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Abstract
Objectives: To show that modified Cramer’s rule is better than classical Cramer’s rule for solving linear systems in  quadrant 
interlocking factorization or WZ factorization. Methods: The relative residual measurement of modified Cramer’s rule was 
compared with classical Cramer’s rule. Furthermore, we apply the rules in WZ factorization and evaluate their matrix norm 
on AMD and Intel processor. Findings: This study shows that the residual measurements of modified Cramer’s rule are 
20% better than Cramer's rule. It also shows that the matrix norm of Cramer’s rule in WZ factorization is higher than  using 
modified Cramer’s rule in the factorization. Application/improvements: Modified Cramer’s rule can be used to solve 
simple linear system. Applying the modified Cramer’s rule in WZ factorization using parallel computer or shared memory 
multiprocessor networks such as Intel Xeon Phi, Sunway Taihulight or OLCF-4 should be strongly considered.
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1. Introduction
Quadrant interlocking factorization (QIF) or WZ 
 factorization produces a W-matrix together with a 
Z-matrix (or hourglass matrix) from nonsingular matrix 
A1,2 such that 

 A = WZ  1

The necessary condition for nonsingular matrix 
A ai j i j

n
=   =, , 1

 to be a WZ factorization is that the  central 
submatrices A an m

c
i j i j

n m

− + =

− +
=  1 1

1

, ,
 are centro-nonsingular3. 

Where n is even order of matrix and c the centered 
submatrix of A, for m = 1,2,…, n
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. A matrix which 
is either a Z-matrix or a W -matrix is called butterfly 
matrix. These names are suggested by the shapes of the 
set of all possible positions for nonzero entries, which 
are as follows

To obtain the entries of Z-matrix by updating matrix 
A, the column of W-matrix must be computed from 2 × 2 
systems of linear equations in equation 2 using Cramer’s 
rule
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to obtain equation (3) as 
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For i, j= m + 1,…, n - m
For vivid understanding of WZ factorization,  readers 

may see4–11 and the references therein. One of the 
 advantages of Cramer’s rule is to determine if a system of 
linear equations is inconsistent or indeterminate because 
Cramer’s rule gives a clear representation of an individual 
component unconnected to all other components12,13. 
This specific advantage of Cramer’s rule is useful in WZ 
 factorization to solve for the 2 × 2 linear systems which is 
the major factor to know if the matrix is centro-nonsingu-
lar. The matrix norm of WZ factorization is the Frobenius 
norm of the matrix given as14

 ||A||F = ||A-WZ||

The Frobenius norm or the Hilbert-Schmidt norm is 
equivalent to the Euclidean norm on Kn × n 15. 

In Section 2, we apply the two modified methods of 
Cramer’s rule proposed by16 in WZ factorization. We 
 further evaluate their matrix norm using MATLAB on two 
distinct physical processors (AMD and Intel processor). 
The results obtained from the matrix norm can be 
improved if parallel computer or mesh  multiprocessors 
are used.

2. Applying Modified Cramer’s 
Rule in QIF or WZ factorization

2.1 Modified Cramer’s Rule
Irrespective of its high computational time, Cramer’s 
rule is hypothetically significance for solving systems of 
linear equations because accurate method to  evaluate 
 determinants can make Cramer’s rule numerically 
stable17–19. Thus, much deductions have been made on 
Cramer’s rule to solve simple and large-scale systems of 
linear  equations, see for example20–22. 

Theorem 2.1.1 [Cramer’s rule]. Let Ax = c be an n × n 
system of linear equation and A an n × n matrix such that 
|A| ≠ 0, then the unique solution x = (x1, x2, …, xn)

T to the 
system of linear equations is given by

 x
A
Ai
i c= |  (4)

where, A(i|c) is the matrix obtained from A by  substituting 
the column vector c to the ith column of A, for i = 1, 2,…, n

In16, the following corollaries were obtained from 
Theorem 2.1.1 which are based on one of the properties 
of determinant.

