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Abstract
This article concerns the relationship between intuitionistic fuzzy soft sets and groups. In this paper, the notion of intu-
itionistic fuzzy soft groups is introduced and (l, q )-level set, union and intersection of them are studied. Furthermore, 
definition of direct product of intuitionistic fuzzy soft group under soft function is defined.
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1. Introduction
The concept of soft set was given by Molodtsov [22], which 
is a completely new approach for modeling and uncertainty. 
A soft set is a parameterized family of subsets of the univer-
sal set. We can say that soft sets are neighborhood systems, 
and that they are a special case of  context- dependent fuzzy 
sets. In soft set theory the problem of setting the member-
ship function, among other related problems, simply does 
not arise. This makes the theory very convenient and easy 
to apply in practice. Aktas and Cagman [7] introduced the  
basic properties of soft sets. Jun [17] applied soft sets to the 
theory of BCK/ BCI- algebras, and introduced the concept 
of soft BCK/ BCI- algebras. Abdullah et al. [1–4] defined 
fuzzy sets in different algebraic structures. Yaqoob et al. 
[25] applied soft set theory to Γ-hyperideals in left almost 
Γ-semihypergroups, also see [26-28]. Feng et al. [15] 
defined soft semirings and several related notions to estab-
lish a connection between soft sets and semirings. Ali and 
Shabir [8] defined soft ideals and generalized fuzzy ideals 
in semigroups. Maji et al. [21] presented the definition of 
fuzzy soft set. Some corrections were given by Ali et al. [9]. 
Aygunoglu and Aygun [13] introduced the concept of fuzzy 
soft group and in the meantime, discuss some properties 

and structural characteristics of fuzzy soft group. Maji  
et al. [19, 20] introduced the notion of the intuitionistic 
fuzzy soft set theory which is based on a combination of 
the intuitionistic fuzzy set [10, 11] and soft set models.

Kim et al. [18] introduced the concept of intuitionis-
tic (T, S) normed fuzzy ideals of Γ-rings. Akram and Dar 
[5] introduced the idea of fuzzy left  h- ideal in hemirings 
with respect to an  s- norm. Zhan [29], studied the fuzzy 
left  h- ideals in hemirings with  t- norms. There are several 
authors who applied the theory of intuitionistic (S ,T)-fuzzy 
sets to different algebraic structures for instance, Akram 
[6], Aygunoglu et al. [12], Borumand Saeid and Rezaei 
[14], Hedayati [16] and Shum et al. [24].

In this paper, the notion of intuitionistic fuzzy soft 
groups is introduced and (l, q )-level set, union and inter-
section of them are studied.

2. Review of Literature
Molodtsov defined the notion of a soft set as follows. Let 
U be an initial universe and E be the set of parameters. 
Usually, parameters are attributes, characteristics or prop-
erties of an object. Let P(U ) denote the power set of U and 
A is a subset of E.
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Definition 2.1 [22] A pair (F, A) is called a soft set over U, 
where F is a mapping given by F A P U: ( ).→  In other words 
a soft set over U is a parameterized family of subsets of U.

Definition 2.2 [22] Two soft sets (F, A) and (G,B) over a 
common universe U are said to be soft equal if (F, A) is a soft 
subset of (G,B) and (G,B) is a soft subset of (F, A).

Definition 2.3 An intuitionistic fuzzy set A in X is an 
object having the form

A x x x x XA A= ( ) ∈{ }, ( ), ( ) : ,m g

where the function mA X: [ , ]→ 0 1  and gA X: ,→  0 1  denote 
the degree of membership and the degree of non-membership 
of each element x X∈ , and 0 1≤ + ≤m gA Ax x( ) ( )  for all x X∈ . 
For the sake of simplicity, we will use the symbol A A A= ( , )m g  
for the intuitionistic fuzzy set A x x x x XA A= ( ) ∈{ }, ( ), ( ) : .m g  
We define 0(x) = 0 and 1(x) = 1 for all x X∈ .

Definition 2.4 [10] Let A A A= ( )m g,  and B B B= ( )m g,  be 
intuitionistic fuzzy sets in a set S. Then

(1) A B⊆  if and only if m mA B≤  and g gA B≥ ,
(2) Ac

A A= ( )g m, ,
(3) A B A B A B∩ = ∧ ∨( )m m g g, ,
(4) A B A B A B∪ = ∨ ∧( )m m g g, ,
(5) A A A= ( )m m,  where m mA A= -1 ,

(6) ◊A A A= ( )g g,  where g gA A= -1 .

The class of all intuitionistic fuzzy sets in X will be denoted 
by IF (X).

Definition 2.5 Let U be an initial universe and E be the 
set of parameters. Let A ⊆ E. A pair (F̂, A) is called an intu-
itionistic fuzzy soft set over U, where F̂ is a mapping given by  
F̂ : A → IF(U).

In general, for every d Œ A. F̂[d] = ·mF̂[d], gF̂[d]Ò is an intu-
itionistic fuzzy set in U and it is called intuitionistic fuzzy 
value set of parameter δ.

