
*Author for correspondence

Indian Journal of Science and Technology, Vol 10(30), DOI: 10.17485/ijst/2017/v10i30/115500, August 2017
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

A Novel Longest Distance First Page Replacement
Algorithm

Gyanendra Kumar1* and Parul Tomar2

1Department of Information Technology, Raj Kumar Goel Institute of Technology and Management,
Ghaziabad - 201001, Uttar Pradesh, India; maurya.gyanendra@gmail.com

2Department of Computer Engineering, YMCA University of Science and Technology,
Faridabad - 121006, Haryana, India; ptomar_p@hotmail.com

Keywords: FIFO, LRU, LDF, Memory Management, Optimal Replacement, Virtual Memory

Abstract
Objectives: To improve the performance of computer in program execution by employing Longest Distance First page
replacement algorithm in memory management. Method: There are many traditional page replacement algorithms used
in virtual memory organization like FIFO, LRU, Optimal page replacement, CAR, ARC etc, each of these algorithms tries to
reduce the number of page faults in selection of victim page from the memory frames. This paper presents all the popular
page replacement algorithms and a new approach named as “Longest Distance First (LDF)” page replacement algorithm.
Findings: From experimental results and analysis, it has been observed that, LDF produced better performance in terms
of page fault rate and implementation overhead than many traditional page replacement algorithms like FIFO, LRU. From
the results, the average page fault of LDF is better than FIFO and LRU of taken data set. Applications: LDF can be used in
virtual memory management to improve performance of computer system by minimize page fault rate.

1. Introduction
Computer is an electronic device which executes com-
puter program, and execution of computer program is
managed by operating system. Almost every computer
consists of operating system which provides all function-
ality needed in the execution of program. Functionalities
of operating system can be resource management, process
management, memory management etc. When a program
executes, it must be in the main memory of a computer, for
that operating system uses different memory management
techniques to allocate memory to program. One of the
popular memory allocation techniques is demand paging.
In paging programs are divided into pages and memory is
divided into fixed size frame and frame size must be equal
to page size. To allocate memory for execution of program,
pages of programs should be loaded in free frames of mem-
ory and to keep track a page table is created.

But in virtual memory only few pages of programs
are allocated in memory frames to start the execution of
programs and all pages are kept in secondary memory of
the system. When Central Processing Unit (CPU) refer-
ences any instruction of page, and if that page is available
in main memory frames, then that instruction will be
executed by CPU but if the page is unavailable in main
memory frames, a page fault will occur. To service page
fault, operating system loads needed page from second-
ary memory to memory frame. If free memory frames
are available then needed page will be allocated in any
free frame, if free frames are not available then operating
system selects a victim page from allocated list. To select
victim page from the memory, operating system uses
page replacement techniques.

Number of page replacement procedures exists like
FIFO1, RAND1, LRU2, Optimal page replacement1,3,
ARC4, CAR5, and Aging6, etc. The main criteria used to

Indian Journal of Science and TechnologyVol 10 (30) | August 2017 | www.indjst.org 2

A Novel Longest Distance First Page Replacement Algorithm

evaluate the replacement algorithms are its page fault rate
and overhead to implement it.

Commonly accepted algorithm is LRU because of its
performance in term of page fault rate, but it requires high
implementation overhead. LDF performs better in terms
of page fault rate than LRU over most of the available page
reference strings in academic. Its implementation over-
head is also less than LRU.

The paper is structured as follows: Section 2 discusses
popular existing page replacement algorithms. Section 3
describes the proposed LDF in detail with example illus-
tration. Section 4 describes results and analysis on taken
reference strings. Finally, Section 5 concludes the paper.

2. Page Replacement Algorithms
When page fault occurs during the program execution,
operating system uses the memory management algo-
rithm to select victim page from primary memory and
makes room for required page. Many algorithms have
been developed and tested theoretically as well as practi-
cally. Some of the popular algorithms are as follows.

2.1 FIFO
It is the simplest page replacement algorithm in imple-
mentation but it performs poor in terms of page fault
rate. The selection of victim page is based on its arrival in
memory. An oldest page is replaced first.

We can explain the working of FIFO with the help of
Figure 1 by taking reference string 0 1 2 3 0 1 4 0 1 2 3 4,
and three frames in the memory are initially empty.

Figure 1. FIFO page-replacement algorithm with 3 memory
frames.

