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Abstract
This research modifies the GNAF (Generalized NAF), which is one of the signed-digit representations that have been used 
to speed up point multiplication in pairing-based cryptosystems. The hamming weight of MGNAF (Modified Generalized 
Non-Adjacent Form), which is proposed in this paper, is less than GNAF for radixes higher than 2 (in cost of a bigger digit 
set). Moreover, in radix 2 the hamming weight of MGNAF is as low as GNAF and the well-known NAF (Non-Adjacent Form) 
with the same digit set.
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1. Introduction
Modular exponentiation is one of the most expensive 
(time-consuming) operations in most of cryptosystems. 
For that reason, efficient algorithms to perform this oper-
ation are important in the performance of the resulting 
cryptographic protocols. Generally there are two types of 
exponentiations for computing gm. 

In the first type of exponentiation, the base g is fixed 
and just the exponent m varies, as it is in the ElGamal 
cryptosystem1,2. In that case, good performances are 
obtained by the basic square-and-multiply technique. 

The other type involves exponentiations with a fixed 
exponent m, such as in the RSA cryptosystem3,4. The goal 
is then to quickly compute gm for randomly chosen g. 

In this paper, we are mainly concerned with the first 
type of exponentiation. Another use of this type is when 
inverses can be virtually computed for free, like in elliptic 
curves5. The basic idea is to improve the efficiency of mul-
tiplication in this technique.

In order to achieve faster scalar multiplication, we 
have to exploit an efficient class of the radix-r representa-
tion, for example, by reducing the number of non-zero 
digits. The Generalized Non-Adjacent Form (GNAF) is 
known as an efficient class of radix-r representation6,7. The 
average density of non-zero digits (non-zero density) of 
the GNAF is asymptotically (r - 1) / (r +1) with (r - 1) pre-

computed points. For example, r = 3 attains 0.5 non-zero 
density with 2 pre-computed point. On the other hand, 
the non-zero density of the standard radix-r representa-
tion is (r−1) / r with the same pre-computed point (0.67 
for r = 3). Therefore, the GNAF is able to improve the 
efficiency of computing the paring based cryptosystem, 
especially scalar multiplication. In addition, another way 
that may help to achieve lower non-zero density could be 
choosing a larger digit set.

2.  Generalized Non-Adjacent 
Form (GNAF)

In this section some properties related to the GNAF rep-
resentation would be discussed.

An integer M is represented using the radix-r repre-
sentation, namely:

  (1)

This research denotes the radix-r representation of M by 
M = (Mn−1, ...., M1 , M0 ) and in that Mj is called the j-th 
digit and n is the digit length of the radix-r representation 
for M. Hamming Weight of the radix-r representation of 
M is the number of non-zero digits of it. The average ham-
ming weight of the radix-r representation is (r − 1) / r.
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It is called signed radix-r representation, if digit Mj be 
allowed to take a negative value (for example: Mj ∈ {0, ±1, 
..., ±(r − 1)}). In a binary signed-digit representation if no 
two adjacent digits are nonzero, it will be called canonical 
or for that reason, it is also called the nonadjacent form 
(NAF) of a number by some authors8.

Reitwiesner studied the canonical recoding9. He 
proved that this representation (NAF) is unique. But in 
general, the signed radix-r representation is not unique 
and an integer can have several signed representations. 
Ebeid and Hasan10 by using the facts that different repre-
sentations of M can be obtained by replacing 01 with 1  , 
0  with 1 and vice versa9, proposed an algorithm to gen-
erate all possible Binary Signed Digit representations of 
M in 2007. For instance, Figure 1 shows all binary signed 
representations of 13 with length of 5 bits.

Figure 1. All 5-bit signed digit representations of 1311.

The general case was later addressed by Clark and Liang6. 
They presented a minimal representation for any signed-
radix r. In that case, Amo and Wheeler12 proved that the 
average proportion of nonzero digits is equal to (r - 1)/
(r + 1). This should be compared with the average of the 
number of non-zero digits in the standard radix-r repre-
sentation which is (r - 1)/r.

The generalized non-adjacent form (GNAF) can rep-
resent each integer uniquely. GNAF is the signed radix-r 
representation which satisfied the following two condi-
tions.

 1- |Mi + Mi+1 | < r for all i,

 2- |Mi| < |Mi+1| if MiMi+1 < 0.

In case of r = 2, the definition is equal to the classical 
NAF for binary representation. GNAF has the minimal 
Hamming weight among all signed radix-r representation 
with digit set {0, ±1, ..., ±(r − 1)}6. 

GNAF, for radix-r representation of integer M, is gen-
erated by computing (r + 1)M – M, and in that the minus 

“–” is a digit-wise subtraction of (r + 1)M by M. This con-
struction is a generalization of Reitwiesner algorithm for 
generating nonadjacent form (NAF)13. Because there is 
a carry for computing the radix-r representation of (r + 
1)M, this algorithm is not computed in the left-to-right 
approach. Joye and Yen in7 proposed a left-to-right based 
algorithm for generating a signed radix-r representation 
which has same hamming weight and digit set as GNAF.

3. Proposed Work
The modified version of GNAF in this research is called 
MGNAF. The difference between GNAF and MGNAF 
lies on how they treat some consecutive same nonzero 
elements, which may appear in a big number. Although 
GNAF is only able to reduce the Hamming Weight of 
consecutive r-1s in a number, MGNAF is able to decrease 
the HW of any sequence of same nonzero elements. 

