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Abstract
Objective: To present a concise and comprehensive summarization of various impedance matching techniques for mi-
crostrip patch antennas. Method: Designing an impedance matching network is a central issue for optimum performance 
in every part of RF systems like transceiver, amplifier and antenna to ensure maximum power transfer. Various design for-
mulae to calculate the input impedance of patch antenna and techniques to design a matching network should be known to 
RF designer. Finding: In this paper various impedance matching techniques along with their design equations are present-
ed that utilize quarter wave transformer, taper lines, open or short stubs and lumped elements etc. Methods to calculate 
the input impedance for various antenna structures like rectangular, circular and triangular patch antenna are described. 
Application: This paper concisely covers some of the existing techniques to design an impedance matching network that 
can be used to solve the impedance matching problem encountered during antenna design.

*Author for correspondence

1.  Introduction
Impedance matching is an emerging arena of research in 
almost every aspect of technology1 viz. communication, 
electronics, electrical, sound, optical etc. In communica-
tion area for the transmission of different types of signal; 
proper termination is important to reduce reflections 
and to preserve signal integrity with higher throughput 
of absolute data2. As impedance mismatch in RF network 
causes power to be reflected back to the source from the 
impedance mismatch boundary. This reflection creates 
a standing wave, which leads storage of power instead of 
transmitting it to the load3. Hence, there will be less power 
delivered from the input to the load or other parts of the 
system. Along with this, standing waves may damage  
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and overheat the RF device because of increased peak 
power level. Other advantages of proper termination of 
load are reduction in amplitude and phase error, reduction 
in power loss and improvement in the signal to noise ratio.

Impedance matching is a challenging step in the 
antenna design to achieve optimum performance param-
eters4–6 like return loss, efficiency, gain etc. Impedance 
matching also helps in tuning the antenna frequency with 
a much easier and faster way than modifying the antenna 
geometry7–12. Proper impedance matching also helps in 
improving the bandwidth of antenna because imped-
ance matching circuits add some additional resonances. 
Impedance matching circuits also allow incorporating last 
minute design change by allowing freedom in choosing  
the values of discrete components, independently. Mostly, 
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Figure 1.  Basic Rectangular Patch antenna.

Extended length of patch due to fringing field:
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Effective patch length:  Leff = L + 2ΔL� (5)

The input impedance4–6 of an antenna is the impedance 
presented by an antenna at its terminals and can be writ-
ten as: Zin= Rin+ jXin where Zin is the antenna impedance at 
the terminals, Rin is the antenna resistance which consist-
ing of radiation resistance Rr and the loss resistance RL. The 
imaginary part Xin is the antenna reactance and represents 
the power stored in the near field of the antenna. The power 
associated with the radiation resistance is the power actu-
ally radiated by the antenna, while the power dissipated in 
the loss resistance in the form of heat is due to dielectric or 
conducting losses.

To study the impedance distribution over a patch it is 
necessary to study the electric and current distribution. 
Patch antenna shown in Figure 2 consists of ground plane, 
dielectric substrate and radiating patch. The feed probe 
couples electromagnetic energy in and or out of the patch. 
The electric field is zero at the center of the patch, maximum 
on one edge and reverses its direction on opposite edge. 
This field distribution continuously reverses its direction  

impedance of antenna is matched by 50Ω feed line because 
of the fact that almost all the microwave sources and lines 
are manufactured with 50Ω characteristic impedance.

Therefore, impedance matching has a great impor-
tance in antenna designing application but there is a 
huge shortage of literature detailing the case specific dif-
ferent methods for calculating the input impedance of 
microstrip antenna. This paper review the different meth-
ods used to calculate the input impedance of microstrip 
patch antenna along with different impedance match-
ing techniques. Section-2 describes the introduction to 
microstrip antenna and different impedance matching 
techniques. In section-3 input impedance of rectangular 
microstrip patch antenna is calculated by various methods 
so that after getting the input impedance; any matching 
technique can be applied. In section-4, complete descrip-
tion of various matching techniques is presented. In the 
last section as a case study, the design equation for the 
calculation of input impedance of triangular and circu-
lar patch antenna is described which can be extended 
to design of antenna structure of particular interest. 
Complete study form the calculation of input impedance 
on the patch antenna and to match this input impedance 
with the feed impedance using different matching tech-
niques are tried to cover in this review article.

2.  Theory
Due to many considerable advantages like lightweight, 
conformable to planar and non-planar surfaces, simple 
and inexpensive to manufacture using modern printed-
circuit technology, compatible with MMIC designs; 
microstrip antenna is the best choice for modern wire-
less and mobile applications4–6. The shape of microstrip 
antenna can be rectangle, square, ellipse, circle, triangle, 
ring, pentagon, or their variations4–6. More complex vari-
ations on the basic shapes are frequently used to meet 
particular design demands and in terms of polarization, 
bandwidth, gain, etc.