In this example total page faults are 9. FIFO algorithm
suffers Belady’s anomaly7: which state that for some page-
replacement algorithms the page fault rate may increase
as the number of allocated memory frames increase.

2.2 LRU
LRU replacement is based on Locality of reference i.e. it
uses the recent past as an approximation of the near future,
then we can replace the page that has not been used for
the longest period of time7. Here the working of LRU can
explain with the following example shown in Figure 2. In
this example there is a total 10 page fault using LRU.

Figure 2. LRU page-replacement algorithm with 3 memory
frames.

2.3 Optimal Page Replacement
The basic idea behind this replacement algorithm
is:Replace the page that will not be used for the longest
period of time7.It can be explained with the below given
example shown in Figure 3 and total page faults are 7.

Figure 3. Optimal page-replacement algorithm with 3
memory frames.

Optimal has the lowest page fault rate than all other
algorithms, but it is not possible to implement it, because
it requires future knowledge. It never suffers Belady’s
anomaly problem.

There are many other algorithms are available in liter-
ature such as ARC, CAR, LIRS8, CLOCK9, CLOCK-Pro9,
LRU-K10 algorithms.

3. Longest Distance First (LDF)
Page Replacement Algorithm
The basic idea behind this algorithm is Locality of
Reference11,12 as used in LRU but the difference is that

Indian Journal of Science and Technology 3Vol 10 (30) | August 2017 | www.indjst.org

Gyanendra Kumar and Parul Tomar

in LDF, locality is based on distance not on the used ref-
erences. In the LDF, replace the page which is on longest
distance from the current page. If two pages are on same
distance then the page which is next to current page in
anti-clock rotation will get replaced.

Logic behind the LDF is that most of the program
or portion of program execute sequentially so if cur-
rent instruction is nth then probability of executing next
instruction closed to it is more than any other instructions.
Similarly probability of executing (n+1),(n+2) ... instruc-
tions is more than (n-1),(n-2)....instructions respectively.
And by considering locality we can say, chances of execut-
ing instructions close to current instruction is more than
other instructions. This is the main reason behind the
LDF. In page replacement if current page is nth then prob-
ability of executing next page closed to it is more than
other and (n+1), (n+2).. pages probability is more than
(n-1),(n-2).. pages.

3.1 Calculation of Distance
For the calculation of distance of a page from the current
page, arrange page reference numbers in circular form
and count how many number of pages it is away from the
current page in both directions, clock wise and anti-clock
wise. From these two distances minimum distance will be
taken.

For example; suppose a page reference string is 0 1 2 3
0 1 4 0 1 2 3 4. Total pages in this reference string are five
i.e., 0 1 2 3 4.Now arrange these numbers in circular form

0
4 1
3 2

Now we can calculate distance of any page from any
other page, page number 4 and 1 is on distance of one,
and 3 and 2 is on distance of two from page number 0.
Similarly distance of page number 2 from 0 is 2 clock wise
and 3 anti-clock wise so here the smallest distance will be
considered as 2.

3.2 LDF Page Replacement
This sub section describes the working of LDF with the
help of following examples.

Example1: Let us consider above page reference string
i.e. 0 1 2 3 0 1 4 0 1 2 3 4 and number of frames in memory
is 3.

In the Figure 4 given reference string using LDF total
page fault is 8. The first three page reference cause page

fault because initially memory frames are free and no
page replacement is required. Fourth page reference i.e.,
page number 3 will also cause page fault as now memory
frames are full, so it requires page replacement, using
LDF, page 1 will be replaced with page 3 because distance
of 0 and 1 from 3 is 2 and distance of page 2 from 3 is 1.
Pages 0 and 1 are on same distance from current page 3
so the page which is next to page 3 will be replaced in
anti-clock rotation and it is page number 1. Fifth page ref-
erence 0 will not cause page fault. Sixth page 1 will cause
page fault so page 3 will be replaced because it is on lon-
gest distance from 1. Seventh page 4 will also cause page
fault so page 2 will be replaced with 4. Page references
Eight, Nine and Twelfth will not cause page fault but tenth
and eleventh page will cause page faults. Total page faults
for above taken reference string will be 8.

Figure 4. LDF page-replacement algorithm with 3 memory
frames.

Example 2: Let us consider page reference string 0 2
1 3 5 4 6 3 7 4 7 3 3 5 5 3 1 1 1 7 1 3 4 1 and frames in
memory is four. What is the total page fault?

