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1.  Introduction

The ultimate aim of any manufacturing enterprise is to 
increase production and hence profitability, which, in 
turn, can be achieved only when the plant runs for longer 
duration of time without much interruptions. Modern 
day plants consist of complex systems with some of their 
units as standby using perfect switching. To evaluate the 
performance of a system, knowledge of the factors which 
affect it is required. Reliability assessment is an integral 
part of performance analysis particularly in process 
industries. 

These issues have been addressed by many researchers 
using different techniques. 1used supplementary variable 
technique to obtain Laplace transforms of various state 
probabilities to investigate the mathematical model of a 
system. 2 carried out the reliability analysis of the crushing 
system of a sugar mill. The problem was formulated 

using supplementary variable technique and solved 
using Lagrange’s method. 3considered a system with 
N operating units and M warm standby units having 
‘R’ repair facilities. Supplementary variable technique 
was used to formulate the problem and solved using 
Lagrange’s method. 4analyzed the reliability of computer 
network system by supplementary variable technique 
and concluded that steady state transition probability 
degrades slowly with time. 5discussed the reliability of 
an N-unit series repairable system and derived system 
availability, the idle probability of the repairman and 
the rate of service for customers using a supplementary 
variable technique and Laplace transform. 6described the 
availability of combed sliver production system, a part 
of yarn production plant. The problem was formulated 
using supplementary variable technique and probability 
consideration. 7studied about cost estimation of nuclear 
power generation plant and used supplementary variable 
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technique for mathematical formulation of the 
model. Laplace transform was utilized to solve the 
mathematical equations. 8computed the reliability of 
poly-tube manufacturing plant using supplementary 
variable technique. 9obtained the integro-differential 
equations governing the behaviour of the system by using 
supplementary variables method, probability arguments 
and limiting transitions. 10worked on coherent systems 
and series connection of k-out-of-n standby subsystems 
with exponentially distributed component lifetimes and 
analyzed system reliability, mean time to failure, and 
steady-state availability as a function of the component 
failure rates. 11presented a novel method for availability 
analysis of an engineering system incorporating waiting 
time to repair by supplementary variable technique, 
Laplace transformation and Gumbel-Hougaard family of 
copula.

Transient state availability has been evaluated by 
many researchers using different numerical methods. 
12implemented an implicit Runge-Kutta method to 
solve systems of nonlinear equations. 13compared three 
numerical methods for reliability calculations i.e. Markov, 
third order implicit Runge-Kutta method and acyclic 
Markov chain evaluator algorithm. 14presented two 
different methods i.e. LUD (Lower Upper Decomposition) 
and Runge-Kutta to calculate the steady-state probabilities 
and frequencies of two different engineering models.  
15computed reliability, availability and mean time 
before failure of a plastic-pipe manufacturing plant. 
The differential equations were solved numerically 
using Runge-Kutta fourth order method. 16discussed a 
procedure for finding the formula of 5th order Runge-
Kutta method and then applied it to find the numerical 
solutions of ordinary differential equations. 17assessed the 
availability of crank-case manufacturing system using 
Lagrange method and Runge-Kutta method to solve the 
partial and ordinary differential equations respectively. 
18suggested a Runge-Kutta method based on the sparse 
matrix storage scheme to numerically solve and analyze 
the reliability model. 19dealt with the numerical solution 
of initial value problems (IVPs), for systems of ordinary 
differential equations (ODEs), by an explicit fourth-order 
Runge–Kutta method. 20presented a modified Runge-
Kutta algorithm which yields a conservative estimate 
(overestimate) of the crack size for fatigue crack growth 
even for large integration step sizes. 21constructed an 

explicit Runge-Kutta method for solving directly fourth-
order ordinary differential equations (ODEs) and denoted 
it as (RKFD). 

Looking at the previous work in the related field, it has 
been observed that reliability/availability of the casting 
system of a steel industry has never been worked upon. 
Hence, in a way, this study is first of its kind. In order 
to compute the reliability of the said system, we have 
considered that the system is subjected to constant failure 
rate and variable repair rate. Supplementary variable 
technique has been used for reliability modelling of the 
system. Availability has also been calculated by taking 
constant failure and repair rates using Runge-Kutta 
method. Finally, criticality analysis of all the systems has 
been done to get some idea of the maintenance priority.