A rectangular microstrip patch antenna of length L, 
width W printed on a substrate with dielectric constant 

 and height h is shown in Figure 1.  The CAD formulae5 
for the dimension (L, W) calculation at resonating fre-
quency f0 are listed below:

Effective dielectric constant:
1

2
r r

re

1 1 h
1 12

2 2 W

−

ε + ε −  ε = + +    �
(1)
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according to the instantaneous phase of the RF signal. 
Figure 3 shows the current, voltage and impedance behav-
ior in the radiating patch; the current (magnetic field) is 
maximum at the center of patch and minimum on the 
opposite sides of patch, while the voltage (electrical field) is 
zero in the center and maximum on one edge and reverses 
its direction (minimum) on opposite edge. Hence the 
distribution of impedance is minimum at the center and 
maximum on the both edge of patch. So there is a point 
lie inside the surface of radiating patch where the imped-
ance is 50Ω; the simplest method for impedance matching 
is to locate the position of 50 Ω points and connect the feed 
probe at this point.

Figure 2.  Patch antenna showing electric field distribution.

Figure 3.  Voltage (V), Current (I) and Impedance (Z) 
distribution along patch resonant length L.

Impedance matching can also be done by cal-
culating the input impedance then applying some 
impedance matching techniques. Impedance matching 
techniques can be categorized in two broad categories 
i.e. Distributed Method and Lumped Element Method 
as shown in Figure 4.

 Impedance Matching  for Antenna 

Distributed Method (by structural 
modification via stubs, transformer 

Lumped Element Method (by 
inserting matching network 
i.e. inductor, capacitor) 

Narrow Band Matching 
(quarter wave 
transformer, stubs etc.) 

Broad-Band Matching 
(multisection transformer, 
taper lines etc.) 

Figure 4.  Impedance matching techniques.
In distributed13–17 impedance matching method, 

antenna can be matched by doing some structural modi-
fications through the use of stubs, single and multi section 
quarter wave transformer, tapered line, balun and active 
components as shown by Figure 5. The main advantage 
of distributed impedance matching method is that there 
is no requirement to modify the geometry of radiating 
structure. Therefore, radiation performance of the radiat-
ing structure is independent to the matching network and 
results in easy design optimization. However, this method 
increases the size of antenna and not recommended for 
the design of practical array systems. Also system effi-
ciency degrades due to the increase in spurious radiation 
losses from extra circuitry of matching network. The 
distributed method can match the impedance in narrow 
band as well as in broadband. Narrow band impedance 
matching is achieved by Quarter wave transformer18–19 
and Stubs20–23. Whereas for broadband impedance match-
ing is done by multisections quarter wave transformer 
and taper line24–25. These techniques are describes in detail 
in the section 4.

Figure 5.  Distributed Impedance matching techniques by 
Quarter wave transformer and Stubs etc.

A lumped networkis introduced to realize impedance 
matching between antenna and feed structures. Lumped 
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element method can be implemented either by inserting a 
separate network without changing the antenna structure or 
by etching slots or notch in the antenna geometry as shown 
in Figure 6. The main advantage of placing the impedance 
matching network between antennas and feeding structure 
is the enhancement in the impedance bandwidth.

In both approaches, extra losses are introduced in the 
antenna structure. In the distributed approach to impedance 
matching, loss can be due to spurious loss within the dielec-
tric material. The losses in the lumped element approach are 
due to the inclusion of finite quality factor components like 
inductors and capacitors.

Figure 6.  Lumped element Impedance matching 
techniques by matching network.

In order to apply any specific matching technique, 
input impedance at the edge of antenna, must be known. 
Therefore, next section presents the different approaches 
adopted by the researchers to calculate the input imped-
ance at the edge of patch antenna.

3.  �Input Impedance Calculation 
of Rectangular Microstrip 
Patch Antenna

In this section input impedance of rectangular microstrip 
patch antenna is calculated by (A) Transmission line 
model, (B) Cavity model, (C) Radiation Resistance calcu-
lation Method and (D) Quality factor calculation method.

3.1 � Calculation of Input Impedance by 
Transmission Line Model

The calculation of input impedance by Transmission line 
model is case specific depending upon the kind of feed 

technique used. Therefore, next part is divided in two 
parts as detailed below.

3.1.1  For Microstrip Fed Patch Antenna
The Transmission Line model to represent the microstrip 
fed rectangular patch4–6 as shown in Figure 7 which con-
sists of a parallel-plate transmission line connected with 
two radiating slots (apertures), each of width W and height 
h, separated by a transmission line of length L. Each radi-
ating slot of microstrip patch antenna is represented as a 
parallel equivalent admittance Y=G + jB.

Figure 7.  Transmission line model for rectangular patch 
antenna as radiating slot [7].

