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Abstract
A mathematical model will help the engineers in science and technology applications. In this paper, authors studied a
temperature-thickness coupling problem of a non-homogeneous rectangular plate in which temperature varies bi-
linearly & thickness varies linearly in x-direction. Due to non-homogeneity, it is considered that poisson ratio varies
exponentially in x direction. Ray-Leigh Ritz method has been adopted to calculate the time period for fixed two modes
of vibration for different values of aspect ratio, thermal gradient and taper constants. All results are shown in graphs.
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Introduction

There has been amazing discoveries in the field of
vibration research, drawing the attention of scientists and
design engineers to study tremendous effect of vibrational
behaviour in engineering and modern technology. In the
field of mechanical engineering, new discoveries can’t be
possible without considering the effect of vibration as
almost all machines and engineering structures
experience. Study of vibration is not just confined to
science but also our day to day life. From its constructive
aspects in aircrafts engineering, space technology, etc.,
to the destructive aspects e.g. earthquake, satellite;
nothing is untouched by vibration effects.

Plates of variable thickness are commonly used in
many engineering applications like spacecrafts,
submarine, nuclear reactor ships etc. So it is the need of
the hour to get deeper knowledge of the plate’s behaviour
and their characteristics, which would in turn help to
perceive their potential in many fields.

In the modern technology, an interest towards the
effect of high temperatures on non-homogeneous
rectangular plates of variable thickness is developed due
to applications in various engineering branches such as
nuclear, power plants, aeronautical, chemical etc. where
metals and their alloys exhibits visco-elastic behaviour.
The reason for these is that during heating up periods,
structures are exposed to high intensity heat fluxes and
material properties undergo significant changes; in
particular thermal effect cannot be negligible. A lot of
literature is available in one dimensional variation in
temperature with thickness variation of plates, but
negligible work is found in two dimensional temperature
variations.

Cheung and Zhou (1999) have studied several
aspects concerning the formulation and the solution of
amplitude equations for free vibration of systems with
cubic non-linearity. Dhotarad and Ganesan (1978)
analysed the dynamic free response of thin rectangular
plates subjected to one and two dimensional steady state
temperature distributions. Gupta et al. (2007) had

analysed the effect of non-homogeneity on thermally
induced vibration of orthotropic visco-elastic rectangular
plate of linearly varying thickness. Gupta et al. (2009) had
evaluated time period and deflection for the first two
modes of vibration of visco-elastic rectangular plate and
for various bi-linearly thickness variation. Jain and Soni
(1973) had studied the free vibrations of rectangular
plates with thickness varying parabolically. Kumar and
Sanjay (2003) had analysed the vibration of visco-elastic
isotropic rectangular plate with varying thickness in two
directions i.e. linearly in one and parabolically in other
direction. Khanna and Anupam (2005) had studied the
vibrations on visco-elastic rectangular plate with the
variable thickness without considering thermal effects. Lal
Roshan and Dhanpati (2009) had analysed the vibrations
of non-homogeneous orthotropic rectangular plates of
varying thickness with two opposite simply supported
edges and resting on two-parameter foundation. Laura et
al. (1979) had studied the transverse vibrations of
rectangular plates with linear variation of the thickness in
the x and y directions. Leissa (1987) had helped the many
researchers by collecting the various research papers
which show the latest researches done in the field of
vibration of plates without considered two dimensional
thermal effects. Leissa (1987) had evaluated the effect of
thermal gradient on the vibration of parallelogram plate
with linearly varying thickness in both direction and
thermal effect in linear form only. Singh and Saxena V
(1996) had studied the transverse vibrations of a
rectangular plate of variable thickness with different
combinations of boundary conditions at the four edges.
Tomar and Gupta (1983) had evaluated the thermal
gradient effect on the vibration of a rectangular plate
having bi-directional variation thickness. Tomar and
Gupta (1985) had studied the effect of thermal gradient
on frequencies of an orthotropic rectangular plate whose
thickness varies in two directions. Li (2005) gave an
analysis on modal characteristics on vibrations of
rectangular plate with general elastic supports along its
edges.
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In this research paper, our aim is to provide a
theoretical and authentic mathematical model for
analysing the vibrational behaviour of non-homogeneous
rectangular plate of varying thickness with two
dimensional temperature variations. Temperature
variation is considered bi-linearly i.e. linearly in x & y
direction & thickness variation is assumed linearly in x-
direction. The rectangular plate is clamped at all four
edges. Due to Non homogeneity in the material of plate, it
is considered that poisson ratio varies exponentially along
x direction. Ray-Leigh Ritz method has been used to
calculate both modes of time period for different values of
aspect ratio, taper constant, thermal gradient and non-
homogeneity constant.