This paper is divided in 5 sections. Present section 
is introductory in nature. Section 2 consists of brief 
description of the system, various notations and 
assumptions used in the analysis. Mathematical modelling 
of the system is done in Section 3. Chapman-Kolmogorov 
equations of the casting system are developed using SVT 
assuming constant failure and variable repair rates. The 
equations have also been developed keeping both, failure 
and repair rates constant.  In Section 4, for analyzing 
the transient state availability, the system of differential 
equations is solved using Runge-Kutta fourth order 
method with the help of MATLAB software package 
and the effects of failure and repair rates of various 
combinations of different subsystems on the casting 
system have been evaluated. MTBF has been calculated 
using Simpson’s 3/8 rule, at the end of each row in Table 
1-6 to give an insight of the maintenance time available. 
Section 5 gives us the conclusion of the analysis done in 
previous section.

2.   System Description, Various 
Notations And Assumptions

The aim of casting system is to produce bloom and slabs 
as the final product with molten metal as the input. This 
system consists of four principal subsystems namely, 
transfer laddle, continuous casting machine, shot blasting 
machine and grinding machine. All the units are subject 
to major failure except grinding machine, which seldom 
fails and is also supported by stand-by unit with perfect 
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switching. Hence it has not been considered for analysis. 
Figure 1 gives us the flow chart of casting process. 

Figure 1. Flow chart of the casting process.

2.1 System Description
•	 Sub-system A (Transfer Laddle): It is basically a 

bucket which transfers molten metal from one place 
to another. Flux can be easily extracted by adjusting 
these laddles. This subsystem is having two units in 
parallel. System keeps on working at reduced capacity 
on failure of one unit and fails completely only when 
both units fail. 

•	 Sub-system B (Continuous Casting Machine): 
Molten steel is obtained by opening the nozzle of the 
teeming laddle which is then made to flow through a 
shroud into the tundish. The function of the shroud 
is to protect the steel from coming in contact with 
the atmosphere. The tundish acts as a reservoir in 
sequencing and maintains a supply of molten steel to 
the caster even when the laddle is being changed. It is 
having two units in parallel. If one unit fails, system 
keeps on working at reduced capacity and complete 
failure occurs only when both units fail.

•	 Sub-system C (Shot Blasting): Its function is removal 
of the unwanted surface oxide layer from the slab by 
charging shots on the surface with sufficient velocity. It 
consists of two units. If one unit fails, system’s capacity 
reduces. Major failure occurs when both units fail.

2.2 Notations  
A, B, C Indicate that the respective subsystems 

are working at full capacity
a, b, c  Indicate that the respective subsystems 

are in failed state
A', B', C'  Indicate that the respective subsystems 

are working at reduced capacity
 αi(i=1 to 3) Indicate the failure rates of subsystems 

A, B and C respectively
βi(i=1 to 3)  Indicate the repair rates of subsystem A, 

B and C respectively
P0(t) Denotes the probability that at time‘t’, all the 

units are working
Pi(x,t) Denotes the probability that at time‘t’, the 

system is in state i and having an elapsed repair time x

2.3 Assumptions
Present analysis is based on following assumptions:
•	 Failure and repair rates are constant and independent 

of each other.
•	 In case of assessment of availability using SVT, repair 

rates are considered variable and failure rates as constant.
•	 A repaired unit is as good as new.
•	 Service and repair/maintenance and replacement 

facilities are always available.
•	 There are no simultaneous failures.
•	 System may work at reduced capacity. 

3.   Mathematical Formulation of 
the System

To determine the reliability of the said system, we develop 
Chapman-Kolmogorov differential equations by applying 
SVT. Probability considerations, using mnemonic 
rule, give us the following set of differential equations 
associated with the transition diagram Figure 2 of the 
system at time (t+∆t):
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Similarly, we can write the differential equations for 
other states as follows:
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Set of differential equations from (1) to (11) along 
with initial conditions and boundary conditions is called 

Chapman-Kolmogorov differential difference equations. 
Equation (1) is a linear differential equation of first order 
and Equations (2) to (11) are linear partial differential 
equations of first order (Lagrange’s type). All these 
equations have been solved using Lagrange’s method. The 
probabilities of each state and expression of availability 
has been derived as follows:

( ) ( )0 0
0 01L t L tP t e M t e dt−  = + ∫

( ) ( ) ( ) ( )1 1

1 1 1 0, , ( )L x dx L x dxP x t e M x t e dx P t xα
−  ∫ ∫= + −  ∫

Figure 2.    Transition diagram of casting system.
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Finally, the expression of time dependent availability 

A(t) is obtained by summation of probabilities of all the 

working states and reduced capacity states, i.e.
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Availability expression of the casting system as given 
by equation (12) can be solved using constant failure rates 
and variable repair rates from the concerned plant.