Since both slots are identical, the total resonant input 
impedance26–29 becomes Zin=1/2G. Conductance G of sin-
gle radiating slot1 it is associated with the power radiated 
and is given by eq (6).
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Where W = patch width and λ= resonant wave length, 
B is susceptance due to energy stored in the fringing field 
near the edge of the patch and given by eq (7)
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So, the total input impedance is given by eq (9).

( )
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1

2

=
±inZ

G G

�

(9)

So using formula given in eq (9) input impedance for 
microstrip patch antenna can be accurately calculated. 
This is more reliable method to calculate the input imped-
ance of a rectangular patch antenna.

3.1.2  For probe fed patch antenna
Transmission line equivalent circuit of probe fed patch 
antenna is shown in Figure  8. The microstrip  antenna can 
be modeled4–6 as a length of transmission lineof charac-
tersitc impedance Z0 and propagation constant γ = α + βj .  
Where a is attenuation constant and b phase constant. 
The input impedance of the patch based on this model 
can be obtained as:

1
= +in LZ jX Z  � (10)

Figure 8.  Transmission line model for probe feed 
rectangular patch antenna [7].

Where XL is the probe reactance and given by eq (11).
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Where Y0=1/Z0 ,Ys = self admittance, β= phase 

constant, Euler constant γ = 0.5772, 0η  = free space 
impedance =377.

3.2 � Calculation of Input Impedance by 
Cavity Model

To calculate the input impedance at the edge of patch using 
cavity model, the interior region of the patch antenna is 
modeled as a cavity bounded by electric walls on the top 
and bottom, and a magnetic wall along the periphery4. 
Input impedance in this model is calculated as:

	
0

= in
in

V
Z

I
� (13) 

where Vin is the RF voltage at the feed point

	 ( )
0 0
,= −in zV E x y h � (14)

Now to calculate the electric field at center of probe  
(x0, y0)the following computations should be done9–11. The 
electric field in the patch cavity can be expressed in terms 
of various modes of the cavity as:

( ) ( ), ,z mn mnE x y A x ym n ϕ=∑ ∑ � (15)

Where mnϕ  is the an electric field mode vector or 
ortho-normalized eigenfunctions which must satisfy the 
homogenous wave equation boundary conditions and is 
given by:
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p
ε = 0 for p ≠0. Amn are the ampli-
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Dx, Dy equal to the cross-sectional area of the probe 
centered at (x0, y0). For a microstrip line feed connected 
along the width of the patch, we should set Dx=0 and Dy 
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equal to the effective width of the feed line. On solving eq. 
(15) by substituting the value of Amn,  gives:

( ) ( ) ( )0 0
0 0 2 20

, ,
, mn mn

z mnm n
mn

x y x y
E x y j J G

k k
ϕ ϕ

ωµ
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=
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−∑ ∑
�

(19)

By calculating the value Ez(x0, yo)(from eq.19) by put-
ting  x0, y0 and solving eq (14)
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Therefore, the input impedance becomes (eq.13):
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Where value of ( )ϕ
0 0
,mn x y  ,k2 is given in eq (22) and (23):
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On solution of the eq (25) gives the input impedance 
of rectangular antenna. This is investigative approach and 
it is quite complicated to implement as a lot of complex 
calculation are needed to be performed.

3.3 � Radiation Resistance Calculation 
Method

If a patch is fed at a distance xf from one of the radiating 
edges, then the input impedance can be calculated15–17 by 
eq (26):

2

cos
π =   

f
in r

x
R R

L � (26)

Radiation resistance Rr decreases with the increase 
in substrate thickness and patch width because of the 
increase in radiated power. Approximate formula for 
radiation resistance is given by eq. (27).

2 2
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2 120

= = εr re
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Where Z0 = characteristic impedance, V0= applied 
voltage, ε =re  effective dielectric constant, Pr is power 
radiated by the antenna and can be calculated by integrat-
ing the real part of pointing vector over the hemisphere 
above the patch. The power radiated by antenna can be 
approximated by eq (28).
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Radiation resistance Rr also calculated by substituting 
the value of characteristic impedance and approximate 
value ofI2value in eq. (27). For 5ε ≤r I2 is given by  eq (29)
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After selecting the patch dimension L, W for a given 
substrate the next point is to calculate the 50 Ω feed loca-
tions (x0, y0). It is observed that with the change in feed 
location the input impedance of the patch changes hence 
it provides a simple method for impedance matching. 
So by calculating the Radiation resistance and radiated 
power; input impedance can be calculated.

3.4  Quality Factor Calculation Method
The input impedance of the patch at resonance fre-
quency f0depends upon edge resistance which is further 
a function of quality factor, length, width and operating 
frequency of the patch4–6.An approximate expression for 
R is given in eq. (32) which is simply computed by calcu-
lating the value of total quality factor.