Equation of motion and analysis
Differential equation of motion for rectangular plate of

variable thickness for free vibration of variable thickness
is given by (1):[ ′ + 2 ′ + ′ + 2 ′ ′ + ′ +2 ′ ′ + ′ + ′ ′ + ′ +

′ ′ + , + 2(1 − ) , , ] − ℎ = 0
(1)

which is a fourth-order differential equation of  transverse
motion for non-homogenous plate of variable thickness.
Here D1 is flexural rigidity of rectangular plate i.e.= /12(1 − ) (2)
and corresponding two-term deflection function is taken
as follows:=[( / )( / )(1 − / )(1 − / )] [ + ( ⁄ )( ⁄ )(1 −/ )(1− / ) (3)
Assuming that the rectangular plate of engineering
material has a steady two dimensional linear  temperature
distribution i.e.= (1 − / )(1 − / ) (4)
where τ denotes the temperature excess above the
reference temperature at any point on the plate and τ0
denotes the temperature at any point on the boundary of
plate and “a” is the length of a side of rectangular plate
and “b” denote the width of rectangular plate.
The temperature dependence of the modulus of elasticity
for most of engineering materials can be expressed in this
form,= (1 − ) (5)
where E0 is the value of the Young's modulus at reference
temperature i.e. = 0 and is the slope of the variation of
E with . The modulus variation (5) become= (1 − (1 − / )(1 − / )) (6)
where = (0 α<1) is thermal gradient. It is assumed
that thickness varies linearly in one direction as shown
below: = (1 + ⁄ ) (7)
where, β is taper constant in x-direction and g=g0 at x=0.
Also, It is assumed that Poisson ratio of material varies
exponentially in x-direction as shown below:

= /
In order to avoid infinite terms in the expansion of / ,
authors consider first six terms of the expansion s.t.= / = 0 [1+(α1x/a)/1!+ (α1x/a)2/2! +(α1x/a)3/3!
+(α1x/a)4/4!+(α1x/a)5/5!] (8)
Put the value of E & g from equation (6), (7) & (8) in the
equation (2), one obtain= ( (1 − (1 − / )(1 − / ))) (1 + ⁄ ) /12 1 − (9)
Rayleigh-Ritz technique is applied to solve the frequency
equation. In this method, one requires maximum strain
energy must be equal to the maximum kinetic energy. So
it is necessary for the problem under consideration
that ( ∗ − ∗) = 0 (10)
for arbitrary variations of W satisfying relevant
geometrical boundary conditions.
Since the plate is assumed as clamped at all the four
edges, so the boundary conditions are
W = , = 0 = 0, , = , = 0 = 0 ,b(11)
Now assuming the non-dimensional variables as
X=x/a, Y=y/a (l2)
The kinetic energy K* and strain energy P* are∗ = 1 2⁄ ∫ ∫ (1 + )⁄

(13)∗ = ∫ ∫ { 1 − (1 − )(1 − ⁄ ) (1 + ) /(1 −/02 1 )}{ , 2+ , 2+2 0 1 W,XX , +2(1− 01 )( , )2} (14)ℎ , = /24
Now put the value of ∗ and ∗ from eq (13) and (14) in
eq (10).After putting all the values we get( ∗ − ∗) = 0 (15)
Here = 12 / is a frequency parameter.
Equation (15) consists two unknown constants i.e. A1 & A2
arising due to the substitution of W. These two constants
are to be determined as follows( ∗ − ∗)/ ,   n=1, 2 (16)
On simplifying (16), one gets