3.1  Availability of the system when both 
failure as well as repair rates are constant

As the mechanical components are mainly subjected to 
random failures and the repair time is also not consistent, 
therefore, failure and repair rates may be considered 
constant. In this case, the system of Equations (1) to (11) 
can be represented as follows:
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i j
i j

P t P t P t P t
t

P t P t P t

α β β β β

α α α
= =

 ∂
+ + = + + + ∂ 

+ +

∑ ∑

    (20)

( ) 1 1( )i jP t P t
t

β α∂ + = ∂        (21)

 9, 2; 10, 1; 11, 3; 17, 7for i j i j i j i j= = = = = = = =

( ) 2 2( ).i jP t P t
t

β α∂ + = ∂       (22)

 12, 3; 13, 4; 14, 5; 18, 7for i j i j i j i j= = = = = = = =
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( ) ( )3 3i jP t P t
t

β α∂ + = ∂        (23)

 8, 2; 15, 5; 16, 6; 19, 7for i j i j i j i j= = = = = = = =

•	 Initial Conditions:

 

( ) 1         0
0        0

iP t for i
for i

= =

= ≠

To examine the effect of failure and repair rates on the 

availability in transient state, the system of differential 
equations (13) to (23) with initial conditions has been 
solved numerically using Runge-Kutta fourth order 
method.  Analysis has been done for a period of 360 days 
divided over an interval of 30 days and the data has been 
tabulated in Tables 1-6. These tables present the effect 
of failure and repair rates of various subsystems on the 
reliability of the system. MTBF, which has been computed 
using Simpson’s3/8 rule, with corresponding failure rates, 
has been given in the last row of each table. 

Table 2.    Effect of failure rate of continuous casting machine (α2) on availability
Time 
(days) 

α2

 
0.0083333 0.0097221 0.0111111 0.0124999 0.0138888

30 0.9583 0.9548 0.9509 0.9466 0.9420
60 0.9379 0.9322 0.9260 0.9192 0.9120
90 0.9323 0.9259 0.9189 0.9113 0.9032
120 0.9308 0.9241 0.9169 0.9090 0.9007
150 0.9303 0.9236 0.9163 0.9083 0.8999
180 0.9302 0.9235 0.9161 0.9081 0.8997
210 0.9302 0.9234 0.9160 0.9081 0.8996
240 0.9301 0.9234 0.9160 0.9080 0.8995
270 0.9301 0.9234 0.9160 0.9080 0.8995
300 0.9301 0.9234 0.9160 0.9080 0.8995
330 0.9301 0.9234 0.9160 0.9080 0.8995
360 0.9301 0.9234 0.9160 0.9080 0.8995
MTBF 336.92 334.73 332.33 329.72 326.95

Table 1.    Effect of failure rate of transfer laddle (α1) on availability
Time 
(days)  

α1  

 
0.016 0.018 0.02 0.022 0.024

30 0.9583 0.9519 0.9450 0.9376 0.9299
60 0.9379 0.9291 0.9197 0.9099 0.8997
90 0.9323 0.9230 0.9132 0.9029 0.8922
120 0.9308 0.9214 0.9115 0.9011 0.8904
150 0.9303 0.9209 0.9110 0.9006 0.8899
180 0.9302 0.9208 0.9109 0.9005 0.8897
210 0.9302 0.9208 0.9108 0.9004 0.8897
240 0.9301 0.9208 0.9108 0.9004 0.8897
270 0.9301 0.9207 0.9108 0.9004 0.8897
300 0.9301 0.9207 0.9108 0.9004 0.8897
330 0.9301 0.9207 0.9108 0.9004 0.8897
360 0.9301 0.9207 0.9108 0.9004 0.8897
MTBF 336.92 333.77 333.43 326.93 321.98
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Table 4.    Effect of repair rate of transfer laddle (β1) on availability
Time 
(days)  