Corollary 2.1.1 Let Ax = c be an n × n system of linear 
equation and A an n × n matrix such that |A| ≠ 0, then the 
unique solution x = (x1, x2, …, xn)

T to the system of linear 
equations is given by

 
x

A
Ai
i c= −+ 1

 (5)

where, A(i + c) is the matrix obtained from A by adding the 
column vector c to the ith column of A, for i = 1, 2, …, n

Corollary 2.1.2. Let Ax = c be an n × n system of linear 
equation and A an n × n matrix such that |A| ≠ 0, then the 
unique solution x = (x1, x2, …, xn)

T to the system of linear 
equations is given by

 
x

A

A
i

i c= − −1
 (6)

where, A(i - c) is the matrix obtained from A by  subtracting 
the column vector c from the ith column of A, 
for i = 1, 2, …, n.

The authors proved that Corollary 2.1.1 and Corollary 
2.1.2 are equal to classical Cramer’s rule. Now, we further 
the findings by providing the algorithm for the above 
 corollaries in Figure 1.

Even though the modified methods of Cramer’s 
rule use extra n arithmetic operations for every 
 solution of the linear systems, their computational 
time is like Cramer’s rule. Therefore, the modified 
Cramer’s rule may nowhere better than other direct 
methods (such as GE or LU decomposition) in terms of 
computational time complexity or numerical stability 
for higher  linear systems. Though, our main objective 
is to apply the modified Cramer’s rule in QIF but the 
methods can be compared with Cramer’s rule in terms 
of their relative residual error, 

� �

� � �

|| ||
|| ||| || ||
Ax c
A x

−
, which is given 

in Table 1.
Figure 2 shows that the relative residual of Method 

I and Method II are almost similar and are better than 
residual of Cramer’s rule. Among the three algorithms, 
Method II shows to be better than Cramer’s rule and 
Method I. Our algorithms, for Method I and Method II, 
are about 20% better than Cramer’s rule.

2.2 Application of Modified Cramer’s Rule
Due to the lack of parallel computer, the MATLAB codes 
application of this paper are limited to AMD and Intel 
processor with standard hardware in Table 2.
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Table 1. Relative residual measurements of Cramer's 
rule, Method I and Method II

Matrix size 
(N) Cramer Method Method
2 × 2 9.93E-17 6.53E-17 6.71E-17

3 × 3 9.97E-17 6.65E-17 5.93E-17

4 × 4 4.41E-16 3.32E-16 3.28E-16

5 × 5 2.19E-16 1.44E-16 1.35E-16

6 × 6 2.44E-16 1.31E-16 1.23E-16

7 × 7 5.61E-16 4.27E-16 4.18E-16

8 × 8 4.19E-16 3.42E-16 3.39E-16

9 × 9 7.54E-16 6.59E-16 6.50E-16

10 × 10 7.01E-16 6.65E-16 6.58E-16

11 × 11 9.32E-16 8.41E-16 8.38E-16

12 × 12 8.81E-16 8.09E-16 8.13E-16

13 × 13 9.75E-16 8.84E-16 8.75E-16

14 × 14 9.01E-16 8.43E-16 8.37E-16

Table 2. Hardware specifications

CPU Memory
AMD APU Core A10-9600P 
2.4GHz

8 GB

Intel Core i7-4600U 2.1GHz 8 GB
Figure 2. Residual measurement of Cramer's rule, Method 
I and Method II.

Figure 1. Algorithm of modified Cramer's rule.

To apply the above corollaries in WZ factorization 
algorithm, we reconstruct equation (2) as 
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Now, we apply Corollary 2.1.1 to compute wi m
m
,  and 

wi n m
m
, − +1  from equation (7) to obtain 
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The factorization obtained from using Corollary 2.1.1 
is called W1Z1 factorization and its MATLAB code is 
given in Figure 3.

