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Abstract

For controller implementation and due to practical considerations a reduced order model is usually need-
ed. So in this work, the problem of order reduction of nonlinear multi time scales systems in the framework of
singular perturbations is addressed. A successive separation algebraic procedure is proposed to derive a polynomi-
al reduced model by using the Kronecker product based state representation and the properties of the tensor algebra. 

*Author for correspondence

1. Introduction
Due to not only theoretical interest, but also to the rele-
vance of this topic to control engineering applications, the
singular perturbations techniques have received a great
deal of attention over the past two decades1-7. Several
results are developed in the literature to cope with order
reduction of linear systems and even for particular classes
of nonlinear systems2 using the singular perturbations
theory. But no simple and easy implemented approach for
order reduction of multi-time-scale interconnected non-
linear systems are provided.

Indeed, the complexity encountered in solving non-
linear differential equations16 and the lack of rigorous
analytical reduced model have motivated the develop-
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ment of the proposed algebraic approach based on the
description of the studied systems by an analytical control
affine state space equation with polynomial vector fields,
based on the use of Kronecker product9. The properties
of the tensor algebra allow to overcome many difficulties.

The layout of the paper is as follows. In the first sec-
tion, the theory background of the singular perturbation
theory is state briefly. In the next section, the description
of the studied systems and the problem statement are for-
mulated. A proposed procedure is also given where the
different steps of dynamic separation and construction of
the reduced model is detailed. The numerical simulations
demonstrate the efficiency of the proposed approach and
the accuracy of the approximate reduced model. Finally,
some conclusions are drawn.

Keywords: Kronecker Product, Polynomial Reduced Order Model, Nonlinear Large-scale Systems, Singular Perturbation
Theory.
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2.  Materials and Methods

2.1  Singular Perturbation Theory
Let us consider the general nonlinear singularly perturbed
systems described by the following state equations:

1

2

0 0

0 0

( , , ),   ( ) ,
( , , ),   ( ) ,

n

n

x F x z t x t x x
z G x z t z t z zε
= = ∈ℜ

 = = ∈ℜ




  (1)

where the state variables are divided into n
1 slow states 

x and n
2 fast states z and ε is a positive small singular per-

turbed parameter such that 0< <<1,  which quantifies

the speed ratio of the slow versus the fast dynamical phe-
nomena of the process, +ℜ ∈t .

One of the delicate problems is to explicit not defined 
at fortiori the parameter ε depending on the adopted

representation of the studied system.

Let us introduce the following assumptions8,11.

Assumption 1

The Jacobian 
z

t zG x 
∂

,∂ ) , (  at ε = 0 is non singular for all x, z

D, where D is a region of interest for the approximate 
analysis8.

Assumption 2

For all x, z D, real parts of the eigenvalues of 
z

t zG x 
∂

,∂ ) , (  at 

ε =0 are smaller than a fixed negative number:   

0

Re 0 G c
z µ

λ
=

  ∂  < < ∂   

When the Assumption1 is satisfied, the slow reduced
model is obtained by formally setting ε = 0 in equation 

(1) as:

( , , )                 (a)
0 ( , , )                 (b)
x F x z t

G x z t
 =
 =


  (2)

Solving for z , the equation (2-b)

)(xz ψ =     (3)

and substituting z (3) into (2) lead to the following 

model:

0

.

) 0(   ,  ), () ),( , x( x x t t F x x Fx === ψ   (4)

It neglects the fast phenomenon, considering that it 
has instantaneously reached its equilibrium. The fast
reduced model is obtained by introducing the fast time
scale 0t tτ

ε
−=  and the fast variables ( )x τ  and ) (~ τz such 

that:
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Expressing the derivatives of x and z with respect to t
andτ , substituting them into (14) and letting 0 →ε , we 

obtain: 

0 )0 (-(0)(0) ~;    0 
~

== = xxx
d
dx 
τ

  (6)
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where the fast part ) (~ τz is the state of the fast reduced 

model (7), called also the solution of the boundary layer.
Its equilibrium ) 0 ( ~ = τ z is asymptotically stable if 

assumption 2 is satisfied. If in addition (0)z is in the 

region of attraction of this equilibrium, then the follow-
ing two time scales approximation is valid, [8]:


 


Ο ++ =
Ο +=

) () (~)() (
) () () (

ε τ
ε

zt zt z
t xt x

  
(8)

It is shown here that the reduced model will be deter-
mined by solving for z the equation (2-b). This appears to 

be easy in the case of linear systems but seems to be a dif-
ficult task in the general case of nonlinear systems. Several
results are obtained when considering linear systems and
particular class of nonlinear systems and some others in
the case of nonlinear systems described by state equations
with no direct transmission matrix ( , ) L x z (9).
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(9)

So the problem we are addressing in this paper can be
stated as follows; given a high order multi-time scale sys-
tem with nonlinear vector functions 

(.),   (.),   (.) and (.) F G H L , how can we exploit the singu-

lar perturbation theory and the tensors representation to
derive in a relatively simple way a simplified model and
provide a computational procedure for this aim.