2 0

cos

 π
=   

e

edge
e

x
R R
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(32)
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Where the input resistance edgeR  when fed at the edge 
(x0=0) is:

0

0

4 
= η µ  π λ 

e
edge r

e

L hQ
R

W �
(33)

The effective feed locations are 
0 0
= + ∆ex x L ,

0 0
= + ∆ey y W  accounting for fringing field. Where 

free space impedance =377, µ =r permeability constant, 
Q= total quality factor, Le and We are effective length and 
width of the patch.

Total quality factor is given by eq (34):

1 1 1 1 1
= + + +

sp sw d cQ Q Q Q Q �
(34)

Qsp, Qsw, Qd, and Qc denote the space-wave, surface-
wave, dielectric, conductor quality factors. A microstrip 
antenna has dielectric and conductor and surface-wave 
loss. The surface-wave loss depends on the environ-
ment surrounding the patch. If there is a substrate 
that surrounds the patch and the surface-wave power 
launched by the antenna is gradually dissipated by an 
absorber, then the power launched into the surface 
wave by the patch is a loss. Now mathematical expres-
sion to calculate total quality factor is calculated as 
below. Qsp accounts for the desired radiation into the 
space given by eq (35):

0

1

3

16

ε λ
= r e

sp
r e

L
Q

p c W h �
(35)

Where effective length of patch antenna Le= L+ 2ΔL, 
effective width of antenna We= W + 2ΔW, fringing width 

ln 4W h
π

 
∆ =   

 and the terms pr and c1 are geometry 

terms constant. Substrate absorb the surface wave so sur-
face wave power Qsp is a loss from the antenna radiation 
point of view and given in eq. (36).
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sw
re  is the radiation efficiency of the patch when 

accounting only surface loss and given in eq (37).
 

=  + 
spsw

r
sp sw

P
e

P P
�

(37)

spP  is the power radiated into the space and swP  power 

launched into the surface wave. Dielectric quality factor is 

simply given by Qd =1/tanδ where tanδ ε″/ε′ loss tangent 
of the substrate:

Conductor quality factor is given by eq. (38):

0 0

2

η
= µc r ave

s

hk
Q

R �
(38)

Where Rs
ave denotes the average of ground plane and 

patch metal surface resistances Rsg and Rsp. The surface 
resistance is related to the conductivity of the metal and 
the skin depth by the eq (40):

0

1 2
,= δ =

σδ ωσµsR
�

(39)

This section covers almost all the method by which 
input impedance of rectangular patch antenna can 
be calculated. From the above calculation it is clearly 
observed that impedance is not 50Ω at the edge of 
antenna. So, it is essential to implement some imped-
ance matching techniques so that antenna can be 
properly matched with feed line impedance. The next 
section gives the complete design sketch of different 
matching techniques.

4.  �Impedance Matching 
Techniques

As explained earlier in Section-2 the impedance matching 
techniques can be broadly classified in to two categories: 
distributed method and lumped element method. In this 
section the detail of each method is extended for broader 
understating.

4.1 � Distributed Impedance Matching 
Method

In this method antenna impedance is matched by doing 
some structural modifications through the use of stubs, 
double stubs, open or short circuit stubs, quarter wave 
transformer, tapered lines etc. Single section quarter 
wave transformer and single stub is used to match the 
antenna impedance with feed line at a single frequency 
(narrow band matching), but in many application there is 
a immense need to match the antenna over a large band-
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width (broadband matching)18–19 for which multi section 
transformer and taper lines are used.

In this section complete design rules and design equa-
tion for following matching techniques are explained in 
detail.
1. Impedance matching through Quarter-Wavelength 
transformer consists of

a)	 Narrow band matching through single 
transformer

b)	 Broadband matching through multisection 
transformer consisting of chebyshev type and 
binomial type depending upon the response in the 
pass band.

2. Broad band Impedance matching through tapered line 
uses the design equation of

a)	 Exponential Taper
b)	 Triangular Taper
c)	 Klopfenstein Taper

3. Impedance matching through Stub
a)	 Shunt Stub matching through open and short 

circuit stub
b)	 Series Stub matching through open and short 

circuit stub
c)	 Double Stub matching

4.1.1 � Impedance Matching through Quarter-
Wavelength Transformer

Impedance transformer allows perfect matching of 
two different in a system. If the load in the system is 
not match with the source, then due to reflection from 
load; standing wave pattern are generated and complete 
power is not transfer to the load instead it get stored. This 
stored power can damage and overheat the system when 
delivered back to the input source18–20. Simple imped-
ance transformer is the quarter wavelength transformer 
which is suitable for matching two real impedances at 
a single frequency18. The quarter-wave transformer pro-
vides narrow-band impedance matching by giving zero 
reflection at the operating frequency as shown in Figure 
9(a). However, broadband matching is strongly desired 
in many applications. This problem can be solved by 
multi-section matching transformer and Tapered lines. 
Multi-section matching transformer increases the 
impedance bandwidth with the increase number of sec-
tions shown in Figure 9(b).