More so, if we apply Corollary 2.1.2 to compute w
i m

m

,
 

and wi n m
m
, − +1  from equation (7), we will have

 w
w

zi m
m i m

m

i c
,

,
= −

  −1 and w
w

zi n m
m i n m

m

i c
,

,

− +

− + += −
 

1

1
1  (9)

where,

 z z z z zn m m
m

m n m
m

n m n m
m

m m
m= − + ≠− +

−
− +

−
− + − +
− −

1
1

1
1

1 1
1 1 0, , , ,  



Application of Modified Cramer’s Rule in Quadrant Interlocking Factorization

Indian Journal of Science and Technology4 Vol 11 (45) | December 2018 | www.indjst.org

Figure 5. MATLAB code of WZ factorization.

Figure 4. MATLAB code of W2Z2 factorization.

Figure 6. Norm of WZ, W1Z1 and W2Z2 and factorization 
on Intel processor.

Figure 3. MATLAB code of W1Z1 factorization.
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We refer the factorization obtained from using 
Corollary 2.1.2 as W2Z2 factorization and its MATLAB 

code is given in Figure 4, where we replaced line 32 and 
line 33 in Figure 3 with line 2 and line 3 of Figure 4.

In all, if we apply Theorem 2.1.1 to compute wi m
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We then refer the factorization obtained from using 
Theorem 2.1.1 as WZ factorization and its MATLAB code 
is given in Figure 5, where we replaced line 32 and line 33 
in Figure 3 with line 2 and line 3 of Figure 5.

Next, we compute the Frobenius norm of WZ, W1Z1 
and W2Z2 factorization on AMD and Intel  processor 
and the results are recorded in Table 3 and Table 4 
respectively.

In Figures 6 and in 7, the norm of W1Z1 and W2Z2 
factorization are relatively close, but they are better than 
the norm of WZ factorization on both Intel and AMD 
processor. Due to round off error in Cramer’s rule, the 
norm of WZ factorization is higher. We can deduce that 
on Intel processor WZ factorization execution has better 
sequential algorithms than AMD processor. Applying the 
modified Cramer’s rule in WZ factorization using  parallel 
computer or mesh multiprocessors with better FLOPS 
on shared memory such as Intel Xeon Phi or OLCF-4 is 
 passionately advocated.

Table 3. Norms of WZ, W1Z1 and W2Z2 factorization 
on Intel processor

Matrix size 
(N) ||A- WZ|| ||A-W2Z2 || ||A-W2Z2 ||
10 × 10 0.47E-7 0.18E-7 0.09E-7

20 × 20 0.88E-7 0.53E-7 0.42E-7

30 × 30 1.47E-7 1.13E-7 1.04E-7

40 × 40 1.95E-7 1.51E-7 1.44E-7

50 × 50 2.58E-7 2.17E-7 2.08E-7

60 × 60 2.93E-7 2.61E-7 2.52E-7

70 × 70 3.47E-7 3.12E-7 3.02E-7

80 × 80 3.89E-7 3.58E-7 3.49E-7

90 × 90 4.47E-7 4.17E-7 4.05E-7

100 × 100 4.99E-7 4.73E-7 4.59E-7

110 × 110 5.49E-7 5.14E-7 5.03E-7

120 × 120 5.96E-7 5.58E-7 5.41E-7

130 × 130 6.49E-7 6.11E-7 6.02E-7

140 × 140 6.98E-7 6.60E-7 6.52E-7

150 × 150 7.47E-7 7.10E-7 7.01E-7

160 × 160 7.83E-7 7.57E-7 7.43E-7

170 × 170 8.55E-7 8.25E-7 8.16E-7

180 × 180 8.97E-7 8.52E-7 8.46E-7

190 × 190 9.58E-7 9.18E-7 9.03E-7

200 × 200 9.99E-7 9.68E-7 9.57E-7

Figure 7. Norm of WZ, W1Z1 and W2Z2 and factorization 
on AMD processor.
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