More Results on Polygonal Sum Labeling of Graphs

Rajakishore Samal ${ }^{1 *}$ and Debdas Mishra ${ }^{2}$
'Department of Mathematics, O.P.S.Mohavidyalaya, Hindol Road, Dhenkanal - 759019, Odisha, India; rksamalmath@gmail.com
${ }^{2}$ Department of Mathematics, C.V.Raman College of Engineering and Technology, Bhubaneswar - 752054, Odisha, India; debdasmishra@gmail.com

Abstract

Objectives: To explore and identify some new classes of graphs which exhibit polygonal sum labeling. Methods: In this article we use a methodology which fundamentally involves formulation and subsequent mathematical validation. Findings: Here we establish that the graphs - Star ($K_{1, n}$), Coconut Tree, Bistar ($S_{m, n}$), the Graph $S_{m, n, k}$, Comb ($P_{n} K_{1}$) and Subdivision graph $S\left(K_{1, n}\right)$ admit pentagonal, hexagonal, heptagonal, octagonal, nonagonal and decagonal sum labeling. Applications: One can explore to generalize these results and extend to give n-gonal labeling to some classes graphs. Sum labeling has already been used in the problems involving relational database management and hence one can try out to use polygonal sum labeling as well in these problems.

Keywords: Bistar, Coconut Tree, Comb, Polygonal Sum Labeling, Star, Subdivision Graph

1. Introduction

The graphs considered here are finite, connected, undirected and simple. The notations and terminologies involving graph theory may be found in^{1} and the same involving number theory may be found in^{2}. The study undertaken in this paper involves Polygonal sum labeling of graphs. A (p, q) graph G is said to admit a polygonal sum labeling if its vertices are labeled by non-negative integers such that the induced edge labels obtained by the sum of the labels of end vertices are the first q polygonal numbers. A graph possessing a polygonal sum labeling is called a polygonal sum graph. Here we show that some classes of graph can be embedded as induced sub graphs of a Polygonal sum graph. We recapitulate some important definitions useful for the present investigation.

1.1 Definition ${ }^{3,4,5}$

The numbers which generate a k - gon are known as k-gonal numbers. The $n^{\text {th }} k$-gonal (i.e. k - sided polygonal) number
is given by $\quad P_{k}(n)=\frac{n((k-2) n-k+4)}{2}$ where $k \geq 3$. For Example, The $n^{\text {th }}$ pentagonal number is denoted by A_{n} and is given by the formula $A_{n}=\frac{1}{2} n(3 n-1)$.The few pentagonal numbers are $1,5,12,22,35,51,70,92,117,145,176, \ldots$. Figure 1 illustrates pentagonal numbers.

Figure 1. Pentagonal numbers 1, 5, 12, 22, 35.

1.2 Definition ${ }^{3,5}$

A k-gonal sum labeling of a graph G is a one to one function $f: V(G) \rightarrow N$ that induces a bijection

[^0]$f^{+}: E(G) \rightarrow\left\{A_{1}, A_{2} \ldots, A_{q}: A_{n}=\frac{n((k-2) n-k+4)}{2}\right\}$
of the edges of G defined by $f^{+}(u v) \rightarrow f(u)+f(v)$ for every $e=u v \in E(G)$.The graph which admits such labeling is called a k-gonal sum graph.

1.3 Example

Figure 2 illustrates a pentagonal sum labeling of P_{5}.

Figure 2. Pentagonal sum labeling of P_{5}.

1.4 Example

Figure 3 illustrates a decagonal sum labeling of P_{10}.

Figure 3. Decagonal sum labeling of P_{5}.
In ${ }^{5}$ give pentagonal, hexagonal, heptagonal, octagonal, nonagonal and decagonal sum labeling to paths. Amuthavalli and Dineshkumar ${ }^{3}$ have given pentagonal sum labeling to bistars $S_{m, m}$. In this paper an attempt has been made to prove that the $\operatorname{Star} K_{1, n}$, Coconut Tree, Bistar $S_{m, n}$, the Graph $S_{m, n, k}$, Comb $P_{n} \square K_{1}$ and Subdivision graph $S\left(K_{1, n}\right)$ admit pentagonal, hexagonal, heptagonal, octagonal, nonagonal and decagonal sum labeling. The graphs have been discussed in brief below.

1.5 Definition

Centre c with n pendant edges incident with c is called a Star graph and is denoted by $K_{1, n}$ or S_{n}. Hence it has $n+1$ vertices and n edges.

1.6 Definition

Coconut tree is a tree with central path $u_{1}, u_{2}, \ldots u_{n}$ having length $n-1$ and $w_{1}, w_{2}, \ldots, w_{k}$ be the pendant vertices being adjacent with u_{1}. Hence it has $n+k$ vertices and $n+k-1$ edges.

1.7 Definition

The graph obtained from $K_{1, m}$ and $K_{1, n}$ by joining their centers with an edge is called Bistar or Double star and is denoted by $S_{m, n}$. Let
$V\left(S_{m, n}\right)=\left\{u, v, u_{i}, v_{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$ and $E\left(S_{m, n}\right)=\left\{u v, u u_{i}, \nu v_{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$. Hence it has $m+n+2$ vertices and $m+n+1$ edges.