Definition 2.6 Let U be an initial universe and E be a set 
of parameters. Suppose that A, B ⊆ E, (F̂, A) and (Ĝ, B) be 
two intuitionistic fuzzy soft sets, we say that (F̂, A) is an intu-
itionistic fuzzy soft subset of (Ĝ, B) if and only

(1) A Õ B,
(2) for all d Œ A, F̂[d] is an intuitionistic fuzzy subset of 

Ĝ[d], that is, for all x Œ U and d Œ A, mF̂[d](x) ≤ mĜ[d](x), 
and gF̂[d](x) ≥ gĜ[d](x). This relationship is denoted by  
(F̂, A) ⊆̂ (Ĝ, B).

Definition 2.7 Let (F̂, A) and (Ĝ, B) be two intuitionis-
tic fuzzy soft sets over a common universe U. Then (F̂, A) ∧̂  
(Ĝ, B) is defined by (F̂, A) ∧̂ (Ĝ, B) = (Ξ̂ , A ¥ B), where  
Ξ̂[d, e] = F̂[d] ∩ Ĝ[e] for all (d, e) Œ A ¥ B, that is,

Ξ̂[d, e] = · mF̂[d](x) ∧ mĜ[e](x), gF̂[d](x) ∨ gĜ[e](x)Ò,

for all (d, e) Œ A ¥ B, and x ŒU.

Definition 2.8 Let (F̂, A) and (Ĝ, B) be two intuitionis-
tic fuzzy soft sets over a common universe U. Then (F̂, A) ∨̂  
(Ĝ, B) is defined by (F̂, A) ∨̂ (Ĝ, B) = (Ω̂, A ¥ B), where 
Ω̂[d, e] = F̂[d] ∪ Ĝ[e] for all (d, e) Œ A ¥ B, that is,

Ω̂[d, e] = · mF̂[d](x) ∨ mĜ[e](x), gF̂[d](x) ∧ gĜ[e](x)Ò,

for all (d, e) Œ A ¥ B, and x ŒU.

Definition 2.9 Let (F̂, A) and (Ĝ, B) be two intuitionistic 
fuzzy soft sets over a common universe U. Then the inter-
section (Ξ̂ , C), where C A B= ∪  and for all d ∈C and x U∈ ,
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We denote it by (F̂, A)  (Ĝ, B) = (Ξ̂ , C).

Definition 2.10 Let (F̂, A) and (Ĝ, B) be two intuitionistic 
fuzzy soft sets over a common universe U. Then the union 
(˘ , ),Ξ C  where C A B= ∪  and for all d ∈C and x U∈ ,
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We denote it by (F̂, A)  (Ĝ, B) = (Ξ̂ , C).
In contrast with the above definitions of  IF- soft set 

union and intersection, we may sometimes adopt different 
definitions of union and intersection given as follows.
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Definition 2.11 Let (F̂, A) and (Ĝ, B) be two  IF- soft 
sets over a common universe U and A B∩ ≠ f. Then the 
 bi- intersection of (F̂, A) and (Ĝ, B) is defined to be the fuzzy 
soft set (Ξ̂ , C), where C A B= ∩  and Ξ̂[d] = F̂[d] ∩ Ĝ[d], for 
all d ∈C. This is denoted by (Ξ̂ , C) = (F̂, A) ∩̂ (Ĝ, B).

Definition 2.12 Let (F̂, A) and (Ĝ, B) be two  IF- soft sets 
over a common universe U and A B∩ ≠ f. Then the  bi- union 
of (F̂, A) and (Ĝ, B) is defined to be the fuzzy soft set (Ξ̂ , C), 
where C A B= ∩  and Ξ̂[d] = F̂[d] ∪ Ĝ[d], for all d ∈C. This 
is denoted by (Ξ̂ , C) = (F̂, A) ∪̂ (Ĝ, B).

Definition 2.13 Let A A A= ( , )m g  be an intuitionistic fuzzy 
set. For arbitrary l q, [ , ],∈ 0 1  let the set

 A x X x xA A( , ) { : ( ) , ( ) },l q m l g q= ∈ ≥ ≤ ,

then A(l, q ) is called a (l, q )-level set of A.

Definition 2.14 [23] By a  t- norm ∆, we mean a function 
∆ :[ , ] [ , ] [ , ]0 1 0 1 0 1× →  satisfying the following conditions

(1) x ∆ 1 = x
(2) x ∆ y = y ∆ x
(3) x ∆ ( y ∆ z) = (x ∆ y) ∆ z
(4) if w ≤ x and y ≤ z then w ∆ y ≤ x ∆ z

for all x, y, z, w Œ[0,1].

Definition 2.15 [23] By an  s- norm ∇, we mean a function 
∇ × →:[ , ] [ , ] [ , ]0 1 0 1 0 1  satisfying the following conditions

(1) x x∇ =0
(2) x y y x∇ = ∇
(3) x y z x y z∇ ∇ = ∇ ∇( ) ( )
(4) if w x≤  and y z≤  then w y x z∇ ≤ ∇

for all x y z w, , , [ , ].∈ 0 1

Definition 2.16 [23] A mapping h :[ , ] [ , ]0 1 0 1→  is called a 
negation if it satisfies

(1) h h( ) , ( )0 1 1 0= = .
(2) h is  non- increasing.
(3) h h( ( ))x x= .

for all x ∈[ , ].0 1
The most frequently used negation is x x→ -1 .

