidotus
18 1 Hydrophis schistosus 41 3 Oxyuranus scutellatus scutellatus
19 1 Hydrophis stokesii 42 1 Pseudechis australis
20 5 Laticauda colubrina 43 1 Pseudechis porphyriacus
21 3 Laticauda crockeri 44 7 Pseudonaja textilis
22 6 Laticauda laticaudata 45 2 Tropidechis carinatus
23 1 Laticauda semifasciata
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nicotinic acetylcholine receptors in the postynaptic 
membrane of skeletal muscles, thus suspending muscle 
excitation through prevention of acetyl choline binding15. 
The PROSITE protein family identifier for this family is 
PS00272.

3.1.2 Insulin
In this category, we had selected 232 sequences from 
the SwissProt database – a group of active peptides like 
insulin, relaxin, insulin-like growth factors, and various 
other insulin-like peptides; all of which are thought to be 
evolutionarily related. The sequence lengths vary from 
44 to 305; the average length being 109. The PROSITE 
protein family identifier for this family is PS00262.

3.1.3  Methylated-DNA Protein-Cysteine 
Methyltransferase Active Site

In this category, we had selected 55 sequences from 
the SwissProt database – a group of enzymes, who are 
responsible for the repair of DNA containing O6-alkylated 
guanine, which is usually formed as the mutagenic & 
carcinogenic effects of methylating agents16. After the 
repair process, the enzyme is irreversibly inactivated17. 
The sequence lengths vary from 108 to 354; the average 
length being 173. The PROSITE protein family identifier 
for this family is PS00374.

3.2  Alignment and Submission for Motif 
Discovery

The proteins were aligned using MUSCLE, and then 

those aligned sequences were fed into Pratt, ProMot 
and HMMER to obtain motifs/profiles for the respective 
protein families. DRIMust and MEME require unaligned 
sequences, and hence the raw samples were fed into those 
to generate the motifs/profiles. The search parameters 
used for Pratt and MEME are listed in Appendix A.

4.  Results

4.1 Snake Toxins
In Table 6, we present the motifs generated by the 
various algorithms, when presented with the aligned/
unaligned sequences of the short-neurotoxins (Table 3), 
and compare it against the PROSITE consensus motif. 
From the motifs, we can see that only ProMot correctly 
identifies 7 of 8 Cysteines involved in disulphide bonds, 
which are invariant in most snake venom toxins. We 
can also easily see that, only ProMot generated variable-
length wildcards in the same motif-element, which none 
of the other algorithms could, and is a very much required 
feature as seen in the manually generated PROSITE 
motif. However, we see that both ProMot and Pratt fail to 
detect the Proline, thought to be essential for structural 
stability, which is present in the PROSITE consensus 
motif. However, we must take into consideration that the 
PROSITE motif is manually curated, while both ProMot 
and Pratt are unsupervised algorithms. We can also see 
that MEME cannot produce gapped motifs, while the 
motif generated by DRIMust is too general. With ProMot, 
MAX_CHOICES was set to 2, and ALLOW_GROUPING 
set to NO.

Table 6.    Comparison between the motifs generated for snake-toxins by ProMot, Pratt, MEME & DRIMust and the 
PROSITE snake-toxin consensus motif (PS00272). HMMER is not included in the table as it does not generate motifs 
but instead builds a HMM profile 

ProMot Pratt (v2.1) PROSITE PS00272 MEME (v4.11) DRI 
Must

Motif C-x(4,17)-C-x(4,6)-C-x(9,21)-G-
C-x(1,3)-C-x(3,11)-C(2)-x(5)-N

C-C-x(2)-[DEN]-
x-[CS]-N

G-C-x(1,3)-C-P-x(8,10)-
C-C-x(2)-[PDEN]

W-R-D-H-R-G-
T-I-I-E-R-G-C

G-C-
G-C

No. of motif compo-
nents

14 7 10 13 4

Motif length (with 
dashes)