1.8 Definition

The graph $S_{m, n, k}$ is a graph obtained from a path of length k by attaching the stars $K_{1, m}$ and $K_{1, n}$ with its pendant vertices. Hence it has $m+n+k+1$ vertices and $m+n+k$ edges.

1.9 Definition

A graph obtained by attaching a single pendant edge to each vertex of a path $P_{n}=u_{1} u_{2} \ldots u_{n}$ is called a comb. A comb graph is obtained from the path by joining a vertex u_{i} to $w_{i}, 1 \leq i \leq n$. It is denoted by $P_{n} \square K_{1}$. The edges are labeled as $e_{2 i-1}=u_{i} w_{i}$ and $e_{2 i}=u_{i} u_{i+1}$ for $1 \leq i \leq n$. Hence it has $2 n$ vertices and $(2 n-1)$ edges.

1.10 Definition

The Subdivision of the star $K_{1, n}$ is a graph $S\left(K_{1, n}\right)$ with vertex set $V\left(S\left(K_{1, n}\right)\right)=\left\{v, v_{i}, u_{i}: 1 \leq i \leq n\right\}$ and edge set $E\left(S\left(K_{1, n}\right)\right)=\left\{v v_{i}, v_{i} u_{i}: 1 \leq i \leq n\right\}$. Hence it has $2 n+1$ vertices and $2 n$ edges.

2. Results

2.1 Pentagonal Sum Labeling of Graphs

In this section, we prove that stars S_{n}, coconut trees, bistars or double stars $S_{m, n}$, the graphs $S_{m, n, k}$, combs $P_{n} \square K_{1}$, subdivision graphs $S\left(K_{1, n}\right)$ of the star $K_{1, n}$
admit pentagonal sum labeling.

2.1.1 Theorem

The star graph $K_{1, n}$ or S_{n} possesses a pentagonal sum labeling.

Proof

Let u be the apex vertex and let $u_{1}, u_{2}, \ldots u_{n}$ be the pendant vertices of the star S_{n}. Define the labeling f by
$f(u)=0$ and $f\left(u_{i}\right)=\frac{1}{2} i(3 i-1), 1 \leq i \leq n$. We see
that the induced edge labels are the first n pentagonal numbers. Hence star graph $K_{1, n}$ or S_{n} possesses a pentagonal sum labeling.

2.1.2 Theorem

The coconut trees have pentagonal sum labeling.

Proof

Let $u_{1}, u_{2}, \ldots u_{n}$ be the vertices of a path having length $n-1$ and let $w_{1}, w_{2}, \ldots, w_{k}$ be the pendant vertices being adjacent with u_{1}.

Define the labeling f by

$$
f\left(u_{i}\right)=\left\{\begin{array}{cl}
\frac{1}{4}(i-1)(3 i-1), & \text { if } i \text { is odd } \\
\frac{1}{4} i(3 i-4), & \text { if } i \text { is even }
\end{array} \text { for } 1 \leq i \leq n:\right.
$$

and $f\left(w_{j}\right)=\frac{1}{2}(n+j-1)(3 n+3 j-4)$, for $1 \leq j \leq k$.
We see that the induced edge labels are the first $n+k-1$ pentagonal numbers. Hence the coconut trees have pentagonal sum labeling.

2.1.3 Theorem

The bistar $S_{m, n}$ admits pentagonal sum labeling.

Proof

Let $V\left(S_{m, n}\right)=\left\{u, v, u_{i}, v_{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$ and

$$
E\left(S_{m, n}\right)=\left\{u v, u u_{i}, v v_{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}
$$

Define the labeling f by

$$
f(u)=0, f(v)=1, f\left(u_{i}\right)=\frac{1}{2} i(3 i-1), 1 \leq i \leq m
$$

$$
\text { and } f\left(v_{j}\right)=\frac{1}{2}(m+j)(3 m+3 j-1)-1,1 \leq j \leq n
$$

We see that the induced edge labels are the first $m+n+1$ pentagonal numbers. Hence the bistar $S_{m, n}$ admits pentagonal sum labeling.

2.1.4 Theorem

The graphs $S_{m, n, k}$ admit pentagonal sum labeling.

Proof

Let $P_{k}: v_{1}, v_{2}, \ldots, v_{k+1}$ be a path of length k with initial vertex v_{1} and terminal vertex v_{k+1}.

Let $u_{1}, u_{2}, \ldots, u_{m}$ be the adjacent vertices to v_{1} and $w_{1}, w_{2}, \ldots, w_{n}$ be the adjacent vertices to v_{k+1}.

Define the labeling f by

We see that the induced edge labels are the first $m+n+k$ pentagonal numbers. Hence the graphs $S_{m, n, k}$ admit pentagonal sum labeling.

2.1.5 Theorem

The comb $P_{n} \square K_{1}$ possesses a pentagonal sum labeling.

Proof

Let $P_{n}: u_{1}, u_{2}, \ldots, u_{n}$ be a path of length $n-1$ and let $w_{1}, w_{2}, \ldots, w_{n}$ be the pendant vertices adjacent to $u_{1}, u_{2}, \ldots, u_{n}$ respectively.