β1 

 
0.0666666 0.0749999 0.0833333 0.0916666 0.10

30 0.9583 0.9615 0.9643 0.9666 0.9687
60 0.9379 0.9443 0.9493 0.9533 0.9566
90 0.9323 0.9398 0.9454 0.9498 0.9533
120 0.9308 0.9385 0.9443 0.9488 0.9523
150 0.9303 0.9382 0.9440 0.9485 0.9520
180 0.9302 0.9381 0.9439 0.9484 0.9519
210 0.9302 0.9380 0.9439 0.9483 0.9518
240 0.9301 0.9380 0.9439 0.9483 0.9518
270 0.9301 0.9380 0.9438 0.9483 0.9518
300 0.9301 0.9380 0.9438 0.9483 0.9518
330 0.9301 0.9380 0.9438 0.9483 0.9518
360 0.9301 0.9380 0.9438 0.9483 0.9518
MTBF 336.92 339.45 341.35 342.82 343.98

Table 5.    Effect of repair rate of continuous casting machine (β2) on availability
Time 
(days)  

β2  0.05 0.0567307 0.0634615 0.0701923 0.0769230

30 0.9583 0.9594 0.9604 0.9612 0.9620
60 0.9379 0.9407 0.9429 0.9447 0.9462
90 0.9323 0.9360 0.9388 0.9410 0.9427
120 0.9308 0.9349 0.9379 0.9402 0.9419
150 0.9303 0.9346 0.9377 0.9400 0.9418
180 0.9302 0.9345 0.9376 0.9400 0.9417
210 0.9302 0.9345 0.9376 0.9399 0.9417
240 0.9301 0.9345 0.9376 0.9399 0.9417
270 0.9301 0.9345 0.9376 0.9399 0.9417
300 0.9301 0.9345 0.9376 0.9399 0.9417
330 0.9301 0.9345 0.9376 0.9399 0.9417
360 0.9301 0.9345 0.9376 0.9399 0.9417
MTBF 336.92 338.26 339.23 339.96 340.54

Table 3.    Effect of failure rate of shot blasting machine (α3) on availability
Time 
(days)  

α3 

 
0.0059523 0.0065476 0.0071428 0.0077380 0.0083333

30 0.9583 0.9577 0.9570 0.9562 0.9554
60 0.9379 0.9371 0.9362 0.9352 0.9342
90 0.9323 0.9314 0.9305 0.9296 0.9285
120 0.9308 0.9299 0.9290 0.9281 0.9270
150 0.9303 0.9295 0.9286 0.9276 0.9266
180 0.9302 0.9294 0.9285 0.9275 0.9265
210 0.9302 0.9293 0.9284 0.9275 0.9264
240 0.9301 0.9293 0.9284 0.9274 0.9264
270 0.9301 0.9293 0.9284 0.9274 0.9264
300 0.9301 0.9293 0.9284 0.9274 0.9264
330 0.9301 0.9293 0.9284 0.9274 0.9264
360 0.9301 0.9293 0.9284 0.9274 0.9264
MTBF 336.92 336.64 336.33 336.00 335.65
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4.  Results and Analysis

•	 Effect of failure rate of transfer laddle (α1) on system 
availability: 

By varying failure rate α1 from 0.016, 0.018, 0.02, 0.022 
and 0.024 and keeping α2 = 0.0083333, α3 = 0.0059523, β1 
= 0.066666, β2 = 0.05, and β3 = 0.083333, the availability 
of the system has been computed and compiled in Table 
1, which shows that there is a decrease in availability 
upto 4.05 percent. Also availability decreases by upto 
4.02 percent with the increase in time from 30 to 360 
days. MTBF decreases by approximately 15 days with the 
increase in failure rate from 0.016 to 0.024.

•	 Effect of failure rate of continuous casting machine 
(α2) on system availability: 

As presented in Table 2, as failure rate α2 increases 
from 0.0083333 to 0.0138888 and the values of α1, α3, β1, 
β2 and β3 are kept at 0.016, 0.0059523, 0.066666, 0.05 and 
0.083333 respectively; availability shows a downward 
trend of maximum 3.06 percent. However availability 
decreases by upto 4.25 percent as time increases from 30 
to 360 days. It is also observed that MTBF also decreases 
by 10 days as failure rate increases.

