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Abstract
Objectives: An approximate solution of the problem of two-dimensional projectile motion with linear and quadratic air 
resistance obtained using the Laplace decomposition method LDM. Methods/Statistical Analysis: In this study, we exam-
ined the Laplace Decomposition Method for obtaining a solution of the trajectory problem of a body in linear and quadratic 
resistant medium. Findings: The solutions are obtained by using developed technique that combine Laplace Transform 
and the Adomian Decomposition Method ADM. The all obtained solutions are plotted to compare the effect of the non-
linear term on the basic parameters like range and maximum high and other parameters. Application/Improvements: 
The Laplace Decomposition Method improves the results to achieve more precision results compared to the previous 
related works.

1. Introduction
Nonlinear phenomena equations emerge in a wide 
assortment of unadulterated and connected science: 
oscillations of mechanical structure, the motion of par-
ticles in accelerators, planetary motion1–3. So many 
mathematical methods have been developed for solving 
these problems like: inverse method, Adomian method, 
perturbation method, Backland method, variational 
method, and Decomposition Method4–10. In11 used 
Laplace Decomposition Method for finding an approxi-
mate solution of a class nonlinear ordinary differential 
equation. In12 exploited this method to solve Falkner-
Skan equation. In13 applied the same technique to obtain 
an approximate solution of the Duffing equation.

The shot movement through a resistive medium  
is one of the easiest issues whose analogs are far reach-
ing in material science. The issue of shot movement 
through a resistive medium had been considered  
widely in various aspect. Timmerman investigated 
this problem of a vertically thrown ball, with a drag 

drive, which is either direct or quadratic in the speed. 
Warburton etd is played a detailed discussion of a 
shot movement with quadratic air resistance in vari-
ous approximations14–18. In this work, we consider the 
Laplace strategy for finding a surmised answer for both 
speed and position of the shot movement in both flat 
and vertical case.

2. Laplace Decomposition Method
The Adomian strategy, presented by George A. has 
enhanced to be an intense strategy to locate the surmised 
answers for a wide class of partial differential equations, 
this procedure is known as the Laplace Decomposition 
MethodLDM8,9.

To outline the essential thought of this procedure, we 
consider the general type of the second request nonlinear 
differential equation with introductory conditions given by
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The Laplace decomposition method gives a series 
solution in the form
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the non-linear term can be decomposed as
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where, He’s polynomials Hn are given by
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Substituting equation (5) in equation (2), we obtained

L f
s s s

L H

s
L

nn nn=

∞

=

∞

∑ ∑







= + + 







−

0 2 2 0

2

1

1

a b

                  bb x f b x fnn nn1 20 0( ) + ( )








=

∞

=

∞

∑ ∑

·

 

(6)

L f
s s0 2  = +a b

L f
s

L H
s

L b x f b x f1 2 2 1 0 2 0
1 1[ ] = [ ] − ( )



 + ( )





°

·

L f
s

L H
s

L b x f b x f2 2 1 2 1 1 2 1
1 1[ ] = [ ] − ( )



 + ( )





·

In general, the main recurrencerelation given as
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Taking the inverse Laplace transform for the two sides 
of equation (7), one obtains f0 = G(x), where G(x) repre-
sents the term observed from the source term and from 
initial condition.

and
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3. The Adomian Polynomials for 
Quadratic Polynomials
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Substituting u into F(u) = u2 gives
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Expanding the expansion in right-hand side gives
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The expansion in the above can be reformulated by 
gathering all terms so that the subscripts of the parts of un 
is the same. Rearrange F(u) as
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The Adomian polynomials for F(u) = u2 can be deter-
mined as follows.

A u° °= 2
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A u u u u u u u6 6 1 5 2 4 3
22 2 2= + + +°

A u u u u u u u u7 7 1 6 2 5 3 42 2 2 2= + + +°

A u u u u u u u u u8 8 1 7 2 6 3 5 4
22 2 2 2= + + + +°

A u u u u u u u u u u9 9 1 8 2 7 3 6 4 52 2 2 2 2= + + + +°

A u u u u u u u u u u u10 10 1 9 2 8 3 7 4 6 5
22 2 2 2 2= + + + + +°

4. Projectile Motion with Linear 
and Quadratic Resistance Medium
One of the most probable methods to discuss the trajec-
tory motion is to analyze this motion in each direction 
separately. In other words, we will use one set of equa-
tions to describe the horizontal motion and another 
set of equations to describe the vertical one. In motion 
like this, the only acceleration will be in z-direction and 
therefore, the horizontal velocities components will be 
constants.

We will begin when the shot movement is constrained 
by an air opposition, which specifically relies upon the 
speed, at that point the Newton’s second law for the verti-
cal movement is:

mv mg kv v u = − − ( ) =,  0 0 	 (9)

Apply the Laplace transform to both sides for last 
equation and use the initial conditions, we obtained
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Use this definition in equation (10), we found
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Now, we will find the Adomian polynomials An.
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also, we can find the rest terms to get general  
solution as
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To obtain an approximate solution we take the sum-
mation for all terms, this yield
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where, c1 and c2 are constants that appear as a result 
from applying Laplace transform.

The horizontal motion will have same steps except 
that g=0, then the solution for the horizontal motion  
will be
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Let the projectile is forced by an air resistance which 
depends on the quadratic resistance medium, then the 
Newton’s second law is:

v g k
m
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In the wake of applying Laplace transform on the 
two sides and taking the opposite Laplace transform,  
we acquire
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The related Adomian polynomials are
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Then theseries solution for the vertical shot move-
ment takes the form
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b to b are constants  1 α

And the solution for horizontal one is
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The strong line represents the solution which is gotten 
by LDM and the dashed one represent the solution which 
is acquired by common method depending on integra-
tion with respect to time.

For comparison, we additionally plot all arrange-
ments of the shot movement equation with quadratic air 
obstruction which is tackled in two strategies. Figures 
1–3 show how our technique leads to the same solu-
tion that was obtained by common methods to solve 
nonlinear differential equations. This comparison gives 
an idea about effectiveness and successful of Laplace 
decomposition method, especially if we consider that 
the approximate solution will be for the summation of 
all terms. The small errors in the figure refers to neglect-
ing the rest terms of the summation.

Figure 1.  Velocity with linear air resistance for mass  
m = 20g,k = 0.2, v° = 40ms−1.

Figure 2.  Velocity with quadratic air resistance for mass  
m = 20g,k = 0.2, v° = 40ms−1.
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5. Conclusion
An approximate solution of the problem of the trajec-
tory motion with resistance obtained using the Laplace 
decomposition method LDM. These series solutions 
are expressed as simple power for each horizontal and 
vertical motion for both linear and quadratic air resis-
tance. The acquired arrangements are plotted to consider 
the effect of the nonlinear term, and to contrast other 
arrangement that was gotten by different strategies. These 
outcomes create the impression that the LDM is a viable 
and effective technique to get an approximate answer for 
comparable nonlinear physical Phenomena.
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