The following sections will show that good results are
obtained. The principal key to our work is the use of a
powerful mathematical tool in the description of the non-
linear studied systems: the Kronecker product.

2.2  Description of the Studied Systems and
Problem Statement

We will focus on realistic models of q time-scales systems
which involve interacting dynamic phenomena of widely
different speeds and described by the following state sep-
arable form:

1 1 1 1 1 1

1 1

1 1

( , , , , )  ( , , , , ) 

( , , , , )  ( , , , , ) 

( , , , , )  ( , , , , ) 
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i i i i q i i q

q q q i q q i q

X F X X X G X X X U

X F X X X G X X X U 

X F X X X G X X X U

ε

ε

ε

 = +

 = +



= +

    


    


    

   

      (10)

where n i , 1, ,iX i q ∈ℜ =   are the state vectors, mU ∈ℜ

is the control vector and
1, ,

(.),  (.) i i i q
F G 

= 
, the vector 

functions, continuously differentiable, are supposed ana-
lytic. Moreover, iε denotes small non-negative singular 

perturbation parameters such that k iε ε <  for ik > , mak-

ing the state variables to be ordered accordingly to their
increasing speed. The system (10) can be studied like a
multi-parameter system. 1ε appears here for the aim of 

symmetry but it is going to be considered equal to 1.

The simplification of the studied system (10) can be
done gradually when posing successively 0qε = ,

1 0qε − = ,….

 It will appear a recurrence that makes possible to
derive, going from the fastest to the slowest subsystem,
the degenerate slow model. In each stage of reduction,
we apply an analytical identification approach which is 
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also introduced in this paper to calculate all the matrices
appearing in the description of each reduced order model.

3.  Results and Discussions

3.1  Algebraic Approach for Order
Reduction

The separation of time scales starts with the following
model obtained by rewriting the system (10) in a compact
form:

1 1 1 1 1

1 1

( , )  ( , )
( , )   ( , ) 

s s s q s s q

q q q s q q s q

X F X X G X X U
X H X X L X X Uε

 = +
 = +



 (11)

where 1 1 2 1[ ]  q n nT T T T
s qX X X X −

−= ∈ ℜ   is 

predominantly slow and qX contains the nq fastest state 

variables. n denotes the order of the full studied system 

defined by
1

q

i
i

n n
=

= ∑ . 1 1s (.),   (.),   (.) and (.)s q qF G H L , are

expressed from the functions 
1, ,

(.)i i q
F 

= 
and 1, ,

 (.) i i q
G 

= 

,(see previous work15).
They admit a generalized Taylor series developments

using the Kronecker product and power notations as fol-
lows
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where 
[ ]

1
i

sX and [ ]i
qX are the i-th redundant 

Kronecker power of a 1
i

sn (
1

1
1

q 

s i 
i

n n
−

=

= ∑ )dimensional vector 

respectively i
qn  dimensional vector. ,1 ,1 ,1 ,1, ,  and ij ij ij ijF G L H

are constant matrices with appropriate dimensions.

Based on15, it is proved that the previous development 
(12) can be truncated at an arbitrary order r. In practice,
the choice of the third order polynomial description (r
= 3) is considered enough to model many physical pro-
cesses12,13,14. So, all the analytical functions (12) can be
approximated by the following vector polynomials:

[ ]
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The terms [ ] [ ]4 4
1 1( , )s qO X X , [ ] [ ]4 4

2 1( , )s qO X X , 

[ ] [ ]4 4
3 1( , )s qO X X , [ ] [ ]4 4

4 1( , )s qO X X are the fourth order error 

of the  previous developments. 