Figure 5. LDF page-replacement algorithm with 4 memory
frames.

As shown in Figure 5 total page fault in taken reference
string is 12. Starting four pages will cause page fault but
no page replacement is required as frames are free. Fifth

Indian Journal of Science and TechnologyVol 10 (30) | August 2017 | www.indjst.org 4

A Novel Longest Distance First Page Replacement Algorithm

page number 5 will also cause page fault which requires
page replacement and page number 1 will be replaced
because it is on the longest distance from current page 5.
Sixth page number 4 will also cause page fault and page
number 0 will be replaced as it is on longest distance from
current page 4. Seventh page number 6 will also cause
page fault and page number 2 will get replaced, and so on
all other references will take place.

3.3 Distance Page Fault (Limitation)
LDF suffers a problem named as Distance Page Fault,
when two pages are on longest distance from each other,
they are called distance page and if they appear in refer-
ence string consecutively then they will replace each
other and it will cause page fault. This type of page fault
in LDF is known as Distance Page Fault. Let us take ref-
erence string 0 1 0 0 2 0 3 3 2 1 1 2 1 3 1 3 1 to illustrate
the Distance page fault problem. In this reference string
page 3 and 1 are on longest distance from each other and
appearing in string consecutively so they will replace each
other and cause consecutive page fault.

Chance of occurrence of Distance page fault with a
program is less because it will happen with only those
programs where two jump statement of different page
executes by calling each other and pages must be distance
pages.

4. Results and Analysis
This section will give a comparative analysis between
FIFO, LRU, Optimal and proposed LDF algorithms.

Result analysis has been done using software written
in C. Analysis is based on the following set of reference
strings listed in Table 1. These page reference strings
are used in academics to analyse number of page faults
of these algorithms. Initially program checks page faults
of each reference string by considering three memory
frames and again it checked page faults by considering
four memory frames.

From the results it has been clearly shown that the
performance of LDF is better than the FIFO and LRU
and less than Optimal algorithm in terms of page faults.
Implementation overhead of LDF is less than FIFO, LRU
and Optimal because it does not require any extra hard-
ware or support to implement it. From experiments on
different page reference strings it is observed that LDF
does not suffer Belady’s anomaly problem but it needs
extra and real experiments to ensure it. Details of the

experiment and results are shown in the given tables and
graphs.

Table 1 list out the page reference strings used for the
purpose of evaluation of performance of algorithms in
terms of page faults.

Table 2 shows the page faults with corresponding
algorithms listed, these algorithms have been checked by
considering three and four frames as shown in Table 2.
From Table 2 it is clear that total and average number of
page faults occurrence in LDF on taken data is less than
LRU and FIFO.

Figure 6 shows the comparison graph between FIFO,
LRU, LDF and Optimal page replacement algorithms
when three memory

Figure 6. Variation of page fault in FIFO, LRU, LDF and
Optimal when three memory frames taken.

.
Figure 7. Variation of page fault in FIFO, LRU, LDF and
Optimal when Four memory frames taken.

Page Faults
Page Faults

String

String

Indian Journal of Science and Technology 5Vol 10 (30) | August 2017 | www.indjst.org

Gyanendra Kumar and Parul Tomar

Figure 8. Average page faults of taken data set of reference
strings.

frames considered. It is clear from this graph that LDF
outperform FIFO and LRU in terms of page faults.

Figure 7 shown the comparison graph between FIFO,
LRU, LDF and Optimal page replacement algorithms
when four memory frames considered. In this case LDF
again outperform FIFO and LRU in terms of page faults.

Figure 8 shows the comparison bar chart of average
page faults of all page reference strings listed in table 1.

LDF’s average page fault is 9.58 and 7.5 when three and
four memory frames considered respectively, it is less
than FIFO and LRU.

Table 1. List of page reference strings

String No. Page Reference String

S1 0 2 1 6 4 0 1 0 3 1 2 1

S2 1 2 3 4 1 2 5 1 2 3 4 5

S3 0 1 2 3 0 1 4 0 1 2 3 4

S4 0 2 1 3 5 4 6 3 7 4 7 3 3 5 5 3 1 1 1 7 1 3 4 1

S5 7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

S6 5 4 3 2 1 4 3 5 4 3 2 1 5

S7 4 7 0 7 1 0 1 2 1 2 7 1 2

S8 5 0 2 1 0 3 0 2 4 3 0 3 2 1 3 0 1 5

S9 4 3 2 1 4 3 5 4 3 2 1 5

S10 0 2 1 0 3 0 2 3 0 3 2 1 3 0 1

S11 1 0 5 1 1 3 5 1 5 3 4 5 2 1 3 0 1 4 0 5

S12 0 1 0 0 2 0 3 3 2 1 1 2 2 3 2 1 3

In strings S7 and S8, LDF suffers from distance page
fault problem because two distance pages are present one
after the other.

