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Abstract

Objectives: Prognosis of a tool is essential for assigning a proper Condition-based Maintenance program for it. Therefore 
the objective of the present study is to investigate the reliability of a tool using a stochastic Markov Model. Methods/
Statistical Analysis: This work proposes a stochastic Markov model for estimating the Remaining Useful Life of the 
turning tool. In this study, a Mild Steel workpiece was machined to a certain length on a lathe machine using a high-speed 
steel tool and the Flank Wear Width (FWW) were recorded in every 20 minutes interval. This experiment was conducted 
for stable feed, stable speed and uniform depth of cut until the failure value of the tool flank wear was achieved, i.e. 0.3 
mm. Findings: A state based model is developed considering four different degraded stages of the tool. The degradation 
rates among the states are obtained from the recorded experimental data. The appropriate equations for the four-state 
Markov model were derived, which show the possibilities of physical changes in the context of time for each level. The 
set of equations is solved analytically in MATLAB software using Range-Kutta method. After solving these equations, it 
was concluded that this system is 43% reliable for a 300-minute period and 41% is reliable for 500 minutes time period. 
Application/Improvements: It helps in preventing any kind of production loss. The remaining lifespan of a tool can be 
predicted by carefully analyzing the data gathered from the trend exploration method such as health monitoring with time.
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1.  Introduction
The essential prerequisites for the market emulation 
of an element are its quality, cost and productivity. The 
product with all these characteristics is manufactured 
only if the quality of manufacturing is at the highest 
standard. Due to unanticipated failures of system or 
degradation of the components, previously mentioned 
three parameters are severely affected and the quality of 
manufacturing deteriorates1. Fierce competition between 
different manufacturing firms improves the cost, quality, 
diversity and servicing of the product. The tool used in 
the manufacturing process has a considerable impact 
on the quality and speedy production of a final product. 
Therefore, a tool prognosis is an essential step for the 
betterment of product as well as industry. Generally, the 
regular prognosis of tool helps in getting rid of unexpected 
errors during operation. The proper maintenance of 
the tool enhances its life, improves access, preserves 
the exact shape and reduces the overall cycle cost. All 

the major maintenance activities are divided into two 
categories, i.e., curative and preventive maintenance. The 
curative maintenance is usually performed after failure. 
On the other hand, the preventive maintenance ensures 
the legitimate condition of the equipment through 
systematic or conditional maintenance2,3. The future 
condition and lifespan of a tool can be predicted precisely 
using Condition-based Maintenance (CBM)3–6. In many 
industries, a large amount of operating expenditure is 
spent on maintenance activities. Not only downtime 
or rework can be reduced by proper maintenance of 
the system, but stability and productivity can also be 
enhanced effectively7. Reliable and safe operation of a 
system could be ensured by identification, categorization 
and monitoring of defects in very early stages. It will 
also assist in a precise determination of Remaining 
Useful Life (RUL) of a system. Prognosis process is a 
method that analyzes the malfunction of the system and 
determines the need for timely maintenance, replacement 
of accessories or just shut down the system to prevent the 
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catastrophic failure. The algorithms used for prognosis 
are either a model-based or data-driven8. In these types of 
approaches, a fault is considered as a continuously variable 
entity whose evolution is described using deterministic or 
stochastic law9. The RUL of a system should be estimated 
on the basis of all the available information based on 
regular inspection and monitoring10. The condition 
of a manufacturing system is frequently monitored 
or examined using a set of sensors. After properly 
analyzing the information received from the sensors, the 
determination of the current position of the metal and 
the RUL can be assessed11. This information is helpful in 
making proper decision regarding system maintenance. 
Thus, prognostic can predict the future situation of a 
system and prevents its unexpected failure12. Failure 
prognostic involves estimating the available time before 
formally failing. Three types of prognostic processes are 
commonly used to perform this task. Which are as follows: 
model-based, experience-based and data-driven13. 
Markov model is a stochastic model that is capable of 
modeling unexpectedly changing systems. It is considered 
in the Markov model that the future conditions depend 
only on immediate circumstances, not on the events that 
happened in the past (Markov property)14. Ordinarily, this 
hypothesis enables the model to use reasoning and make 
an appropriate computation. In the context of predictive 
modeling and probabilistic forecasting, it is desirable 
that the model must display Markov property. Markov 
model mainly recognizes two situations, one of them is 
a functional state and the second one is a non-functional 
state. The first condition means that the system is working 
perfectly without errors and the second condition means 
the system is faulty or unserviceable15. Potential failures 
in future can be estimated by defining the probability of 
each state and by looking for the possibility of transition 
in another state from the previous one16. In this paper, 
Markov model has been used for the prognosis of a tool. 
Here, it is assumed that the system could be strictly in one 
state at a particular time.