For $i=1,2, \ldots, n$, define the labeling f by

$$
\begin{aligned}
& f\left(v_{i}\right)=\left\{\begin{array}{cc}
\frac{1}{4}(i-1)(3 i-1), & \text { if } i \text { is odd } \\
\frac{1}{4} i(3 i-4), & \text { if } i \text { is even }
\end{array} \text { for } 1 \leq i \leq k,\right. \\
& f\left(u_{j}\right)=\frac{1}{2}(k+j)(3 k+3 j-1), \text { for } 1 \leq j \leq m, \\
& \text { and } f\left(w_{l}\right)=\frac{1}{2}(k+m+l)(3 k+3 m+3 l-1)-f\left(v_{k+1}\right) \text {, for } 1 \leq l \leq n \text {. }
\end{aligned}
$$

$$
f\left(u_{i}\right)=\left\{\begin{array}{cc}
\frac{1}{4}(i-1)(3 i-1), & \text { if } i \text { is odd } \\
\frac{1}{4} i(3 i-4), & \text { if } i \text { is even }
\end{array} \text { and } f\left(w_{i}\right)=\frac{1}{2}(n+i-1)(3 n+3 i-4)-f\left(u_{i}\right) .\right.
$$

Thus the induced edge labels are the first $2 n-1$ pentagonal numbers. Hence comb $P_{n} \square K_{1}$ possesses a pentagonal sum labeling.

2.1.6 Theorem

$S\left(K_{1, n}\right)$ the subdivision of the star graphs $K_{1, n}$ possesses a pentagonal sum labeling.

Proof

Let $V\left(S\left(K_{1, n}\right)\right)=\left\{v, v_{i}, u_{i}: 1 \leq i \leq n\right\}$ and

$$
E\left(S\left(K_{1, n}\right)\right)=\left\{v v_{i}, v_{i} u_{i}: 1 \leq i \leq n\right\}
$$

Define the
labeling f by $f(v)=0, f\left(v_{i}\right)=\frac{1}{2} i(3 i-1), 1 \leq i$
n, and $f\left(u_{i}\right)=\frac{1}{2}(n+i)(3 n+3 i-1)-f\left(v_{i}\right), 1 \leq i \leq n$.
We see that the induced edge labels are the first $2 n$ pentagonal numbers and as such $S\left(K_{1, n}\right)$ has a pentagonal sum labeling.

2.2 Hexagonal Sum Labeling of Graphs

In this section, we prove that star graphs S_{n}, coconut trees, bistars or double stars $S_{m, n}$, the graphs $S_{m, n, k}$, combs $P_{n} \square K_{1}$, subdivision graphs $S\left(K_{1, n}\right)$ of the star $K_{1, n}$ compatible with hexagonal sum labeling.

2.2.1 Theorem

The star graph $K_{1, n}$ or S_{n} has a hexagonal sum labeling. Proof

Let u be the apex vertex and let $u_{1}, u_{2}, \ldots u_{n}$ be the pendant vertices of the $\operatorname{star} S_{n}$.

Define the labeling f by $f(u)=0$ and $f\left(u_{i}\right)=i(2 i-1), 1 \leq i \leq n$.
We see that the induced edge labels are the first n hexagonal numbers. Hence the star graph S_{n} has a hexagonal sum labeling.

2.2.2 Theorem

The coconut trees compatible with hexagonal sum labeling.

Proof

Let $u_{1}, u_{2}, \ldots u_{n}$ be the vertices of a path having length $n-1$ and let $w_{1}, w_{2}, \ldots, w_{k}$ be the pendant vertices being adjacent with u_{1}.

Define the labeling f by $f\left(u_{i}\right)=\left\{\begin{array}{cc}\frac{1}{2}(i-1)(2 i-1), & \text { if } i \text { is odd } \\ \frac{1}{2} i(2 i-3), & \text { if } i \text { is even } 1 \leq i \leq n\end{array}\right.$ and $f\left(w_{j}\right)=(n+j-1)(2 n+2 j-3)$, for $1 \leq j \leq k$.

We see that the induced edge labels are the first $n+k-1$ hexagonal numbers and as such the coconut trees compatible with hexagonal sum labeling.

2.2.3 Theorem

The bistar $S_{m, n}$ admits hexagonal sum labeling.

Proof

Let $V\left(S_{m, n}\right)=\left\{u, v, u_{i}, v_{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$ and
$E\left(S_{m, n}\right)=\left\{u v, u u_{i}, v v_{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$.
Define the labeling f by
$f(u)=0, f(v)=1, f\left(u_{i}\right)=i(2 i-1), 1 \leq i \leq m$, and $f\left(v_{j}\right)=(m+j)(2 m+2 j-1)-1,1 \leq j \leq n$.

We see that the induced edge labels are the first $m+n+1$ hexagonal numbers. Hence the bistar $S_{m, n}$ admits hexagonal sum labeling.

2.2.4 Theorem

The graph $S_{m, n, k}$ admits hexagonal sum labeling.

Proof

Let $P_{k}: v_{1}, v_{2}, \ldots, v_{k+1}$ be a path of length k with initial vertex v_{1} and terminal vertex v_{k+1}. Let $u_{1}, u_{2}, \ldots, u_{m}$ be the adjacent vertices to v_{1} and $w_{1}, w_{2}, \ldots, w_{n}$ be the adjacent vertices to v_{k+1}.