Table 2. Comparison of page fault between LDF, FIFO, LRU
and optimal

String

FIFO LRU LDF Optimal

Frames

3 4 3 4 3 4 3 4

S1 9 9 9 8 8 7 7 6
S2 9 10 10 8 9 6 7 6
S3 9 10 10 8 8 6 7 6
S4 15 12 14 11 13 12 11 9
S5 15 10 12 8 11 8 9 8
S6 10 11 11 9 11 8 8 6
S7 6 5 6 5 7 6 5 5
S8 15 11 13 8 13 12 9 8
S9 9 10 10 8 10 7 7 6
S10 8 4 7 4 7 4 6 4
S11 13 9 11 11 10 9 9 8
S12 4 4 5 4 8 4 4 4
Total 122 105 118 92 115 90 89 76
Average 10.17 8.75 9.83 7.67 9.58 7.5 7.42 6.33

Indian Journal of Science and TechnologyVol 10 (30) | August 2017 | www.indjst.org 6

A Novel Longest Distance First Page Replacement Algorithm

5. Conclusion and Future Scope
This paper gives a comparative study of commonly used
page replacement algorithms such as FIFO, LRU and
Optimal. A new approach for page replacement named
“LDF” has been proposed and compared with existing
algorithms. This technique makes use of distance from
current page. From the observation it has been found that
LDF has better performance as compare to FIFO and LRU
but lower performance as compare to Optimal. It has also
been observed analytically that implementation overhead
of LDF is less than others.

LDF is tested against the page reference strings used
in academics but it needs to be tested it in real situation
of paging. The distance page fault problem of LDF has
already been mentioned. In future, researcher can address
distance page fault problem and perform rigorous testing
in real scenario to make improvements.

6. References
1. Belady LA. A study of replacement algorithms for virtual

storage computers. IBM Systems Journal. 1966; 5(2):78–
101. Crossref

2. Mattson RL, Gecsei J, Slutz DR, Traiger IL. Evaluation tech-
niques for storage hierarchies. IBM System Journal. 1970;
9(2):78–117. Crossref

3. Aho AV, Denning PJ, Ullman JD. Principles of optimal
page replacement. Journal of the ACM. 1971; 18(1):80–93.
Crossref

4. Meigiddo N, Modha DS. ARC a self-tuning low overhead
replacement cache. IEEE Transactions on Computers.
2003; 115–30.

5. Bansal S, Modha DS. CAR clock with adaptive replace-
ment. FAST 04 Proceedings of the 3rd USENIX Conference
on File and Storage Technologies; 2004. p. 187–200.

6. Tanenbaum AS. Modern operating systems. 4th ed.
Pearson; 2015.

7. Gagne G. Silberschatz A, Galvin PB. Operating systems
concepts. 7th ed. 2005.

8. Jiang S, Zhang X. LIRS an efficient policy to improve buf-
fer cache performance. IEEE Transactions on Computers.
2002 Jun; 30(1):31–42.

9. Jiang S, Zhang X, Chen F. CLOCK-pro an effective improve-
ment of the CLOCK replacement. ATEC 05 Proceedings
of the Annual conference on USENIX Annual Technical
Conference; 2005. p. 35–5.

10. Oneil EJ, Oneil EP, Weikum G. An optimality proof of the
LRU-K Page replacement algorithm. Journal of the ACM.
1999 Jan; 46(1):92–112. Crossref

11. Denning PJ, Kahn KC. A study of program locality and life-
time functions. ACM SIGOPS Operating Systems Review.
1975 Nov; 9(5):207–16. Crossref

12. Denning, PJ. The working set model of program behavior.
Communications of the ACM. 1968 May; 11(5):323–33.
Crossref

https://doi.org/10.1147/sj.52.0078
https://doi.org/10.1147/sj.92.0078
https://doi.org/10.1145/321623.321632
https://doi.org/10.1145/300515.300518
https://doi.org/10.1145/1067629.806539
https://doi.org/10.1145/363095.363141