61 23 38 25 7

Motif length (w/o 
dashes)

48 17 29 13 4

Min. matchable region 35 8 18 13 4
Max. matchable region 72 8 22 13 4
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4.2 Insulin
In Table 7, we present the motifs generated by the various 
algorithms, when presented with the aligned/unaligned 
sequences of the insulin family, and compare it against the 
PROSITE consensus motif. We see that Pratt and DRIMust 
failed to generate any motifs at all – the latter due to the 
fact that the insulin proteins contain two non-standard 
amino acids B & Z. The motif generated by MEME is too 
long (and general) to be submitted to ScanProsite18 for 
searching against SwissProt, and hence the count matrix, 
rather than the motif had to be submitted to FIMO19for 
searching in SwissProt. Comparing the ProMot and 
PROSITE consensus motifs, we see that ProMot correctly 
identified four of the Cysteines involved in disulphide 
bonds, which are also present in the PROSITE motif. With 

ProMot, MAX_CHOICES was set to 8, and ALLOW_
GROUPING set to YES. 

4.3  Methylated-DNA Protein-Cysteine 
Methyltransferase Active Site

In Table 8, we present the motifs generated by the 
various algorithms, when presented with the aligned/
unaligned sequences of the MGMT family (methylated-
DNA protein-cysteine methyltransferase active site), and 
compare it against the PROSITE consensus motif. We see 
that yet again, DRIMust failed to generate any motifs at 
all. MEME generated a count-matrix (hence the motif 
is not listed in the table), which was fed into FIMO for 
searching. With ProMot, MAX_CHOICES was set to 3, 
and ALLOW_GROUPING set to NO.

Table 7.    Comparison between the motifs generated for insulin by ProMot, Pratt, MEME & DRIMust and the 
PROSITE insulin-family consensus motif (PS00262). HMMER is not included in the table as it does not generate motifs 
but instead builds a HMM profile

ProMot Pratt (v2.1) PROSITE 
PS00262

MEME (v4.11) DRIMust

Motif [CDEHRST]-[EKQSY]-F(0,1)-
C-C-{CPW}-{ALFP}-[AG]
(0,1)-x-C-[DENST]-x(3,4)-
[AEKLQRS]-x(0,1)-F(0,3)-[FL]
(0,1)-[ALY]-[ILM](0,1)-[CX]

Failed to gener-
ate any motifs

C-C-{P}-{P}-x-
C-[STDNEKPI]-
x(3)-[LIVMFS]-
x(3)-C

Motif generated 
as a probability 
matrix

Failed due to 
the presence of 
non-standard 
amino-acid 
codes: B & Z

No. of motif compo-
nents

19 - 11 17 -

Motif length (with 
dashes)

126 - 47 281 -

Motif length (w/o 
dashes)

108 - 37 265 -

Min. matchable 
region

15 - 15 18 -

Max. matchable 
region

24 - 15 18 -

Table 8.    Comparison between the motifs generated for methylated-DNA—protein-cysteine—methyltransferase-
active-site by ProMot, Pratt, and the PROSITE MGMT-family consensus motif (PS00374). HMMER is not included 
in the table as it does not generate motifs but instead builds a HMM profile, DRIMust failed to generate any motifs, 
and MEME generated a count-matrix

ProMot Pratt (v2.1) PROSITE PS00374
Motif G-x(4)-Y-x(3)-[AV]-x(5)-[KP](0,1)-x(5,7)-

[AG]-x(5)-[LN]-x(6)-[AP]-[CW]-H-R-[IV]-
x(15,23)-[KQ]-x(3)-L-x(2)-E

H-R-[IV]-[ILV] [LIVMF]-P-C-H-R-[LIVMF](2)

No. of motif components 23 4 6
Motif length (with 
dashes)

107 14 26

Motif length (w/o dashes) 85 11 21
Min. matchable region 61 4 7
Max. matchable region 72 4 7
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5.  Discussion

5.1 Terminology
The motif matching statistics have been presented in 
Table 9, 10 and 11. For analyzing these, it is crucial to be 
aware of some terminology used there:

5.1.1 Total Hits (or Number of Sequences Matched)
It is the total number of sequences that match the 
generated motif, when that motif is used for searching 
against the SwissProt database.

