
Indian Journal of Science and Technology Vol. 5 No. 9 (Sep. 2012) ISSN: 0974- 6846

Research article “Diamond architecture” M.Damrudi & K.J.Aval
Indian Society for Education and Environment (iSee) http://www.indjst.org Indian J.Sci.Technol.

3288

Generalized approach to SOCD sorting on centralized diamond architecture

Masumeh Damrudi1* and Kamal Jadidy Aval2

1,2Department of Computer Science, Firoozkooh Branch, Islamic Azad University, Firoozkooh, Iran
m.damrudi@gmail.com*1, k.jadidy@gmail.com2

Abstract
Quality of applications that includes robustness, real time response, and accurate performance has become a vital
property for current applications. Among other existing solutions for such problems, parallel computing is a trending
solution. Sorting is one of the main parts in almost every algorithm and various parallel sorting techniques have
employed parallel architectures to do a qualified sorting. Gaining the best based on various different factors where
speedup is the premier, is a topic of discussion. In this paper, we have issued the generalization of SOCD sort on the
novel Centralized Diamond architecture which benefits from Single Instruction Multiple Data (SIMD) architecture with a
time complexity of O (logn) on PRAM EREW(Parallel Random Access Machine Exclusive Read Exclusive Write). The
results of conducted simulations of the algorithm prove the results of theoretical analysis of the algorithm. The findings
of this research can be exploited in developing faster embedded systems. Using an appropriate interconnection
network for achieving reasonable speedup in the execution of applications is important especially in embedded
systems.

Keywords: Parallel sorting, Diamond architecture, SIMD, Generalized SOCD

Introduction
One of the most exciting research areas in computer

science is parallel processing that has gained a lot of
interest in the past decade. Nowadays, parallel
processes are used for solving problems such as sort
and search, which in result leads to a reasonable speed.
Various problems of computer science era are benefiting
from sorting algorithms. Database systems are the main
applications among many other applications that are
using sorting as a fundamental part. Some sorting
algorithms are briefly described in (Damrudi et al., 2008).
Prasanta K. Jana proposed Multi-Mesh of Trees (MMT)
architecture, which is a combination of multi mesh and
mesh of trees and uses n4 processors. One of the
algorithms that is issued on this architecture is Esort
which has a time complexity ofO(logn) (Prasanta, 2004).
A Multi-Sort algorithm, proposed by Rakesh (2009) on
MMT, has the same time complexity with an internal
improvement. Arefin et al. (2005) have issued an
implementation of Batcher's Bitonic and Odd-Even
merge sorts. Hayashi et al., (1998) provided an EREW-
PRAM and both the CREW-PRAM and the CRCW merge
sorts are issued with a total cost of O(log n) and O(log
log n +log k) respectively. They introduced k-merge
algorithm which runs at O (log n) time with O(n log k)
total cost on the EREW-PRAM.

A parallel computer is a collection of some processor
elements that cooperate together to resolve massive
problems in a faster manner. In this paper, we have
generalized the new born SOCD sorting algorithm on
Centralized Diamond architecture. The centralized
diamond inherits its main specifications from Diamond
architecture, which was issued in (Damrudi et al., 2009).
Diamond architecture has (7/4) n processor elements.

The architecture is heterogeneous and uses more
number of cheaper simple PEs (Processor Elements)
compared to the number of expensive complex ones.
This specific design leads to a tradeoff between the
number of each type of processor element and the
related complexity and cost. This architecture has been
employed by NOD and ENOD to sort input data elements
(Damrudi et al., 2009; Damrudi et al., 2010; Jadidy Aval
et al., 2010). In comparison to the original Diamond
architecture, Centralized Diamond has one more node in
the center. This improved architecture has new
techniques to interconnect processor elements. In the
original SOCD, it is assumed that each processor
element has one data element. In the real world, data
elements are increasing rapidly and this makes it
impossible to use the solution for general applications
with unknown input data elements.

To achieve a general solution, this paper issues the
generalized approach of SOCD in which the numbers of
input data elements are not limited. Centralized Diamond
is an SIMD architecture, which executes the same
instructions on many data elements. Zhou and Ross
(2002) reported that SIMD instructions can hasten many
database operations by removing branch overhead, that
makes SIMD based architectures more useful. Mainly,
SIMD computers are divided into four subclasses EREW,
CREW, ERCW and CRCW.

The rest of this paper is organized as follows: In the
next section the Centralized Diamond architecture and its
features are introduced. In the following section,
generalized SOCD sort on centralized diamond
architecture is presented. Afterwards, complexity and
cost of the algorithm is analyzed. Finally, the conclusion
is provided.

Indian Journal of Science and Technology Vol. 5 No. 9 (Sep. 2012) ISSN: 0974- 6846

Research article “Diamond architecture” M.Damrudi & K.J.Aval
Indian Society for Education and Environment (iSee) http://www.indjst.org Indian J.Sci.Technol.