Define the labeling f by $f\left(v_{i}\right)=\left\{\begin{array}{cl}\frac{1}{2}(i-1)(2 i-1), & \text { if } i \text { is odd } \\ \frac{1}{2} i(2 i-3), & \text { if } i \text { is even }\end{array}\right.$ for $1 \leq i \leq k+1$,
$f\left(u_{j}\right)=(k+j)(2 k+2 j-1)$, for $1 \leq j \leq m$.
and $f\left(w_{l}\right)=(k+m+l)(2 k+2 m+2 l-1)-f\left(v_{k+1}\right)$, for $1 \leq l \leq n$.
We see that the induced edge labels are the first $m+n+k$ hexagonal numbers. Hence the graph $S_{m, n, k}$ admits hexagonal sum labeling.

2.2.5 Theorem

The comb $P_{n} \square K_{1}$ admits hexagonal sum labeling. Proof

Let $P_{n}: u_{1}, u_{2}, \ldots, u_{n}$ be a path of length $n-1$ and let $w_{1}, w_{2}, \ldots, w_{n}$ be the pendant vertices adjacent to $u_{1}, u_{2}, \ldots, u_{n}$ respectively.

For $i=1,2, \ldots, n$, define the labeling f by
$f\left(u_{i}\right)=\left\{\begin{array}{ll}\frac{1}{2}(i-1)(2 i-1), & \text { if } \text { is odd } \\ \frac{1}{2} i(2 i-3), & \text { if } \text { is even }\end{array}\right.$ and $f\left(w_{i}\right)=(n+i-1)(2 n+2 i-3)-f\left(u_{i}\right)$.

Thus the induced edge labels are the first $2 n-1$ hexagonal numbers and as such the comb $P_{n} \square K_{1}$ admits hexagonal sum labeling.

2.2.6 Theorem

$S\left(K_{1, n}\right)$ the subdivision of the star $K_{1, n}$ admits hexagonal sum labeling.

Proof

Let $V\left(S\left(K_{1, n}\right)\right)=\left\{v, v_{i}, u_{i}: 1 \leq i \leq n\right\}$
and $E\left(S\left(K_{1, n}\right)\right)=\left\{v v_{i}, v_{i} u_{i}: 1 \leq i \leq n\right\}$.
Define the labeling f by

$$
\begin{aligned}
& f(v)=0, f\left(v_{i}\right)=i(2 i-1), 1 \leq i \leq n, \text { and } \\
& f\left(u_{i}\right)=(n+i)(2 n+2 i-1)-f\left(v_{i}\right), 1 \leq i \leq n .
\end{aligned}
$$

As the induced edge labels are the first $2 n$ hexagonal numbers, $S\left(K_{1, n}\right)$ admits hexagonal sum labeling.

2.3 Heptagonal Sum Labeling of Graphs

Here we prove that stars S_{n}, coconut trees, bistars or double stars $S_{m, n}$, the graphs $S_{m, n, k}$, combs $P_{n} \square K_{1}$, subdivision graphs $S\left(K_{1, n}\right)$ of the star $K_{1, n}$ admit heptagonal sum labeling.

2.3.1 Theorem

The star graph $K_{1, n}$ or S_{n} admits heptagonal sum labeling.

Proof

Let u be the apex vertex and let $u_{1}, u_{2}, \ldots u_{n}$ be the pendant vertices of the star S_{n}.

Define the labeling f by

$$
f(u)=0 \text { and } f\left(u_{i}\right)=\frac{1}{2} i(5 i-3), 1 \leq i \leq n .
$$

We see that the induced edge labels obtained by the sum of the labels of the vertices are the first n heptagonal numbers. Hence star graph S_{n} admits heptagonal sum labeling.

2.3.2 Theorem

The coconut trees admit heptagonal sum labeling.

Proof

Let $u_{1}, u_{2}, \ldots u_{n}$ be the vertices of a path having length $n-1$ and let $w_{1}, w_{2}, \ldots, w_{k}$ be the pendant vertices being adjacent with u_{1}. Define the labeling f by
$f\left(u_{i}\right)= \begin{cases}\frac{1}{4}(i-1)(\text { (ii-3), if i is odd } \\ \frac{1}{4} \text { for } 1(i-8), & \text { if is iseven }\end{cases}$
We see that the induced edge labels are the first $n+k-1$ heptagonal numbers. Hence the coconut trees admit heptagonal sum labeling.

2.3.3 Theorem

The bistar $S_{m, n}$ admit heptagonal sum labeling.

Proof

Let $V\left(S_{m, n}\right)=\left\{u, v, u_{i}, v_{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$ and $E\left(S_{m, n}\right)=\left\{u v, u u_{i}, v v_{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$.

Define the labeling f by
$f(u)=0, f(v)=1, f\left(u_{i}\right)=\frac{1}{2} i(5 i-3), 1 \leq i \leq m$, and $f\left(v_{j}\right)=\frac{1}{2}(m+j)(5 m+5 j-3)-1,1 \leq j \leq n$.

We see that the induced edge labels are the first $m+n+1$ heptagonal numbers. Hence bistar $S_{m, n}$ admit heptagonal sum labeling.

2.3.4 Theorem

The graph $\mathrm{S}_{m, n, k}$ admits heptagonal sum labeling.

Proof

Let $P_{k}: v_{1}, v_{2}, \ldots, v_{k+1}$ be a path of length k with initial vertex v_{1} and terminal vertex v_{k+1}. Let $u_{1}, u_{2}, \ldots, u_{m}$ be the adjacent vertices to v_{1} and $w_{1}, w_{2}, \ldots, w_{n}$ be the adjacent vertices to v_{k+1}.