-  First step of reduction

Setting 0qε =  and assuming that it exists a unique 

root solution of (13-b) in the interesting region which is
considered here as a neighborhoods of the equilibrium
taken to be the origin, the first generated subsystem veri-
fying the assumption 1 and the assumption 2 is obtained
by solving:

1 1 1 1 1

1 1

( , )  ( , )    ( )
   0 ( , )   ( , )    ( )

s s s q s s q

q s q q s q

X F X X G X X U a
H X X L X X U b

 = +


= +


(13)

After the first step of reduction, the first obtained
reduced model is considered to be described by a poly-
nomial representation to preserve the same description of
the studied system

[ ]
[ ]

[ ]4
,1 ,1 1 1 1 1

1 1

 ( ) ( )
ir r

i
i i s s m s s

i i

X A X B I X U O X
= =

= + ⊗ + ∑ ∑

      (14)

where 4[ ] 
1( )sO X is the fourth order error of (14).

The constant matrices ,1  iA and ,1 iB are of appropriate 

dimensions and are calculated by applying the identifica-
tion approach presented below and:

To get the property of full rank matrices, we first
rewrite the equation (14) in the nun-redundant form as:

[ ]
[ ]

1 ,1 1 ,1 1
1 1

ˆ ˆˆ ˆ ( ) 
i

r r
i

s i s i m s
i i

X A X B I X U
= =

= + ⊗∑ ∑ (15)

where  ,1 i,1 ,1 ,1
ˆ ˆ and ( )    i i i i m iA A T B B I T = = ⊗ (16)

[ ] [ ]
s1 s1

ˆ X (resp.  X )i i  is defined by (A.6) (resp.(A.7)) and 

+
iT  is the pseudo-inverse of Ti  expressed in (A.8), (see 

Appendix).

- Considering the above notations and applying the vec
function defined in (A.9) and the corresponding proper-
ties (A.10), (A.11), (A.12), the equation (15) is rewritten
as:

[ ][ ]
1 1 ,1 1 ,1 1

1 0
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,1 1 ,1 1

1

ˆ ˆˆ ˆ( ) ( ( ) )
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i i
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i i

i s i m s
i i o

vec X X vec A X B I X U

vec A X vec B I X U

= =

= =

= = + ⊗

= + ⊗

∑ ∑ 

∑ ∑

 

      (17)
and one can write
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i i T 

i ns ivec A X X I vec A = ⊗ (18)
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1

1

1
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T

i i T 
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iT T 
m s ns i

iT
ns m s ns i

vec B I X u I X u I vec B

u I X I vec B

u I I X I vec B

 ⊗ = ⊗ ⊗   
 = ⊗ ⊗   

= ⊗ ⊗ ⊗

      (19)

Considering equations (17), (18) and (19) we have
then:



Successive Separation Procedure of Reduction for Nonlinear Large Scale Systems

Indian Journal of Science and TechnologyVol 10 (31) | August 2017 | www.indjst.org6

1 1

1 1
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     (20)

which can be written as a vectorial equation:

11 1  
ss sXX θ ϑ =    (21)

where

1 1 1 11
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1 1 1

ˆ ˆ .. .. .. ( )( )
T T

s

T i T T r 
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      (22)

1 sϑ  is a vector of unknown  coefficients defined by:

and     

1,1

,1

1

0,1

,1

( )
:
ˆ ( )

      :
ˆ( )

      :
ˆ( )

i

s

r

vec A

vec A

vec B

vec B

ϑ

  
  
  
  
  
 =
  
  
  
  
  

  (23)

So to derive the reduced order model, we have to
determine the unknown vector 1 sϑ  which needs the use of 

the Moore-Penrose pseudo-inverse 
1 sXθ +

given by:

1 1 1 1

1 
  

s s s s

T
X X X Xθ θ θ θ+

−
 =     (24)

The solution of the vectorial equation (24) is then
equal to:

1
1 1   

Xs
s sXϑ θ+=     (25)

Applying a random input to the system (15), the pro-
posed approach provides the determination of the
matrices ,1 ,1

ˆ ˆ and ,  1, ,i iA B i r=   and so on the matrices 

,1 ,1and  i iA B from (16).

Starting from the obtained reduced model (14) which
contains (q-1) state vectors of different speeds, the grad-
ually application of the proposed approach of system
reduction derives when going from the fastest to the slow-
est subsystem a reduced order slow subsystem model.