+ =0,   n=1, 2 (17)
where, , (n=1,2) involve parametric constant and
the frequency parameter.
Choosing A1=1, one can get easily from equation (17) A2,
which is (-C11/C12).
For a non-trivial solution, the determinant of the
coefficient of equation (17) must be zero. So one gets, the
frequency equationC CC C = 0 (18)
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Fig. 1.Time period Vs Non homogeneity constant

Fig. 4. Time period Vs Taper constant

Fig. 3. Time period Vs Taper constant

Fig. 2 Time period Vs Taper constant

Fig. 7. Time period Vs Aspect ratio

Fig. 6.Time period Vs Aspect ratio

Fig. 8. Time period Vs Thermal gradient

Fig. 5.Time period Vs Aspect ratio
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From equation (17), one can obtain a quadratic equation
in λ2 from which the two values of λ2 can found. Now with
the help of the values of A1 and A2, one can obtain
deflection function W as
W =[XY(a/b)(1-X)(1-Ya/b)]2 [1 + (-C11/C12)X Y(a/b)(1-X)(1-
Ya/b)] -----(19)
Time period of the vibration of the plate is given by
K = 2 π/ p (20)
where p is frequency .
Results and discussion

For calculating the values of time period (K) for a
rectangular plate with different values of aspect ratio
(a/b), thermal gradient (α), non-homogeneity constant (α1)
and taper constant (β) for first two modes of vibrations,
the following material parameters are used which is for
DURALUMIN reported at (2007):
E = 7.08*1010N/M2, ρ = 2.80*103 Kg/M3,ν0=0.345. The
thickness of the plate at the center is taken as ho= 0.01m.
In the present problem, latest software technology
“MATHEMATICA” is used to get the numerical results
with great accuracy and concentration. Computations
have been made for calculating, time period for different
values of taper constant β and aspect ratio a/b for first two
modes of vibration. We had considered the various cases
of time period against non-homogeneity constant, taper
constant, aspect ratio & thermal gradient which are stated
as below:
Time period Vs Non homogeneity constant

From Figure1, one can clearly observe that as non-
homogeneity constant α1 increases from 0.0 to 1.0, time
period decreases continuously for increasing value of
taper constant and thermal gradient for first two modes of
vibration.
Time period Vs Taper constant

From Figures 2, 3 & 4, authors conclude that time
period decreases continuously as taper constant
increases from 0.0 to 1.0 for  fixed value of thermal
gradient(α=0.2) for both the modes of vibrations for the
following three cases:
i) α1 =0.0 (Fig.2.) ii) α1 =0.2 (Fig.3.) iii) α1 =0.6 (Fig.4.)

On comparing these three cases, one can easily seen
that as non-homogeneity constant increase, time period
also decreases for both the modes of vibrations.
Time period Vs Aspect ratio

From Figures 5, 6 & 7 one can clearly observed that
time period decreases continuously as aspect ratio
increases from 0.25 to 1.5 for fixed value of thermal
gradient and taper constant i.e.
β =0.2; α =0.2 for both the first two modes of vibrations for
the following three   cases:
i) α1 =0.0 (Fig.5.) ii) α1 =0.2 (Fig.6.) iii) α1
=0.6 (Fig.7.)

On comparing above these three cases, one can
easily found that as non-homogeneity constant increase,
time period also decreases for both the first two modes of
vibrations.

Time period Vs Thermal gradient
Numerical results of time period with thermal gradient

are plotted in Figure 8 for different combinations of taper
constant and non-homogeneity constant i.e.
i) β =α 1=0.0 ii) β =α 1=0.2 iii) β=α1=0.6

Authors can easily conclude that time period
continuously increases as thermal gradient α increases
from 0.0 to1.0 for first two modes of vibrations. It should
be noted that as combined values of β & α 1 increase,
time period is found to be decreases for both the modes
of vibrations.
Conclusion

Author’s motive is to provide such kind of a
mathematical design so that scientist can perceive their
potential in mechanical engineering field & increase
strength, durability and efficiency of mechanical design
and structuring with a practical approach .Actually this is
the need of the hour to develop more but authentic
mathematical model for the help of mechanical
engineers/researchers/practitioners.Therefore mechanical
engineers and technocrats are advised to study and get
the practical importance of the present paper and to
provide much better structure and machines with more
safety and economy.
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