Define the labeling f by

$$
f\left(v_{i}\right)=\left\{\begin{array}{cl}
\frac{1}{4}(i-1)(5 i-3), & \text { if } \text { is odd } \\
\frac{1}{4} i(5 i-8), & \text { if } \text { is even }
\end{array} \text { for } 1 \leq i \leq k+1,\right.
$$

$f\left(u_{j}\right)=\frac{1}{2}(k+j)(5 k+5 j-3)$, for $1 \leq j \leq m:$
and $f\left(w_{l}\right)=\frac{1}{2}(k+m+l)(5 k+5 m+5 l-3)-f\left(v_{k+1}\right)$, for $1 \leq l \leq n$.

We see that the induced edge labels are the first $m+n+k$ heptagonal numbers. Hence the graph $S_{m, n, k}$ admits heptagonal sum labeling.

2.3.5 Theorem

The comb $P_{n} \square K_{1}$ admits heptagonal sum labeling.

Proof

Let $P_{n}: u_{1}, u_{2}, \ldots, u_{n}$ be a path of length $n-1$ and let $w_{1}, w_{2}, \ldots, w_{n}$ be the pendant vertices adjacent to $u_{1}, u_{2}, \ldots, u_{n}$ respectively.

For $i=1,2, \ldots, n$: define
$f\left(u_{i}\right)=\left\{\begin{array}{ll}\frac{1}{4}(i-1)(5 i-3), & \text { if } \text { is odd } \\ \frac{1}{4} i(5 i-8), & \text { if } \text { is even }\end{array}\right.$ and $f\left(w_{i}\right)=\frac{1}{2}(n+i-1)(5 n+5 i-8)-f\left(u_{i}\right)$.
Thus the induced edge labels are the first $2 n-1$ heptagonal numbers. Hence comb $P_{n} \square K_{1}$ admits heptagonal sum labeling.

2.3.6 Theorem

$S\left(K_{1, n}\right)$ the subdivision of the star $K_{1, n}$ admits heptagonal sum labeling.

Proof

Let $V\left(S\left(K_{1, n}\right)\right)=\left\{v, v_{i}, u_{i}: 1 \leq i \leq n\right\}$ and
$E\left(S\left(K_{1, n}\right)\right)=\left\{v v_{i}, v_{i} u_{i}: 1 \leq i \leq n\right\}$.
Define the labeling f by $f(v)=0, f\left(v_{i}\right)=\frac{1}{2} i(5 i-3), 1 \leq i \leq n$

$$
\text { and } f\left(u_{i}\right)=\frac{1}{2}(n+i)(5 n+5 i-3)-f\left(v_{i}\right), 1 \leq i \leq n .
$$

We see that the induced edge labels are the first $2 n$ heptagonal numbers. Hence $S\left(K_{1, n}\right)$ admits heptagonal sum labeling.

2.4 Octagonal Sum Labeling of Graphs

In this section, we prove that stars S_{n}, coconut trees, bistars or double stars $S_{m, n}$, the graphs $S_{m, n, k}$, combs $P_{n} \square K_{1}$, subdivision graphs $S\left(K_{1, n}\right)$ of the star $K_{1, n}$ admit octagonal sum labeling.

2.4.1 Theorem

The star graph $K_{1, n}$ or S_{n} admits octagonal sum labeling. Proof
Let u be the apex vertex and let $u_{1}, u_{2}, \ldots u_{n}$ be the pendant vertices of the star S_{n}.
Define the labeling f by $f(u)=0$ and
$f\left(u_{i}\right)=i(3 i-2), 1 \leq i \leq n$.

We see that the induced edge labels obtained by the sum of the labels of the vertices are the first n octagonal numbers. Hence star graph S_{n} admits octagonal sum labeling.

2.4.2 Theorem

Coconut trees admit octagonal sum labeling.
Proof
Let $u_{1}, u_{2}, \ldots u_{n}$ be the vertices of a path having length $n-1$ and let $w_{1}, w_{2}, \ldots, w_{k}$ be the pendant vertices being adjacent with u_{1}.

Define the labeling f by $f\left(u_{i}\right)=\left\{\begin{array}{cc}\frac{1}{2}(i-1)(3 i-2), & \text { if } i \text { is odd } \\ \frac{1}{2} i(3 i-5), & \text { if } i \text { is even }\end{array}\right.$ for $1 \leq i \leq n$.
and $f\left(w_{j}\right)=(n+j-1)(3 n+3 j-5)$, for $1 \leq j \leq k$.
We see that the induced edge labels are the first $n+k-1$ octagonal numbers. Hence the coconut trees admit octagonal sum labeling.

2.4.3 Theorem

The bistar $S_{m, n}$ admits octagonal sum labeling.

Proof

Let $V\left(S_{m, n}\right)=\left\{u, v, u_{i}, v_{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$ and
$E\left(S_{m, n}\right)=\left\{u v, u u_{i}, v v_{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$.
Define the labeling f by $f(u)=0, f(v)=1, f\left(u_{i}\right)=i(3 i-2), 1 \leq i \leq m$, and $f\left(v_{j}\right)=(m+j)(3 m+3 j-2)-1,1 \leq j \leq n$.

We see that the induced edge labels are the first $m+n+1$ octagonal numbers. Hence bistar $S_{m, n}$ admit octagonal sum labeling.