3289

Centralized diamond architecture
The first version of Centralized Diamond architecture

was presented by Damrudi et al. (2009). It exploits
exclusive techniques on interconnection relations among
processor elements. The topology of centralized
diamond is hybrid like some other existing architecture.
This means that the topology is a combination of the
other basic topologies like the ones that are illustrated in
Fig.1

While the mesh of trees and the pyramid are a
combination of meshes and trees, the centralized
diamond is a combination of trees and ring which means
it inherits both the specifications of tree and ring.
Processor elements’ number starts from zero in the first
level and the level numbers start from zero. The first
level connects tree parts of architecture together using
the centralized node. Let n be the number of data
elements and N be the number of processor elements.
Each centralized diamond architecture has four levels
and each level has following features:

Level zero (L0): There is one node in this level. There
are 16 registers employed in this PE. We have called it
centralized node and it has no number assigned to it.
Sorting more data elements, processor elements must
be added to the levels and more registers must be
considered for central processor element.

Level one (L1): Regardless of the central node, this
level has n/4 nodes and each PE is benefiting from eight
registers. Each PE of this level has direct connectivity to
the centralized node. The connections for this level are
formulated as following:

(1)

According to the binary tree model, each PE in this
level has two children. These children construct the
second level eq.(1).
Level two (L2): Ignoring the central node in PE count,
this level has n/2 PEs and each PE has four registers.
There is a direct connection between every two
neighboring PEs in this level that is formalized as
following:

The processor elements of this level have two
children. These children organize the third level eq.(2).
Level three (L3): Without taking the central node into
account, this level has n nodes. There are two registers
in every node and each processor element is directly
connected to the processor element next to it as
formalized in the following:

(3)

As it is explained by Damrudi et al., (2011), the
relation between data elements and PEs of this
architecture is 147 nN . Fig.2 presents Centralized

Diamond architecture with n=16 for data elements and

N=29 for processor elements.
Four levels compose this architecture. The number

of data elements in each PE in the third level is not
limited in the generalized approach and it is based on the
requirement of the application. Applying this solution, the
number of PEs is as following:= 14 + 1 ∀ ≥ 2 (4)

The number of processor elements for third, second,
and first level is 8k, 4k, and 2k respectively where k≥2.
These values plus centralized PE compose the total
number of PEs.

Generalization of SOCD Sort on Centralized Diamond
architecture

It is important to make sure that a parallel solution is
not suffering from the problems such as comprehension
complexity, great number of processor elements and
impossibility of data element increment. Let n be the
number of data elements and N be the number of
processor elements. As mentioned above, it is assumed
that the original SOCD (Sorting On Centralized
Diamond) have one data element for each PE. In the real
world applications, data elements are increasing rapidly

14

4

1

142)(

42)(

02mod1)(

434

n

n

nxx

nxx

xwherexx

nxn
(Intralevel con.) (2)

(Intralevel con.)

1
02mod1)(

43

xwherexx

nx

142)(

42)(

4

14

4

n

n

nxx

nxx

nx

(Intralevel con.)

a) Pyramid b) Mesh of Trees

Fig. 1. Hybrid interconnection network topologies

Level 3

Level 1

Level 0

Level

3

Level 2

Fig. 2. Levels of centralized diamond
(Damrudi et al., 2011)

Indian Journal of Science and Technology Vol. 5 No. 9 (Sep. 2012) ISSN: 0974- 6846

Research article “Diamond architecture” M.Damrudi & K.J.Aval
Indian Society for Education and Environment (iSee) http://www.indjst.org Indian J.Sci.Technol.

3290

and it is impossible to have one PE for each data
elements. Therefore, the numbers of data elements are
limited to the number of processor elements and original
SOCD doesn’t comply with the nature of applications.

To generalize the SOCD, in the initialization phase, n
data elements are spread over PEs in the third level.
Each PE gets n/(8k) data elements. Considering the
example of architecture as Fig.2, each PE has n/16 data
elements to process. The PE must have adequate
registers as memory to store data elements. At the first
step, each PE such as x (which x is odd) in L3, sends its
data elements to the next PE in the same level indexed
x+1all at the same time. PEs store received data
elements into their empty registers, sort them and send
the lower half of data elements to the PEs with the index
of x. All PEs in L3, send their data elements to their
parents in L2 which are presented with blue arrows in Fig.
3(a). Since the data elements in the generalized SOCD
are not limited, this operation needs an algorithm to
merge these sorted lists in L3 and locate them in L2. As
mentioned in the introduction, many merge sort
algorithms on k sorted lists have been issued. One of
them is (Hayashi et al., 1998), which needs O(log n) to
sort m sorted list. In this part, we have two sorted lists
that are merged employing the algorithm of (Hayashi et
al., 1998), to have one sorted list in each PE of L2. Fig.3
(a) illustrates the order of these operations.

Processor elements of L2 have n/(4k) data elements.
Considering the example of architecture illustrated in
Fig.2, each PE has n/8 data elements. In the next step,
each PE such as x (which x is odd) sends its data
elements to the next PE in the same level (L2) indexed
x+1 all at the same time. Upon receiving data, each
processor element stores the data in its registers and
sorts all of its data elements and then sends lower half of

data elements to the processor element which is indexed
as x. Afterwards; processor elements of the L2 send their
data elements to their parents. Just like the processor
elements of L3, these processor elements are exploiting
the merge sort algorithm of (Hayashi et al., 1998) to have
one sorted lists in every PE of L1. Fig.3 (b) shows these
operations using blue and red arrows. In this stage, the
processor elements of the first level have n/(2k) data
elements. Employing the algorithm of (Hayashi et al.,
1998), the sorted lists are now in L0 which is illustrated in
Fig.3(c).The algorithm of the above steps is provided in
Table 1.