(a)

(b)
Figure 9.  (a) Single section quarter wave transformer (b) 
Multisection quarter wave transformer

4.1.1.1  Single Quarter Wave Transformer
The microstrip patch antenna can be matched to feed line 
(Z0 Ω) by using a quarter-wavelength transmission line18-

19 (Zq Ω) as shown in Figure 10.

Figure 10.  Quarter wave transformer.

The aim of adding Quarter wave transformer is to match 
the input impedance of antenna Za exactly with imped-
ance of the feed line (Z0). The input impedance at the 
beginning of the quarter-wavelength lineis given by eq 
(40)

	

2

0
= = q

in
a

Z
Z Z

Z � (40)
By calculating impedance30 of quarter wave trans-

former Zq such that Zin=Z0; input impedance Zin can 
be matched at a particular operating frequency. The 
impedance of quarter wave transformer Zq inversely 
proportional to W1 width of strip. Input impedance of 
antenna is approximated by eq.(41 and 42)

	

2
0

2

45
aZ

W
λ

=
�

(41)
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22

90

1

ε  =   ε −
r

a
r

LZ
W �

(42)

	 50=q aZ * Z � (43)

Width of quarter wave transformer can be calculated 
by putting the value Zq in eq (44) and solving it for W1

	

1

1

60 8ln
4q

r

wdZ
w dε

 
= + 

  �
(44)

Length L1 quarter wave transformer 
1

4

λ
=

ε
g

re

L .

Width of 50Ωmicrostrip feed4–6 can be found eq (45):

0
120

21.393 ln 1.444
3eff

Z
W W
h h

π

ε
=

  + + +     �

(45)

4.1.1.2  Multisection Transformer
Multisection transformer method is used for designing 
Broadband matching networks. Multisection transformer 
uses more than one quarter wave transformer and 
depending upon the response in the operating region it 
can be divided into two types i.e. equiripple (chebyshev 
type) and maximally flat (binomial type).
(i) Chebyshev Type Multisection Transformer

A Chebyshev multi-section transformer offer larger 
bandwidths compared to binomial multi-section trans-
former for the same number of sections31–32. But the 
increment in bandwidth of the Chebyshev transformer is 
at the cost of larger ripple in the operating band.

Note that the bandwidth defined by Γm increases 
as the number of sections N increases. The function 

(cos ec )sN mT θ θ is a Chebyshev polynomial of order N. 
We can determine higher order Chebyshev polynomials 
using the recursive formula:

( ) ( ) ( )
1 2

2 − −= −n n nT x xT x T x  � (46)
Steps to design a Chebyshev multisection transformer:

1. Determine the value N required to meet the bandwidth 
and ripple Γmrequirements.

2. Determine the Chebyshev function.

( ) ( )cos secjN
N mAe Tθθ θ θ−Γ = � (47)

For maximally flat Γ =m A

0

0

1
sec

L
m

L N m

Z Z
A

Z Z T θ
−

Γ = =
+  �

(48)

1

0

1 1
sec cos cosh ln

2
L

m
m

Z
h

N z
θ −

  
=   Γ    �  

(49)

Also Chebyshev transformers are symmetric, i.e.

−Γ = Γ Γ = Γ
0 1 1n nand

3. Determine all Γnby equating terms with the symmetric 
multisection transformer expression given in eq (50)

( ) ( )
( ) ( )

0 1jN

n

cosN cos N 2
2e

cos N 2n G
θ θ θ

θ
θ θ

−
 Γ + Γ − +

Γ =  
Γ − +   �

(50)

( )
( )

N
2

N 1
2

1
for N even

2
cos for N odd

G θ
−

 Γ 
=  

Γ θ 
  � (51)

4. Calculate all Zn using the approximation
	

( ) 11
ln

2
n

n

Z
Z

θ +Γ =
�

 (52)

5. Determine section length λ
= 0

4

l

(ii) Binomial Type Multisection Transformer
Reflection coefficient approximation for the N section 
Binomial typematching transformer31–32 is written according 
to binomial series as given in eq (53)

( ) ( )2 2
0

1
N Nj l N j n l

nn
l A e A C eβ ββ − −

=
Γ = + = ∑

�
(53)

A = amplitude coefficient and Cn is the binomial coef-

ficient given by 
( )

!

! !