Table 9.    Snake toxin hit statistics by the motifs of Table-6 and HMMER profile, on the SwissProt database
Category/Motif ProMot Pratt (v2.1) PROSITE PS00272 HMMER (v3.0) MEME (v4.11) DRI Must
No. of sequences matched 419 549 398 502 18 561
Short neurotoxins 95 96 79 97 17 72
Long neurotoxins 45 51 53 59 0 0
Elapitoxins 25 23 25 27 0 0
Alpha neurotoxins 7 7 7 7 0 6
Weak neurotoxins 18 13 13 14 0 1
Weak toxins 15 16 13 15 0 2
Cobrotoxins 7 7 7 7 0 7
Cytotoxins 87 93 92 92 0 0
Cardiotoxins 8 5 5 10 0 0
Three-finger toxins 18 15 11 26 1 10
Erabutoxins 3 3 3 3 0 3
Hemachatoxins 0 1 1 0 0 0
Bungarotoxins 13 14 13 14 0 0
Pseudonajatoxins 2 2 2 2 0 0
Other toxins & venom-like proteins 64 66 67 84 0 17
Other proteins (false positives) 12 137 7 45 0 443
True Positives 407 412 391 457 18 118
Sample coverage 100% 100% 100% 100% 17.6% 74.7%
Precision = (True positives / Total 
hits)

97.1% 75.0% 98.2% 91.0% 100% 21.0%

Table 10.    Insulin hit statistics by the motifs of Table-7 and HMMER profile, on the SwissProt database
Category/Motif ProMot PROSITE PS00262 HMMER (v3.0) MEME (v4.11)
No. of sequences matched 199 230 241 21,417
True Positives 183 222 232 230
False Positives 16 8 9 21,187
False Negatives 49 10 0 2
Sample coverage 78.9% 95.7% 100% 99.1%
Precision = (True positives / Total hits) 92% 96.5% 96.3% 1.1%
Recall = (True positives / (True positives + False negatives) 78.9% 95.7% 100% 99.1%

Table 11.    MGMT hit statistics by the motifs of Table-8 and HMMER profile, on the SwissProt database
Category/Motif ProMot Pratt (v2.1) PROSITE PS00262 HMMER (v3.0) MEME (v4.11)
No. of sequences matched 57 7,895 67 211 23,581
True Positives 55 55 53 55 55
False Positives 2 7,840 14 156 23,526
False Negatives 0 0 2 0 0
Sample coverage 100% 100% 96.4% 100% 100%
Precision = (True positives / Total hits) 96.5% 0.7% 79.1% 26.1% 0.2%
Recall = (True positives / (True positives + False 
negatives)

100% 100% 96.4% 100% 100%
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5.1.2 Sample and Sample Coverage
Usually all known proteins of a family are used for 
generating the motif (Test cases 2 and 3), but in some 
cases (Test case 1) it is imperative to use only a subset 
because it better mimics the real life scenario when we do 
not yet know all proteins which belong to a family, and 
we must generate a motif and use it to search for other 
proteins similar to the ones we have chosen. The sample 
therefore may either be a subset or be the complete set of 
sequences generally believed to constitute a given protein 
family. Sample coverage is then the percentage of proteins 
matched by the motif (generated from that sample) in 
that same sample.

5.1.3 True Positives
It is the number of proteins matched by the motif that are 
believed to be in a given protein family.

5.1.4 False Positives
It is the number of proteins matched by the motif that are 
not believed to be in a given protein family.