•	 Effect of failure rate of shot blasting machine (α3) on 
system availability: 

Next, we have studied the effect of failure rate of shot 
blasting machine on the availability of casting system. The 
results shown in Table 3 indicate that by varying failure 
rate α3=0.0059523, 0.0065476, 0.0071428, 0.0077380 
and 0.0083333 and taking α1 = 0.016, α2 = 0.008333, β1 
= 0.066666, β2 = 0.05, β3 = 0.083333, the availability 
decreases by 0.38 percent. It is also seen that there is a 
decrease of 2.90 percent in availability with the increase 
in time from 30 to 360 days. In this case, little change is 
observed in MTBF (almost 1 day) with the increase in 
failure rate.

•	 Effect of repair rate of transfer laddle (β1) on system 
availability:

The results presented in Table 4 indicate the availability 
of the system when repair rate β1 of the transfer laddle 
subsystem is varied from 0.0666666 to 0.10. Taking values 
of α1 = 0.016, α2 = 0.0083333, α3 = 0.0059523, β2 = 0.05, β3 = 
0.083333, one can see that availability improves upto 2.17 
percent. Whereas, there is a decrease of 1.7-2.8 percent 
in availability as number of days increase from 30 to 360. 
MTBF also increases by around 7 days with the increase 
in repair rate.

•	 Effect of repair rate of continuous casting machine 
(β2) on system availability:

Now, we have studied the effect of repair rate of 

Table 6.    Effect of repair rate of shot blasting machine (β3) on availability
Time 
(days) 

β3 

 
0.0833333 0.0982142 0.1130952 0.1279761 0.1428571

30 0.9583 0.9590 0.9594 0.9598 0.9601
60 0.9379 0.9389 0.9396 0.9401 0.9404
90 0.9323 0.9334 0.9341 0.9346 0.9350
120 0.9308 0.9319 0.9326 0.9331 0.9334
150 0.9303 0.9315 0.9322 0.9327 0.9330
180 0.9302 0.9313 0.9320 0.9325 0.9329
210 0.9302 0.9313 0.9320 0.9325 0.9328
240 0.9301 0.9313 0.9320 0.9325 0.9328
270 0.9301 0.9313 0.9320 0.9325 0.9328
300 0.9301 0.9313 0.9320 0.9325 0.9328
330 0.9301 0.9313 0.9320 0.9325 0.9328
360 0.9301 0.9313 0.9320 0.9325 0.9328
MTBF 336.92 337.31 337.54 337.71 337.82
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continuous casting machine on the system availability. As 
β2is varied from 0.05 to 0.0769230 in five steps and the 
values of failure and repair rates of other subsystems i.e. 
α1,α2, α3,β1and β3 are taken as 0.016, 0.0083333, 0.0059523, 
0.066666 and 0.083333 respectively, it is observed that 
availability of the system decreases by 2-2.8 percent with 
the increase in time from 30 to 360 days. But, it increases 
by only 1.16 percent as repair rate increases from 0.05 to 
0.0769230. Improvement in repair rate results in increase 
in MTBF of around 4 days as shown in the Table 5.

•	 Effect of repair rate of shot blasting machine (β3) on 
system availability

At last, we have computed the effect of improvement 
of repair rate of shot blasting machine on the overall 
system availability as shown in Table 6. We see that as β3 
increases from 0.0833333 to 0.1428571 and the value of 
failure and repair rates of other subsystems are kept at α1 

= 0.016, α2 = 0.0083333, α3 = 0.0059523, β1 = 0.066666 and 
β2 = 0.05, availability shows an increase of 0.27 percent. 
But as the number of days increase from 30 to 360, there 
is a decrease of around 2.7-2.8 percent in the value of 
availability. MTBF increases by just one day with the 
increase in repair rate.

5.  Conclusion

By comparing the results computed in of Tables 1-6, it 
reveals that subsystem A i.e. transfer laddle has maximum 
impact on the availability as well as on MTBF of the 
system. This phenomenon has also been depicted in the 
Figure 3 and 4. Second most important subsystem is B i.e. 
continuous casting machine whereas subsystem C (Shot 
blasting machine) has least impact on the availability and 
MTBF of the system. Hence, we infer that, as far as repair/
maintenance work on the basis of failure/repair rates is 
concerned, the priority should be as follows: 
•	 Transfer laddle
•	 Continuous casting machine
•	 Shot blasting machine
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