=
−

N
n

NC
N n n

The impedance of cascaded multiple section can be 
calculated using eq (54):

1 1

1

1 ln
2

+ +

+

−
Γ = ≈

+
n n n

n
n n n

Z Z Z
Z Z Z �

(54)

In practice, there is no need to design N section; two 
or three section transformer is sufficient. To save timein 
solving complex design equations, simple design equa-
tions are used and illustrated below.
(a) Two Section Quarter-Wave Transformer

If Z1 source impedance is to be matched with Z2 load 
impedance by two section quarter-wave transformer as 
shown by Figure 11 then characteristic impedance of two 
quarter-wave transformer ZA,ZB are given by eq (55a and 
55b).
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1
4

2
1

1

 =  A
ZZ Z Z

� (55a)

3
4

2
1

1

 =  B
ZZ Z Z

� (55b)

Figure 11.  Two section quarter-wave transformer.

(b) Three Section-Quarter-Wave Transformer
If Z1 source impedance is to be matched with Z2 load 
impedance by three section quarter-wave transformer 
as shown in Figure 12 then characteristic impedance of 
three quarter-wave transformer  ZA  , ZB , ZC are given by 
eq (56a-56c):

12
2

− Γ=CZ Z e � (56a)

2
1

1
=B

ZZ Z Z
� (56b)

12
1

Γ=AZ Z e � (56c)

2
1

1
0.125 0.5ln  Γ =    

Z
Z

� (56d)

Figure 12.  Three section quarter-wave transformer.

4.1.2 � Broad Band Impedance Matching through 
Tapered Line

Instead of having an impedance matching network 
which have step change in characteristic impedance 
(i.e., a multi-section transformer), another matching 
structure can be implemented which has continuous 
varying impedance along its length (function of distance 
z). A tapered impedance broadband matching network 
depends upon length L of taper line and taper func-

tion Z1(z). Depending on the behavior of taper function 
Z1(z); taper line can be classified in three category: expo-
nential taper, triangular taper and Klopfenstein taper24–25 
as shown in Figure 13.

Figure 13.  Exponential, Triangular and Klopfenstein taper 
line.

4.1.2.1  Exponential Taper Transformer
In the exponential taper line, the natural logarithm of 
taper line’s characteristic impedance varies linearly from 
ZL to Z0. The exponential taper has the form given in eq 
(57):

( )1 0 0= < <azZ z Z e z l � (57)

where  
0

1
ln LZ

a
L Z

=

Reflection coefficients are given by eq (58):

0 sin
2

ln / i lL L
L

Z
e

Z β β
β

−Γ =
� (58)

The bandwidth of a tapered line will typically increase 
as the length L is increased.

4.1.2.2  Triangular Taper Transformer
Characteristic impedance of Triangular Taper lines varies 
from ZL to Z0 according to the taper function as given by 
eq (59).

( )
( )

2

22 2

z2
L L

0
0

z
4z/ 2z /L 1 L

0
0

Z LZ e ln for0 z 2Z
Z

Z LZ e ln for0 z 2Z
L

 
  

− −

  
 ≤ ≤   =  

  ≤ ≤     �

(59)

Reflection coefficient for the triangular taper are given 
by eq (60):
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0.5 ln

/ 2
L L
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Z

e
Z L

β

β

β
−

 
  

Γ =      
   �

(60)

4.1.2.3  Klopfenstein Taper Transformer
R.W. Klopfenstein presented equations which can be 
used to design transmission line taper which represents 
an improved alternative to the exponential taper. This 
structure can either achieve better match on the same 
length, or comparable match on the shorter length than 
the exponential taper24–25. Compared to the exponential 
taper, Klopfenstein design has one more degree of free-
dom in the taper definition, represented by the variable 
A in the relation I1 is a modified Bessel function and 0Γ  
is the maximum reflection coefficient at the zero fre-
quency.

( ) ( )20
0

20.5ln 1,cosh
Γ

= + −L
zlnZ z Z Z A L AA

φ � (61)

( )
( )
( )

2
1

2
0

1
,  1

1

−
= <

−
∫
x I A y

x A dy forx
A y

φ

�

(62)

( )2 2

0
cos

 
cosh

− −
Γ = Γ >j z L A

e for L A
A

β β
β

� (63)

Drawback of the Klopfenstein taper is that an 
impedance discontinuity or step occurs at the ends of 
the taper.

4.1.3  Impedance Matching Through Stubs
Impedance matching using stub is one of the most 
widely used method. In this technique, the stub is 
positioned at a specific distance (‘d’ from the load) 
where the real part of the normalized load impedance/
admittance becomes unity20–23. Then the stub of length 
l is connected at the point (d from load) such that it 
offers capacitive or inductive reactance/ susceptance 
which are same in magnitude but opposite in sign to 
that of load at same point. Thus, the reactive part of 
stub impedance and load impedance cancels to provide 
impedance matching. Figure 14 shows a microstrip 
patch antenna matched by single stub and double stub 
on the sides of patch.
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Figure 14.  Single stub and double stub matching of 
microstrip patch antenna.