2.4.4 Theorem

The graph $S_{m, n, k}$ admits octagonal sum labeling.

Proof

Let $P_{k}: v_{1}, v_{2}, \ldots, v_{k+1}$ be a path of length k with initial vertex v_{1} and terminal vertex v_{k+1}.

Let $u_{1}, u_{2}, \ldots, u_{m}$ be the adjacent vertices to v_{1} and $w_{1}, w_{2}, \ldots, w_{n}$ be the adjacent vertices to v_{k+1}.

Define the labeling f by

$$
\begin{aligned}
& f\left(v_{i}\right)=\left\{\begin{array}{cc}
\frac{1}{2}(i-1)(3 i-2), & \text { if } i \text { is odd } \\
\frac{1}{2} i(3 i-5), & \text { if } i \text { is even } 1 \leq i \leq k+1,
\end{array}\right. \\
& f\left(u_{j}\right)=(k+j)(3 k+3 j-2), \text { for } 1 \leq j \leq m: \\
& \text { and } f\left(w_{l}\right)=(k+m+l)(3 k+3 m+3 l-2)-f\left(v_{k+1}\right), \text { for } 1 \leq l \leq n .
\end{aligned}
$$

We see that the induced edge labels are the first $m+n+k$ octagonal numbers. Hence the graph $S_{m, n, k}$ admits octagonal sum labeling.

2.4.5 Theorem

The comb $P_{n} \square K_{1}$ admits octagonal sum labeling.

Proof

Let $P_{n}: u_{1}, u_{2}, \ldots, u_{n}$ be a path of length $n-1$ and let $w_{1}, w_{2}, \ldots, w_{n}$ be the pendant vertices adjacent to $u_{1}, u_{2}, \ldots, u_{n}$ respectively. For $i=1,2, \ldots, n:$ define the labeling f by

$$
f\left(u_{i}\right)=\left\{\begin{array}{cc}
\frac{1}{2}(i-1)(3 i-2), & \text { if } i \text { is odd } \\
\frac{1}{2} i(3 i-5), & \text { if i is even }
\end{array} \text { and } f\left(w_{i}\right)=(n+i-1)(3 n+3 i-5)-f\left(u_{i}\right) .\right.
$$

Thus the induced edge labels are the first $2 n-1$ octagonal numbers. Hence comb $P_{n} \square K_{1}$ admits octagonal sum labeling.

2.4.6 Theorem

$S\left(K_{1, n}\right)$ the subdivision of the star $K_{1, n}$ admits octagonal sum labeling.

Proof

Let $V\left(S\left(K_{1, n}\right)\right)=\left\{v, v_{i}, u_{i}: 1 \leq i \leq n\right\}$ and

$$
E\left(S\left(K_{1, n}\right)\right)=\left\{v v_{i}, v_{i} u_{i}: 1 \leq i \leq n\right\}
$$

Define the labeling f by

$$
f\left(v_{i}\right)=\left\{\begin{array}{cl}
\frac{1}{2}(i-1)(4 i-3), & \text { if } i \text { is odd } \\
\frac{1}{2} i(4 i-7), & \text { if } i \text { is even }
\end{array} \text { for } 1 \leq i \leq k+1,\right.
$$

$$
f\left(u_{j}\right)=(k+j)(4 k+4 j-3), \text { for } 1 \leq j \leq m
$$

$$
\text { and } f\left(w_{l}\right)=(k+m+l)(4 k+4 m+4 l-3)-f\left(v_{k+1}\right), \text { for } 1 \leq l \leq n
$$

We see that the induced edge labels are the first $2 n$ octagonal numbers. Hence $S(K 1, n)$ admits octagonal sum labeling.

2.5 Nonagonal Sum Labeling of Graphs

In this section, we prove that stars S_{n}, coconut trees, bistars or double stars $S_{m, n}$, the graphs $S_{m, n, k}$, combs $P_{n} \square K_{1}$, subdivision graphs $S\left(K_{1, n}\right)$ of the star $K_{1, n}$ admit nonagonal sum labeling.

2.5.1 Theorem

The star graph $K_{1, n}$ or S_{n} admits nonagonal sum labeling.

Proof

Let u be the apex vertex and let $u_{1}, u_{2}, \ldots u_{n}$ be the pendant vertices of the star S_{n}.
Define f by $f(u)=0$ and $f\left(u_{i}\right)=\frac{1}{2} i(7 i-5), 1 \leq i \leq n$.
We see that the induced edge labels obtained by the sum of the labels of the vertices are the first n nonagonal numbers. Hence star graph S_{n} admits nonagonal sum labeling.

2.5.2 Theorem

The coconut trees admit nonagonal sum labeling.

Proof

Let $u_{1}, u_{2}, \ldots u_{n}$ be the vertices of a path having length $n-1$ and let $w_{1}, w_{2}, \ldots, w_{k}$ be the pendant vertices being adjacent with u_{1}.

Define the labeling f by
$f\left(u_{i}\right)=\left\{\begin{array}{ll}\frac{1}{4}(i-1)(7 i-5), & \text { if } i \text { is odd } \\ \frac{1}{4} i(7 i-12), & \text { if } i \text { is even }\end{array}\right.$ for $1 \leq i \leq n$ and $f\left(w_{j}\right)=\frac{1}{2}(n+j-1)(7 n+7 j-12)$, for $1 \leq j \leq k$.