5.1.4 False Negatives
It is the number of proteins believed to be in a given 
protein family, but are not matched by the generated 
motif. In other words, it is the difference between the 
number of proteins believed to be in a protein family and 
the number of True Positives.

It must be noted that the actual number of proteins 
in any given protein family is always unknown. However, 
for all possible purposes of the various statistics presented 
in the tables below, only those proteins are taken into 
consideration, which are widely believed to be in the said 
protein family. The notion of ‘wide belief ’ may appear 
to be vague, and as such, the criteria used on PROSITE 
for determining the true and false positives, and false 
negatives, for each of the 3 protein families tested in this 
paper, have been applied here as well.

5.2 Characteristics of the Generated Motifs

5.2.1 Snake Toxins
All the motifs of Table 6 were run against the SwissProt 
database using the ScanProsite tool, and the match statistics 
are presented in Table 9. From the table, we can see that 

ProMot is much more accurate than Pratt, and almost 
as accurate as the PROSITE consensus motif. However, 
the primary advantage of Pratt over ProMot is that it can 
generate motifs from unaligned protein sequences as 
well, while ProMot requires an aligned set of sequences. 
From the table, we can see that ProMot outperformed all 
other algorithms but fell short of matching the PROSITE 
motif marginally in terms of precision. MEME had a too 
low sample-coverage to be useful, while the precision of 
DRIMust was extremely low.

5.2.2 Insulin
All the motifs of Table 7 were run against the SwissProt 
database and the match statistics are presented in Table 
10. The motif produced by MEME was too long to be 
submitted to ScanProsite, and hence the count-matrix 
generated by the program was submitted to FIMO for the 
search. Pratt and DRIMust are excluded from the table 
because both of these failed to generate any motifs. As far 
as sample coverage (which is the percentage of matches 
against the sequences in SwissProt known to be in the 
Insulin family), ProMot outperforms even the PROSITE 
motif. However, it also reports too many false positives. 
The HMMER algorithm clearly outperforms all the 
others, both in terms of sample coverage and almost in 
terms of precision. The only disadvantage of the HMMER 
tool is the lack of any motif returned to the user, thus 
prohibiting any visual inference of the general protein 
family structure directly from the profile. The results 
produced by MEME in this category can be ignored as it 
reports too many false positives to be useful, though its 
sample coverage is impressive.

5.2.3  Methylated-DNA Protein-Cysteine 
Methyltransferase Active Site

All the motifs of Table 8 were run against the SwissProt 
database and the match statistics are presented in Table 
11. The motif produced by MEME was too long to be 
submitted to ScanProsite, and hence the count-matrix 
generated by the program was submitted to FIMO for 
the search. Pratt and DRIMust are excluded from the 
table because both of these failed to generate any motifs. 
From the table we can see that our proposed algorithm 
outperforms all other algorithms, even the PROSITE 
motif itself, both in terms of sample-coverage as well as 
precision.
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5.3 Runtime Performance of the Algorithm
The running times of the various algorithms are tabulated 
in Table 12. The time complexity of the ProMot algorithm 
is ).( 2mmnO + , where n is the total number of sequences, 
and m is the length of each sequence after alignment. Its 
auxiliary space complexity is )(nO . As we can see from the 
table, our algorithm is easily the fastest algorithm among 
all other algorithms except Pratt, with which we cannot 
compare as its running-time precision was not available 
down to microsecond level. We must also keep in mind 
that Pratt, DRIMust and the MEME algorithms were run 
on servers with better specifications, while HMMER and 
ProMot were run locally on an Intel Celeron 1.6GHz 
processor with 2GB memory.