A single stub will only achieve a perfect match at one 
specific frequency because as the frequency changes, 
the wavelength changes which corresponds to change in 
reactance at the point of attachment of the stub26–28. For 
wideband matching, several stubs may be used, spaced 
along the main transmission line. The resulting struc-
ture is filter-like and filter design techniques are applied. 
Impedance matching technique may be simplified by 
using the SMITH chart for calculations and design.

A brief overview to design of short or open stub in 
series and shunt connection is given as below:

4.1.3.1   Shunt Stub
In this method, a open or short circuit stub20–23 is attached 
at a distance d from the load as shown in Figure 15 and 
given in eq (41) so that total stub input  admittance jωC   
and jωL cancel the imaginary part of load admittance. 
Shunt stubs are primarily preferred for microstrip and 
strip line types of transmission lines. As the stub here is 
connected in shunt to main line, therefore, the calcula-
tions are preferably done in admittance.

Figure 15.  Shunt stub matching using open and short 
circuit stubs.

When the load impedance ZL= RL+ jXL is connected 
by a shut stub then the admittance at this point is Y=G+ 
jB.  Length for open and short circuited shut stubs is given 
by eq (64) where B is stub susceptance.
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(64)

Distance of stub from the load is given by eq (65):
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λ π
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Where t is given by eq (66):
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4.1.3.2  Series Stub
In this method, a open or short circuit stub is attached at 
a distance d from the load as shown in Figure 16. So that 
total stub input impedance jX=1/jωC or jωL cancel the 
imaginary part of load impedance. Series stubs are primar-
ily preferred for slotline and coplanar waveguide types of 
transmission lines21. As the stub is connected in series to 
main line, therefore, the calculations are preferably done 
using impedance. When the load impedance YL= GL+jBL 
is connected by a series stub of length l down a distance 
d then the at this point is impedance is Z=R+ jX.  Length 
for open and short circuited series stubs is given by eq (67) 
where X is stub reactance.
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1 0
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(67)

Figure 16.  Series stub matching using open and short 
circuit stubs.

Distance of stub from the load is given by eq (68):
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Where t is given by eq (69):
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4.1.3.3  Double Stub Matching
The single stub tuner is very flexible at matching any 
load impedance to a given transmission line. However, 
if the load impedance varies, an adjustable tuner is nec-
essary. For the single stub tuner, the position of the stub 
must be varies, to match the variable load impedance. 
However, double stub tuner allows an adjustable match-
ing at a fixed position by varying the length of stubs. 
Thus, matching over a wide range of load impedance 
and frequencies can be achieved at the cost of increased 
circuit size.

4.2 � Impedance Matching by Lumped 
Element Method

In this approach instead of modifying the antenna geom-
etry a passive network attempts to equalize the impedance 
mismatch between the source and the antenna33–34. 
Lumped elements like Capacitor: chip capacitor, MIM 
capacitor, inter digital gap capacitor; Inductor: chip 
inductor, loop inductor, spiral inductor; Resistor: chip 
resistor, planar resistor are used to match the antenna 
impedance with the feed. For frequencies near to 1 GHz, 
matching networks through lumped elements can be 
done easily because the size of lumped element is small 
enough relative to wavelength of operation. Smith chart is 
the best tool to analyze the L-networks.

Here two cases to determine the value of lumped ele-
ment are given. Circuit arrangement of lumped element 
for both case RL >Zoand RL<Zo are shown in Figure 17.  
Also the necessary design equations to calculate value of 
susceptance B and reactance X are given35–37.
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Figure 17.  Lumped Element Matching Network for (a) RL 

>Zo   (b)RL<Zo.

4.2.1 �  Lumped Element Matching Network for 
RL> Zo

Any combination of capacitors (X < 0, B > 0) or inductors 
(X > 0, B < 0) is used to realize the reactance jX and sus-
ceptance jB. For a matched network, the input impedance 
Zin must be equal to Zo which gives

1

0
1

−
 

= = + +  in
L

Z Z jX jB
Z

� (70)

Now by equating the real and imaginary terms on 
both sides of the eq (70), unknowns X and B can be evalu-
ated. Hence lumped circuit can be designed by inserting 
the calculated value of X and B.

4.2.2   �Lumped Element Matching Network for 
RL< Zo

For a matched network, the input admittance Yin must be 
equal to 1/Zo.which gives:

0
11/

( )
= = +

+ +in
L L

Y Z jB
R j X jX

� (71)

Now by equating the real and imaginary terms on 
both sides of the eq (71), unknowns X and B can be evalu-
ated. Hence lumped circuit can be designed by inserting 
the calculated value of X and B.

The above techniques can also be applied on trian-
gular and circular shaped patch antenna, by calculating 
the input impedance of these shapes. In the next section; 
different design equation for triangular and circular 
microstrip patch antenna is given and various formulae 
to calculate the input impedance is also discussed.