We see that the induced edge labels are the first $n+k-1$ nonagonal numbers. Hence Coconut trees admit nonagonal sum labeling.

2.5.3 Theorem

The bistar $S_{m, n}$ admit nonagonal sum labeling.
Proof
Let $V\left(S_{m, n}\right)=\left\{u, v, u_{i}, v_{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$ and
$E\left(S_{m, n}\right)=\left\{u v, u u_{i}, v v_{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$.
Define f by $f(u)=0, f(v)=1, f\left(u_{i}\right)=\frac{1}{2} i(7 i-5), 1 \leq i \leq m$, and $f\left(v_{j}\right)=\frac{1}{2}(m+j)(7 m+7 j-5)-1,1 \leq j \leq n$.

We see that the induced edge labels are the first $m+n+1$ nonagonal numbers. Hence bistar $S_{m, n}$ admit nonagonal sum labeling.

2.5.4 Theorem

The graph $S_{m, n, k}$ admits nonagonal sum labeling.

Proof

Let $P_{k}: v_{1}, v_{2}, \ldots, v_{k 1}$ be a path of length k with initial vertex v_{1} and terminal vertex v_{k+1}.

Let $u_{1}, u_{2}, \ldots, u_{m}$ be the adjacent vertices to v_{1} and $w_{1}, w_{2}, \ldots, w_{n}$ be the adjacent vertices to v_{k+1}.

Define f by $f\left(v_{i}\right)=\left\{\begin{array}{ll}\frac{1}{4}(i-1)(7 i-5), & \text { if } i \text { is odd } \\ \frac{1}{4} i(7 i-12), & \text { if } i \text { is even }\end{array}\right.$ for $1 \leq i \leq k+1$,

$$
f\left(u_{j}\right)=\frac{1}{2}(k+j)(7 k+7 j-5), \text { for } 1 \leq j \leq m,
$$

and $f\left(w_{l}\right)=\frac{1}{2}(k+m+l)(7 k+7 m+7 l-5)-f\left(v_{k+1}\right)$, for $1 \leq l \leq n$.

We see that the induced edge labels are the first $m+n+k$ nonagonal numbers. Hence the graph $S_{m, n, k}$ admits nonagonal sum labeling.

2.5.5 Theorem

The comb $P_{n} \square K_{1}$ admits nonagonal sum labeling.
Proof
Let $P_{n}: u_{1}, u_{2}, \ldots, u_{n}$ be a path of length $n-1$ and let $w_{1}, w_{2}, \ldots, w_{n}$ be the pendant vertices adjacent to $u_{1}, u_{2}, \ldots, u_{n}$ respectively.

For $i=1,2, \ldots, n$: define the labeling f by
$f\left(u_{i}\right)=\left\{\begin{array}{ll}\frac{1}{4}(i-1)(7 i-5), & \text { if } i \text { is odd } \\ \frac{1}{4} i(7 i-12), & \text { if } i \text { is even }\end{array}\right.$ and $f\left(w_{i}\right)=\frac{1}{2}(n+i-1)(7 n+7 i-12)-f\left(u_{i}\right)$.

Thus the induced edge labels are the first $2 n-1$ nonagonal numbers. Hence comb $P_{n} \square K_{1}$ admits nonagonal sum labeling.

2.5.6 Theorem 2.5.6

$S\left(K_{1, n}\right)$ the subdivision of the star $K_{1, n}$ admits nonagonal sum labeling.

Proof

Let $V\left(S\left(K_{1, n}\right)\right)=\left\{v, v_{i}, u_{i}: 1 \leq i \leq n\right\}$ and

$$
E\left(S\left(K_{1, n}\right)\right)=\left\{v v_{i}, v_{i} u_{i}: 1 \leq i \leq n\right\}
$$

Define the labeling f by $f(v)=0, f\left(v_{i}\right)=\frac{1}{2} i(7 i-5), 1 \leq i \leq n$, and $f\left(u_{i}\right)=\frac{1}{2}(n+i)(7 n+7 i-5)-f\left(v_{i}\right), 1 \leq i \leq n$.

We see that the induced edge labels are the first $2 n$ nonagonal numbers. Hence $S\left(K_{1, n}\right)$ admits nonagonal sum labeling.

2.6 Decagonal Sum Labeling of Graphs

In this section, we prove that stars S_{n}, coconut trees, bistars or double stars $S_{m, n}$, the graphs $S_{m, n, k}$, combs $P_{n} \square K_{1}$, subdivision graphs $S\left(K_{1, n}\right)$ of the star $K_{1, n}$ admit decagonal sum labeling.

2.6.1 Theorem

The star graph $K_{1, n}$ or S_{n} admits decagonal sum labeling.

Proof

Let u be the apex vertex and let $u_{1}, u_{2}, \ldots u_{n}$ be the pendant vertices of the star S_{n}.

Define f by $f(u)=0$ and

$f\left(u_{i}\right)=i(4 i-3), 1 \leq i \leq n$.
We see that the induced edge labels obtained by the sum of the labels of the vertices are the first n decagonal numbers. Hence star graph S_{n} admits decagonal sum labeling.

2.6.2 Theorem

The coconut trees admit decagonal sum labeling.