Complexity Analysis and Simulation Results
We have conducted a simulation for the proposed

solution and showed the simulation on MATLAB
SIMULINK R2008a, for 15 processor elements and 16
data elements (Table 1). The results of the simulation
have proved the correctness of the above algorithm. In
the generalized SOCD sorting algorithm, as it is obvious
in the table, steps one, four, and seven have the
complexity of O(1). The complexity of steps two and
three is O(log (n/(4k))), steps five and six is O(log
(n/(2k))) and the last step is O(log (n/k)). Putting these
orders together leads to the overall time complexity
which is as follows:

(5)

The SIMULINK of MATLAB has provided an
environment which leads to simpler and faster
simulation. In this simulation we have defined PEs, their
connections, and assigned the required operations to
evaluate the proposed algorithm and architecture. The
simulation is performed exploiting the logic blocks. The
sorted list in the central PE is shown using display block
in the middle of the Fig.4.

Conclusion
The generalized SOCD sorting algorithm is not limited

in terms of number of data elements regarding to original
SOCD as well as the complexity time of this algorithm is
the same as the original one. In the world of daily
increasing data, it is impossible to have one PE for each
data element which is time and area consuming and
complex. Generalized SOCD employs less PEs which
results in increased efficiency. Nowadays, there are
many sorting algorithms such as Esort and Multi-Sort
that have O(log n) time complexity. While their
underlying architecture, Multi-Mesh of Trees, has n4

processor elements, taking the number of PEs into
account, their total cost is much more than the
generalized SOCD. It should be considered that the
architecture is heterogeneous, besides, there is no delay
needed due to the fact that all PEs in each level are
homogeneous and just differ from previous and next
level.

)(log

)(log)2(log)4(log)1()1()1(

kn

knknkntn

Fig. 3. Operations of generalized SOCD algorithm

03
2 1

4

5

6

78

9

10

11

12
13

14

15

16

17

18
1920

21

22

23

24

25

26
27(b)

03

2 1

4

5

6

78

9

10

11

12
13

14

15

16

17

18
1920

21

22

23

24

25

26
27(c)

(a)

03

2 1

4

5

6

78

9

10

11

12
13

14

15

16

17

18
1920

21

22

23

24

25

26
27

Indian Journal of Science and Technology Vol. 5 No. 9 (Sep 2012) ISSN: 0974- 6846

Research article “Diamond architecture” M.Damrudi & K.J.Aval
Indian Society for Education and Environment (iSee) http://www.indjst.org Indian J.Sci.Technol.

3291

References
1. Arefin Ahmed, Shamsul Mohammed and Abul Hasan

(2005) An improvement of bitonic sorting for parallel
computing. ICCOMP'05 Proc. of the 9th WSEAS Int.
Conf. on Computers. Wisconsin, USA.

2. Damrudi M and Kamal Jadidy Aval (2009) Diamond
architecture with NOD sorting. IEEE Youth Conf. Info.
Comput. & Telecommun., Beijing, China. pp: 431-434.

3. Damrudi M and Kamal Jadidy Aval (2010) A new
parallel sorting on Diamond architecture. Proc. 4th

Conf. Europ. Comput. Conf., Univ. Politechnica of
Bucharest, Bucharest, Romania. pp: 284-287.

4. Damrudi M and Kamal Jadidy Aval (2011) Sorting data
elements by SOCD using centralized diamond
architecture. Comput. Technol. & Appl. 2(5), 374-377.

5. Damrudi M, Mohammad R Salehnamadi and Kamal
Jadidy Aval (2008) ROE sorting on ILLIAC array
processor. Intl. Appl. Comput. Conf. (ACC'08),
Istanbul, Turkey. pp: 326-330.

6. Hayashi Tatsuya, Koji Nakano and Stephan Olariu
(1998) Work-time optimal k-merge algorithms on the
PRAM. IEEE Trans. Parallel & Distributed Sys. 9(3).
275-282.

7. Jadidy Aval K., Masumeh Damrudi, 2010. ENOD sort
on Diamond architecture. 9th WSEAS Intl. Conf.
Software Engg, Parallel & Distributed Sys., (SEPADS
'10), University of Cambridge, UK, pp: 205-208.

8. Prasanta K Jana (2004) Multi-mesh of trees with its
parallel algorithms. J. Sys. Archi. 50(4), 193-206.

9. Rakesh Nitin (2009) Nitin multi-sort algorithm on multi-
mesh of trees MMT. Masaum J. Comput. 1(1), 1-8.

10.Zhou J and Ross KA (2002) Implementing database
operations using SIMD instructions. Proc. ACM
SIGMOD Int. Conf. Manage. Data.

Fig. 4. The simulation of generalized SOCD for k=2