2.  Experimental Methodology
In this section, the experimental procedure used to collect 
the tool wear data of selected turning operations has been 
described. High Speed ​​Steel (HSS) tool and Mild Steel 
(MS) workpiece have been used to conduct this study. 
The chemical composition of HSS and MS are given in 

Table 1 and Table 2. In this experiment, spindle speed and 
depth of cut were 150 rpm/min and 3 mm, respectively 
and a single cut of 100 mm length was defined as a single 
pass. A tool room microscope was employed to illustrate 
the flank and rake faces of the tool in the enclosure of the 
lathe machine during the wear testing. The Flank Wear 
Width (FWW) was identified using calibrated digital 
images and the tool’s wear status was noted for every 20 
minutes. The total time required for FWW to reach 0.3 is 
defined as the life of the tool.

3.  Results and Discussion
The system used in this experiment is an open series sys-
tem and the system’s reliability block diagram has been 
shown in Figure 1.

In this experiment, Flank Wear Width is calculated at 
every interval of 20 minutes. The calculated values are listed 
in Table 3. Failure rates are mainly calculated for four stages 
of this system, i.e. initial (1), 5th, 10th and last (15th) stage. 
The failure rates of the respective stages are as follows:

λ1 = 0.050

λ2 = 0.010

λ3 = 0.005

λ4 = 0.0033
The probability of each transition state of this system 

is as follows:

	 dy
dt

y1
1= -l1

	 (1)

	 dy
dt

y y2
2 2 1 1= +-l l 	 (2)

	 dy
dt

y y3
3 3 2 2= +-l l 	 (3)

	 dy
dt

y4
3 3= l 	 (4)

Table 1. �Composition of tungsten high-speed tool 
steels17

High Speed 
Steel

C Si Cr V W Mo Co

AISI-T4 0.75 0.30 4.13 1.00 18.25 0.70 5.00

Table 2. Composition of Mild Steel workpiece18

Mild Steel C Cu Fe Mn P Si S
ASTM 

A36 0.25–0.29 0.20 98.0 1.03 0.04 0.28 0.05
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Equations (1) to (4) was solved using the MATLAB 
software by Runge-Kutta method. These equations were 
solved for the different time span, i.e. 20, 100, 200, 300 
and then the values ​​of all the four stages were produced 
for the given time. In MATLAB, the results of 1st, 2nd and 
3rd stages were added by adding columns of the given 
stages to calculate reliability using R = y(:1)+y(:,2)+y(:,3) 
command. Obtained reliability results were plotted in 
MATLAB in the context of time. The reliability of the sys-
tem is 43% at the time span of 300 minutes and it is shown 
in Figure 2. At time span 500 minutes, system is 41% reli-
able and it is shown in Figure 3. This is very similar to 
experimentally obtained tool failure time.

As we solve all these equations by Ranga-Kutta 
method using MATLAB for time intervals of every 20 
min. to find out reliability.

λ1 = 0.0500

λ2 = 0.0100

λ3 = 0.0050

λ4 = 0.0033

	 R = y(:,1)+y(:,2)+y(:,3)	 (5)

We can solve this equation of reliability i.e.  
Equation (5) on MATLAB for any value of reliability 
which gives time for that reliability and remaining useful 
time for this system can be estimated.

4.  Conclusion
In this work, prognosis of turning tool is predicted using 
Markov approach. The data is generated by machining 
Mild Steel workpiece over a fixed length with constant 

Table 3. Flank Wear Width at different time interval

S. No. Time Flank Wear Width (FWW)
1. 20 0.01
2. 40 0.04
3. 60 0.05
4. 80 0.05
5. 100 0.05
6. 120 0.06
7. 140 0.08
8. 160 0.10
9. 180 0.12

10. 200 0.15
11. 220 0.18
12. 240 0.22
13. 260 0.25
14. 280 0.28
15. 300 0.30

Figure 1. �System description for Markov model of given 
experiment.

Figure 2. �Reliability vs. time curve for Markov equation at 
300-time span.

Figure 3. �Reliability vs. time curve for Markov equation at 
500 time span.
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feed, speed and depth of cut. The Flank Wear Width is 
observed in every 20 min of time interval till the tool fails. 
Four state Markov model considering gradually degraded 
states is developed. The rate equations are derived for 
the representing the change of the state probability with 
respect to time for each state. These expressions derived 
from the Markov model is solved by Rung-Kutta method 
using MATLAB software. The reliability of tool at differ-
ent time span is calculated. A specific level of reliability 
value 0.3 is set to determine the Remaining Useful Life 
using Markov model. According to the calculation of 
Markov model, this tool has a reliability of 43% and 41% 
for 300 and 500 minutes time interval, respectively.
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