- After (K +1) stage of reduction
It appears from the above developments a recur-

rence. So, assumption 1 and 2 being verified at each stage,
the successive separation procedure of order reduction
leads after the kth stage to the following reduced model
described by the polynomial state equations:

[ ] [ ]
, ,

1 1

 ( ) 
r r 

i i
i k i k sk sk m sk

i i

X A X B I X U
= =

= + ⊗∑ ∑

     (26)
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,1 ,2 , ,[ ]  sk nT T T T T
sk sk sk sk j sk q kX X X X X −= ∈ ℜ  

and ,
j n

sk jX ∈ ℜ  with   
1

q k

sk j
j

n n
−

=
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After the calculus of the matrices , ,ˆ ˆi  and k i kA B the 

next step is to extract again the fastest state variables given 

by , 1 sk q kX − + and to derive the reduced model that 

approximate the slowest state variables of the full studied
systems where the original variables are finally approxi-
mated by: 

( 1)

1 1,1 1,2 1, 1,[ ]  s k nT T T T T
sk sk sk sk j sk q kX X X X X +

+ + + + + −= ∈ ℜ  

For this aim, it is necessary to develop the terms 

[ ] [ ]i  and ( )i
sk m skX I X ⊗  (26) in order to make to appear the 

slow state variables 1 skX +  and the fastest ones , sk q kX − . 

Consequently, the system (26) can be formulated (appen-
dix, [15]) by a similar description as (11) and (12).

It comes out that all the constant matrices 

, , , ,, ,  and ij k ij k ij k ij kF G L H are then defined and we can derive 

the finally degenerate slow model:

[ ] [ ]
, 1 , 1 1 1 1

1 1

 ( ) 
r r 

i i
i k i k sk sk m sk

i i

X A X B I X U+ + + + +
= =

= + ⊗∑ ∑

     (27)

where  + +
i,1 ,1 ,1 ,1

ˆ ˆ =  and   ( )i i i i m iA A T B B I T = ⊗

, 1 , 1ˆ ˆi  and k i kA B+ +  are the solutions of the following 

equation: 
1

1 1   
Xsk

sk skXϑ θ
+

+ 

+ += 

1
1  and   

Xsk
skϑ θ

+

+
+ are given by :

1 11

1 1
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and  
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1

0, 1
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k
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+

+

+
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  (29)

and 1 skX +  is the solution of the following equations:

1 1 1 1 

1 1

(, )  ( , ) 
0 ( , )   ( , ) 

sk sk q k sk s q k 

q k sk q k q k sk q k

X F X G X X U
H X X L X X U

+ + − + − 

− + − − + −

 = +


= +


(30)

when computing, all the factor scale iε  are incorpo-

rated in the corresponding matrices. 

3.2  Illustrative Example
Let’s consider a 7th order polynomial nonlinear system
with four time-scales: 

1 1 2 3 5 6 7 1 5
3 3 
5 6 1 2 4 5

1 2 1 2 3 5 6 7 3 5
2 2 
4 5 2 6 7 1 2

 1 6 1 3 0 3 1 2 0 15 0 5 
0 5 0 1 (1 0 5 0 6 0 5 0 7 ) ( )

 1.85 0 95 0 55 0 15 0 2 0 2 0 1
0 15 0 5 0 2 (0 5 0 4 0 7 0

x . x . x . x . x . x . x x
    . x . x . x . x . x . x  u t 

x x . x . x . x . x . x  . x x
  . x x . x . x x . . x . x .

ε

ε

= − + + − +

+ + + − + + −
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2
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7 4 5 4
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       x  x x x
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−
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2
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        x x x u t 
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ε

ε
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3 2 
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2
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After a three successive separation of dynamics, the
proposed procedure provide the following slow reduced
subsystem with second order described by 

[ ] [ ]

[ ] [ ]

2 3

31 32 33 30 313 3 3 3 3

2 3

32 33 3 3

(  ( )

( )  ( ))          

s s s s m s

m s m s

X A X A X A X B B I X 

B I X B I X U

= + + + + ⊗

+ ⊗ + ⊗



where 3 3,1 3,2

T

s s s=  X X X  

When considering the random input signal as
defined in Figure 1, all the characteristic matrices

3, 3,i and iA B
  are calculated.

31 32

33

    0.0509    1.5581    -0.1697   -0.1161   -0.1161    0.4522
 ,         

   -1.8042   -0.9868    -0.0448    0.0005    0.0005    0.4064

0.0898   -0.0386   -0.0386   -0.1702   -0.038

A A

A

   
= =    

   

=

30 31 32

6   -0.1702   -0.1702    0.2374
 0.0315   0.0012    0.0012   -0.0214    0.0012   -0.0214   -0.0214   -0.2668

0.8883 -0.2513  0.4512 -0.4491    0.1403 
, ,B 

0.4828 0.4448   0.8076
B B

  
 
  

   
= = =    

   

33

  0.1403    0.1746
-0.0159   -0.0582   -0.0582    0.2182

0.4441   -0.1968   -0.1968   -0.4601   -0.1968   -0.4601   -0.4601   -0.4605
B 

0.0945    0.0223    0.0223   -0.1395    0.0223   -0.1395   

  
 
 

 
=

-0.1395   -0.3506   
 

The obtained simulation results, Figure 2 to Figure 4,
show the effectiveness of the recursive order reduction
procedure and the quality of the reduced model as illus-
trate in the Figure 4.