Proof

Let $u_{1}, u_{2}, \ldots u_{n}$ be the vertices of a path having length
$n-1$ and let $w_{1}, w_{2}, \ldots, w_{k}$ be the pendant vertices being adjacent with u_{1}. Define the labeling f by
$f\left(u_{i}\right)=\left\{\begin{array}{cc}\frac{1}{2}(i-1)(4 i-3), & \text { if } i \text { is odd } \\ \frac{1}{2} i(4 i-7), & \text { if } i \text { is even }\end{array}\right.$ for $1 \leq i \leq n$ and $f\left(w_{j}\right)=(n+j-1)(4 n+4 j-7)$, for $1 \leq j \leq k$.
We see that the induced edge labels are the first $n+k-1$ decagonal numbers. Hence Coconut trees admit decagonal sum labeling.

2.6.3 Theorem 2.6.3

The bistar $S_{m, n}$ admit decagonal sum labeling.

Proof

Let $V\left(S_{m, n}\right)=\left\{u, v, u_{i}, v_{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$ and
$E\left(S_{m, n}\right)=\left\{u v, u u_{i}, v v_{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$.
Define the labeling f by $f(u)=0, f(v)=1, f\left(u_{i}\right)=i(4 i-3), 1 \leq i \leq m$, and $f\left(v_{j}\right)=(m+j)(4 m+4 j-3)-1,1 \leq j \leq n$.

We see that the induced edge labels are the first $m+n+1$ decagonal numbers. Hence bistar $S_{m, n}$ admit decagonal sum labeling.

2.6.4 Theorem

The graph $S_{m, n, k}$ admits decagonal sum labeling.
Proof
Let $P_{k}: v_{1}, v_{2}, \ldots, v_{k+1}$ be a path of length k with initial vertex v_{1} and terminal vertex v_{k+1}.

Let $u_{1}, u_{2}, \ldots, u_{m}$ be the adjacent vertices to v_{1} and $w_{1}, w_{2}, \ldots, w_{n}$ be the adjacent vertices to v_{k+1}.

Define the labeling f by

$$
\begin{aligned}
& f\left(v_{i}\right)=\left\{\begin{array}{cl}
\frac{1}{2}(i-1)(4 i-3), & \text { if } i \text { is odd } \\
\frac{1}{2} i(4 i-7), & \text { if } i \text { is even }
\end{array} \text { for } 1 \leq i \leq k+1,\right. \\
& f\left(u_{j}\right)=(k+j)(4 k+4 j-3), \text { for } 1 \leq j \leq m, \\
& \text { and } f\left(w_{l}\right)=(k+m+l)(4 k+4 m+4 l-3)-f\left(v_{k+1}\right) \text {, for } 1 \leq l \leq n \text {. }
\end{aligned}
$$

We see that the induced edge labels are the first $m+n+k$ decagonal numbers. Hence the graph $S_{m, n, k}$ admits decagonal sum labeling.

2.6.5 Theorem 2.6.5

The comb $P_{n} \square K_{1}$ admits decagonal sum labeling.

Proof

Let $P_{n}: u_{1}, u_{2}, \ldots, u_{n}$ be a path of length $n-1$ and let $w_{1}, w_{2}, \ldots, w_{n}$ be the pendant vertices adjacent to $u_{1}, u_{2}, \ldots, u_{n}$ respectively.

For $i=1,2, \ldots, n$: define the labeling f by

$$
f\left(u_{i}\right)= \begin{cases}\frac{1}{2}(i-1)(4 i-3), & \text { if } i \text { is odd } \\ \frac{1}{2} i(4 i-7), & \text { if is even }\end{cases}
$$

Thus the induced edge labels are the first $2 n-1$ decagonal numbers. Hence comb $P_{n} \square K_{1}$ admits decagonal sum labeling.

2.6.6 Theorem

$S\left(K_{1, n}\right)$ the subdivision of the star $K_{1, n}$ admits decagonal sum labeling.

Proof

Let $V\left(S\left(K_{1, n}\right)\right)=\left\{v, v_{i}, u_{i}: 1 \leq i \leq n\right\}$ and $E\left(S\left(K_{1, n}\right)\right)=\left\{v v_{i}, v_{i} u_{i}: 1 \leq i \leq n\right\}$.
and
Define the labeling f by $f(v)=0, f\left(v_{i}\right)=i(4 i-3), 1 \leq i \leq n$, and $f\left(u_{i}\right)=(n+i)(4 n+4 i-3)-f\left(v_{i}\right), 1 \leq i \leq n$.

We see that the induced edge labels are the first $2 n$ decagonal numbers. Hence $S\left(K_{1, n}\right)$ admits decagonal sum labeling.

3. References

1. Harary F. Graph Theory. New Delhi: Narosa Publishing House; 2001.
2. Burton DM. Elementary Number Theory. Brown Publishers; 1990.
3. Amuthavalli K, Dineshkumar S. Some Polygonal Sum Labeling of Bistar, International journal of Scientific and Engineering Research. 2016 May; 7(5): 2229-5518.
4. Iannucci D, Mills D. Taylor on generalizing the Connell sequence. Journal of Integer sequences. 1999; 2.
5. Murugesan S, Jayaraman D, Shiama J. Some Polygonal Sum Labeling of Paths, International journal of Computer Application. Jan 2013; 62(5):0975-8887.

[^0]: *Author for correspondence