5.  �Input Impedance Calculation 
of Triangular Microstrip Patch 
Antenna

The triangular geometry of the microstrip patch antenna 
appears to be a better option than its rectangular coun-
terpart as it is physically smaller and consequently the 
weight and volume of antenna structure are reduced. 
Interestingly, triangular patch is typically a narrow imped-
ance bandwidth structure which may limit its operations, 
yet it may be used profitably in many applications such as 
designing microstrip band pass filters, for use in compact 
arrays with reduced coupling between adjacent elements 
and for being used on curved surfaces because of its con-
formability.

For equilateral triangular patch antenna shown in 
Figure 18 resonant frequency is given by38–39 eq (72).

2 2
,

2
3

= + +r nm
eff reff

cf n m nm
a ε

� (72)

Figure 18.  Triangular microstrip patch antenna.

c = velocity of light in free space; aeff = effective length 
of triangular side; reffε  = effective relative permittivity; m, 
n, and l are integers which should fulfill this condition 
m+n+l=0

( )1= +effa a p � (73)
Due tofringing fields at the edge of the patch p is equal 

to:
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Accurate calculation of input impedance of the patch 
antenna is necessary for achieving the optimum perfor-
mance. Input impedance from cavity model of a coaxial 
fed triangular patch antenna with side length a is given 
by eq (75).

r,nm
r T

r,nmr
2 2

r,nm r,m2 2
T T

r,nm r,nm

f fR Q
f fR

j
f ff f1 Q 1 Q

f f f f

  
 −   

= + = +  
    

+ − + −    
     

inZ R jX

� (75)

Where radiation resistance Rr when the feed is located 
at a distance ρ from the edge of the triangle given in eq 
(76).

( )
2
1

=
+

reff lnm
r

eff re

a P
R

a
η ε
π ε

� (76)

Where the term ,εrnm e refff a  are the resonant fre-
quency effective radius and effective dielectric constant. 
The field factor  lmnP  written by eq (77).
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QT is the total quality factor depends upon quality 
factor due to radiation loss (Qr), quality factor due to 
dielectric loss (Qd) and quality factor due to conductor 
loss (Qc) and is given in eq (78).

1
1 1 1

−
 

= + + 
 

T
r d c

Q
Q Q Q �

(78)

The quantity Qr can be computed as 4
π

=r
r r

Q
G Z

where radiation conductance (Gr) and characteristics 
impedance (Zr) is given by in eq (79) and (80) respectively.

( ) ( ) ( )2 3
0 0 r 0

0

7.75 2.2hk 4.8 hk 2.45 hka 1
3000 1.33
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λ
�

(79)
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0
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2
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e
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é ù+ + +ê úë û

rZ

�
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The quality factor due to dielectric loss Qd is given eq 
(81).

1
=dQ

tanδ

�  (81)

The quantity Qcis given by eq (82).

, 0=c r nmQ h fπσ µ � (82)

6.  �Input Impedance Calculation 
of Circular Microstrip Patch 
Antenna

The resonant frequency (fnm) of a circular patch antenna40–42 
shown in Figure 19 having radius a and printed on a sub-
strate with relative permittivity  substrate thickness h 
for each TM mode is given by eq (83)43.

.
2

= mn
nm

eff r

A c
f

aπ ε

� (83)

Figure 19.   Geometry of Circular patch antenna.

where Anm  = mth derivative of the n order Bessel 
function. aeff = effective radius of the patch and given by  
eq (84).

( ) ( )
1

2

r r
r

2h a ha 1 In 1.41 1.77 0.268 1.65
a 2h a

   = + + + + +    ∈   
effa ε ε

π �
(84)

The input resistance at resonance [9] is given by eq (85).

( )
( )

2
1 11 0

112
1 11

where 1.84118in r

J k
R R k a

J k a
ρ

= = � (85)
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The radiation resistance is given in eq (86).
1=r

r
R G � (86)

Resonant radiation conductance  is calculated by 
putting the value of radiated power from eq (88) in eq (87).

2
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=r rP G V � (87)
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=

r
a

k ε �
(89)

To calculate the feed location at a 50 ohm point put 
the value of Rr in eq (90).

( ) ( )in in in
1 11 0 1 11 1

r r r

R R R
J (k ) J k a J 1.84118 0.5819

R R R
ρ = = =

�
(90)

After getting the value of input impedance of circular 
patch antenna from eq (90) and for triangular patch from 
eq (75), it is very simple job to match the input impedance 
of circular and triangular antenna with any matching 
technique described in section 4.

7.  Conclusion
This paper covers the impedance matching methods 
including distributed as well as lumped for microstrip 
patch antenna along with their complete design equa-
tions. Narrow and broad band matching techniques 
through quarter wave transformer, taper lines, stubs and 
lumped elements etc. have discussed in detail. Different 
techniques opted by the researcher to compute the input 
impedance of rectangular, triangular and circular patch 
antenna have also been discussed.
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