Figure 1. A random input signal u (t).
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Figure 2. Simulation curve of state variables X i and obtained after the first step of reduction (___).
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Figure 3. Simulation curve of state variables X i and  obtained after the  the second stage of reduction (___).
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Good results, figure 4, are obtained when comparing
the state variables evolution of the initial system and those
of the constructed reduced model showing the effective-
ness of the proposed  procedure.

4.  Conclusion 
The proposed approach appears to be a very power-
ful alternative to the general problem of modeling 

Figure 4. Simulation curve of state variables X i and   (___) after three successive
separation of dynamics.
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complex systems and seems to correspond very well to
industrial applications and especially to those intercon-
nected with multi-time-scale. It relies on the use of the
Kronecker product, polynomial representation and alge-
braic manipulations for the estimation of the matrices of
the polynomial reduced order model. It must be pointed
out that the algebraic formulation of the solutions of the
nonlinear differential equations allows an easy imple-
mentation.

5. Appendix
The Kronecker product of A and B denoted by BA ⊗  is 

defined by9:


 
 
 
 
 



 
 
 
 
 



=⊗

B aB a

B aB a
B aB a

B A

pqp

q

q

. ..
.. ...
.. ...

. ...

. ..

1

221

1111

  (A.1)

BA ⊗  is then a ( qs pr × ) matrix.

Among the main properties of this product16, let us
consider the following useful ones:

- Mixed product rules:

)()())( D AC( BD B C A ⊗ =⊗ ⊗   (A.2)

- Transposition rule: 

TT T BABA ⊗ =⊗ ) (    (A.3)

The Kronecker power of order i, noted [ ]iX , of the 

vector X nℜ ∈ is defined by:

[ ] 

[ ] [ ] [ ]

 


≥⊗ =⊗ =
=

−− 1 pour
1

11

0

iX XXX X
X

iii
(A.4)

The nun-redundant i-power [ ]iX̂  of  X  is defined in12 

as:

X[ ] [ ] X X == 11ˆ

[ ]




 
 =≥ ∀

−−−−

−−−

i T 
n

i
n

i
n

ii

i
n 

iiii

xx xx xx xxx xx
x xx xx xxX i

] ,...,  ,...,,..., ,...,    
,,,..., ,[ˆ;  2

3
2

3
1

2 2
12 

2
13 2

2
1

2
2

2
1

1
12 

1
1 1

      (A.5)
It corresponds to the previous power where have been

removed the repeated components. 

Then we have:

ˆ 1
ˆ;    ! ,   n ni 

i 
i i

n i
i T n 

i
× + −  

∀ ∈ℵ ∃ ∈ℜ =  
 

; [ ] [ ]i
iTi X X ˆ=

     (A.6)
Thus, one possible solution for the inversion can be 

written as:

ˆ;  !
i

i n n
ii T ×+∀ ∈ℵ ∃ ∈ℜ ;   [ ] [ ]i

iTi X X  ˆ +=   (A.7)

where +
iT is the  Moore-Penrose pseudo-inverse of 

iT

given by:

1( )T T
i i i iT T T T+ −=    (A.8)

An important vector valued function of a matrix was
defined in11 as follows:

{ } 1 21,..., , , ;p
i q i q A A A A A ∀ ∈ ∈ℜ =  

1

2( )

q

A
A

vec A

A

  
  
 =   
 
   


(A.9)
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We recall the following needed properties

) ()() vec( A C E EAC vec T ⊗= (A.10)

( ) ) U vec ( A A vec qp
T

×=  (A.11)

( ) ( ) ( ) ( ) ( )T
p gvec AC C I vec A I A vec C = ⊗ = ⊗

     (A.12)
where

p qU ×
 is a square permutation matrix ( pq x pq) defined

by :

    
1 1

,,∑∑
= =

××
× ⊗ =

p

i

q

j

q pq p
q p jiji

EEU (A.13)

q
i

p
i

q p eeE 
j i

⊗ =×
,

with      , where p
ie  is a unit p dimen-

sional vector which is ‘1’ in the i-th column and zero 
elsewhere, and has precisely a single ‘1’ in each row and in
each column. 
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