In GNAF recoding: 
When a sequence of n r-1s appears in a number of radix 
r, like:

 
 (2)

It will be changed to:

  (3)

The 1 at the beginning would be added to the next digit to 
the left of the sequence and  represents -1 in this num-
ber. The other sequences of any other nonzero element 
would remain untouched. For example a sequence of five 
3s in a number of radix 4 would be changed to (10000
)4 but a sequence of five 2s in a number of radix 4 would 
remain untouched. The reason is if 1 be added to (33333)4 
the result would be (100000)4, now that added 1 should 
be reduced. So the result will become (10000 )4 which is 
the same number as (33333)4 but with different formation 
and less Hamming Weight. 

On the other hand, MGNAF would reduce the ham-
ming weight of any sequence which is composed of one 
nonzero element. 

It will change 

 ( ) (4)



Arash Eghdamian and Azman Samsudin

Indian Journal of Science and Technology 3Vol 10 (39) | October 2017 | www.indjst.org 

to 

 ( ) (5)

In which the  would be added to the next digit to the 
left of the sequence. The mathematical explanation for 
this recoding, for an example of five x-es in radix r, is as 
below (x ≠ 0 and r ≠ 1):

 (x,x,x,x,x)r = (r-1,r-1,r-1,r-1,r-1)r (6)

 = (1,0,0,0,0, )r

 = (  ,0,0,0,0, )r

The following three-step algorithm applies on a standard 
radix-r integer and recodes it to a MGNAF representa-
tion. This algorithm uses the right-to-left approach so 
finding the left-to-right approach for this representation 
can be a topic for further studies.

Algorithm: Given integer M , | | < r, i = 
0,1,...,n , this algorithm computes MGNAF for M.

Step 1: Set  = 0.

Step 2: Do step 3 for i = 0,1,...,n; then the algorithm termi-
nates with M  as the MGNAF for M.

Step 3: If  ≠ 0, then consider the following cases:
1) . Set  =  and set Digit = . While 

 = Digit, set  = 0 and increase i by 1. After 
while loop set  =  +  .

2)  > 0 and  ≥ 0. If , then set 
 and set , if , 

, and , if .

3)  < 0 and  ≤ 0. If , then set 
 and set , if , 
, and , if .

4)  > 0 and  < 0. If , then set  
and set .

5)  < 0 and  > 0. If , then set  
and set .

4. Comparison
The GNAF representation, in order to improve the per-
formance of computing scalar multiplication, reduces the 
arithmetic weight. The GNAF achieves  non-zero den-
sity recoding while this number for MGNAF is lower, but 
the size of the digit set for MGNAF is larger.

Numerical details of these comparisons are provided 
in Table 1. The result is that the proposed MGNAF has 
better performance in implementing scalar multiplication 
with the cost of additional digits in its digit set. For prac-
tical applications, a noticeable computational speedup 
with only three additional pre-computed value is pos-
sible by selecting r = 3. In this case, a 0.4 non-zero density 
recoding is achieved for MGNAF. By using GNAF, a 0.5 
non-zero density recoding is obtained. 

Table 1. Comparison of GNAF and the proposed 
MGNAF

Radix Normal GNAF 
HW1

MGNAF 
HW1

Improvement2 

(%)

2 50 33.33 33.33 0
3 66.67 50 44.87 30.78
4 75 60 53.25 45
5 80 66.67 59.55 53.37
6 83.33 71.43 64.7 56.52
7 85.71 75 68.5 60.67
8 87.5 77.78 71.7 62.51
9 88.89 80 74.15 65.81

1Hamming Weight; 2MGNAF improvement compare to GNAF

According to the figures in Table 1, for radix 2 the ham-
ming weight of GNAF and MGNAF are both 33.33% 
(Same as NAF) where this for normal form is 50%. But 
with increasing the radix, the hamming weight of the 
numbers in MGNAF representation does not increase 
as it does in GNAF form. So the nonzero density of the 
numbers in MGNAF form is lower than same number in 
GNAF form.

Moreover, another advantage of MGNAF which is 
important is the impact of this representation on higher 
radixes in comparison with GNAF. As the radix goes 
higher MGNAF performs much better than GNAF and 
the impact of MGNAF form on the hamming weight 
increases in comparison with the GNAF improvement. 
For example, in radix 3, MGNAF can reduce the ham-
ming weight about 22% which is more than 30% better 
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than GNAF does (16.67% for GNAF) but this improve-
ment over GNAF increases to more than 65% for radix 
(Figure 2).

Figure 2. MGNAF over GNAF Improvement.
The additional digits in the MGNAF digit set are the 
result of the first part of the third step in its creation algo-
rithm. Therefore, we can calculate the number of these 
extra digits based on this step. As it has been mentioned 
before, a sequence of same non-zero numbers (here for 
example ) would change to  followed by 
n-1 zeros and  at the end, in which the  would be 
added to the digit before these consecutive x-es. As x ∈ 
{1, 2,..., r-1} so  Would have r-1 different results, but if 
we choose x = r-1,  would become 1 which is same as 
GNAF. So  will have r-2 new results and these results 
would be added to a digit from {0,1,...,r-1} which are r dif-
ferent numbers. In conclusion r(r-2) new digits would be 
created for MGNAF algorithm for radix r in comparison 
with GNAF(Table 2).

Table 2. Comparison of GNAF and the proposed 
MGNAF

Radix 2 3 4 5 6 7 8 9
Extra Digits* 0 3 8 15 24 35 48 63

* Note that the number of digits ignoring their sign was counted
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