Table 12.    Running times of the various algorithms (in 
seconds)
Algorithm Snake Toxins Insulin MGMT
HMMER 0.60 2.60 2.42
MEME (on server) 5.79 71.66 5.93
Pratt (on server) 0 FAILED 0
ProMot 0.03 0.23 0.06
DRIMust (on server) Not available FAILED FAILED

5.4 Comparison of the Test Case Results
A visual comparison of the algorithm performances can 
be seen in Figure 2–4, for the three test-cases showing 
their sample-coverage and precision. Also, as we can see 
from the three test-cases presented, ProMot also never 
fails to generate motifs.

Figure 2.    Comparison of sample-coverage and precision of 
the various algorithms on the snake toxins family.

Figure 3.    Comparison of sample-coverage and precision of 
the various algorithms on the insulin family.

Figure 4.    Comparison of sample-coverage and precision of 
the various algorithms on the MGMT family.

5.5 Software Availability
The algorithm (version 4.0) has been implemented in Java 
8, and the tool requires Java to execute. The software has 
been made freely available on sourceforge. Java is also 
freely available for download from the Oracle website. To 
use the software, one has to download the ProMot JAR 
(Java Archive) from sourceforge, after installing Java, and 
execute the software providing a set of aligned sequences 
as input. The input file must be in FASTA format. For 
ease of use, a sample aligned FASTA dataset has also 
been included for download. When run without any 
parameters, the software shall display the proper usage 
with the list of parameters to specify. The output can be 
seen on the console, or can be redirected to an output file.
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6.  Conclusion

Motif discovery from a set of protein sequences has 
several advantages in bioinformatics. Firstly, it helps us 
identify the general structure of all the proteins in that 
family by identifying the invariant residues. Secondly, 
it helps to predict the function of that protein, and this 
has several appications20-25. Thirdly, it is much easier and 
memory-efficient to store a single motif, than store a large 
set of sequences to analyze later, when we can dynamically 
generate the larger set by matching that motif against any 
database.

The most widely used motif discovery algorithms are 
HMMER, MEME and the Pratt algorithms; however, as 
we have seen, our proposed method generates better and 
more accurate motifs than Pratt, and MEME, while it 
outperforms HMMER in two of three occasions in terms 
of precision. ProMot is extremely fast, and hence, the user 
may first generate an alignment using any available MSA 
algorithm, and then feed those sequences to ProMot to 
get the desired motif. A huge advantage of ProMot is that 
the user-parameters are much more intuitive and easy for 
the user to specify and does not require prior knowledge 
about the probable motif. We hope that ProMot shall 
greatly advance the state-of-the-art in motif discovery for 
protein families.
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Appendix A: Search Parameters

The default parameters were used for Pratt when 
generating motifs as listed below:

PATTERN CONSERVATION:
   C%: min Percentage Seqs to Match           100.0

PATTERN RESTRICTIONS :
   PP: pos in seq [off,complete,start]          off
   PL: max Pattern Length                        50
   PN: max Nr of Pattern Symbols                 50
   PX: max Nr of consecutive x’s                  5
   FN: max Nr of flexible spacers                 2
   FL: max Flexibility                            2
   FP: max Flex.Product                          10

   BI: Input Pattern Symbol File                off
   BN: Nr of Pattern Symbols Initial Search     20

PATTERN SCORING:
   S: Scoring [info,mdl,tree,dist,ppv]        info

SEARCH PARAMETERS:
   G: Pattern Graph from [seq,al,query]        al
   E: Search Greediness                           3
   R: Pattern Refinement                         on
   RG: Generalise ambiguous symbols            off

Default parameters for MEME were used as well, for 
generating the motifs, and are listed below:

model:  mod=oops, nmotifs=1, evt=inf, object function= 
E-value of product of p-values
width:   minw=6, maxw=58
width:   wg=11, ws=1, endgaps=yes
theta:   spmap=pam, spfuzz=120
global:  substring=yes, branching=no, wbranch=no
em:      prior=dmix, b=0, maxiter=50, distance=1e-05

For all other algorithms as well, default parameters were 
used. Parameters used for ProMot are stated in the text 
against each motif generated.
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