Remark 2.17 [23] The  t- norm and  s- norm are said to be 
dual with respect to the negation h ( ) ,x x= -1  if

x y x y∇ = h h h( ( ) ( ))∆ .

This holds with respect to h if and only if x y x y∆ = ∇h h h( ( ) ( )).

If for all x ∈[ , ],0 1  x x x∆ =  and x x x∇ = , then ∆ is 
called an idempotent  t- norm and ∇ is called an idempotent 
 t- conorm. There are many examples of  t- norms. Among 
the most known, we recall the following:

1. minimum: x y x yM∆ = min( , );
2. product: x y x yP∆ = ⋅ ;
3. Lukasiewics  t- norm: x y x y∆ = + -max{ , };1 0
4. drastic product: x yD∆ = 0, if ( , ) [ , )x y ∈ 0 1 2 and 

x y x yD∆ = min( , ) otherwise.

3. Intuitionistic Fuzzy Soft Groups
In this section, we introduce the concept of intuitionistic 
fuzzy soft groups and investigate some related properties. 
Throughout the paper G will denote a classical group.

Definition 3.1 Let (F̂, A) be an intuitionistic fuzzy soft set 
over a group G. Then (F̂, A) = {F̂[d]: d Œ A} is said to be an 
intuitionistic fuzzy soft group over G if for all d Œ A, F̂[d] = 
·mF̂[d], gF̂[d]Ò is an intuitionistic fuzzy subgroup of G, where 
F̂[d] is a mapping given by F̂[d]: G → [0, 1].

Definition 3.2 Let G be a classical group and (F̂, A) be an 
intuitionistic fuzzy soft set over G. Then (F̂, A) is called an 
intuitionistic fuzzy soft group over G if it satisfies

(1) mF̂[d](x · y) ≥ mF̂[d](x) ∆ mF̂[d](y) and gF̂[d](x · y) ≤ gF̂[d](x) ∇ 
gF̂[d](y),

(2) mF̂[d](x) = mF̂[d](x-1) and gF̂[d](x) = gF̂[d](x-1),

for all x y G, ∈  and d ∈A.

Example 3.3 Let G e x y z= { , , , } be the group with the 
binary operation defined below:

⋅ e x y z
e e x y z
x x z e y
y y e z x
z z y x e

Let A = { , , , }d e k x  be the set of parameters. For each para-
meter d Œ A, F̂[d] is an intuitionistic fuzzy subgroup of G, 
where F̂[d] is a mapping given by F̂[d]: G → [0, 1]. For each 
parameter we define

F e x y

z

ˆ[ ] , . , . , , . , . , , . , . ,

, . , . ,

d = {
}

0 65 0 34 0 75 0 25 0 71 0 22

0 67 0 32

  

FF e x y

z

ˆ[ ] , . , . , , . , . , , . , . ,

, . , .

e = {
}

0 88 0 12 0 83 0 11 0 71 0 19

0 75 0 21

  

,,

[ ] , , , . , , . , . , , . , . ,

, . , .

F e x y

z

ˆ k = { 0 72 0 21 0 69 0 31 0 84 0 16

0 79 0 19

  

}}
= {

,

[ ] , . , . , , . , . , , . , . ,

, . , .

F e x y

z

ˆ x 0 69 0 31 0 58 0 41 0 62 0 32

0 71 0 2

  

77 }.
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F e x y

z

ˆ[ ] , . , . , , . , . , , . , . ,

, . , . ,

d = {
}

0 65 0 34 0 75 0 25 0 71 0 22

0 67 0 32

  

FF e x y

z

ˆ[ ] , . , . , , . , . , , . , . ,

, . , .

e = {
}

0 88 0 12 0 83 0 11 0 71 0 19

0 75 0 21

  

,,

[ ] , , , . , , . , . , , . , . ,

, . , .

F e x y

z

ˆ k = { 0 72 0 21 0 69 0 31 0 84 0 16

0 79 0 19

  

}}
= {

,

[ ] , . , . , , . , . , , . , . ,

, . , .

F e x y

z

ˆ x 0 69 0 31 0 58 0 41 0 62 0 32

0 71 0 2

  

77 }.

Corresponding  t- norm and  s- norm are defined as

a b a b a b a b∆ = + - ∇ = +max{ , } min{ , },1 0 1  and  

for all a b, [ , ].∈ 0 1  Each F̂[d] satisfies the conditions of intu-
itionistic fuzzy subgroup of G. Hence ( , ) { [ ] : }F A F Aˆ ˆ= ∈d d  
is an  IF- soft group over G.

Theorem 3.4 An  IF- soft set (F̂, A) over G is an  IF- soft group over 
G if and only if for all d ∈A, m m md d dF F Fx y x yˆ ˆ ˆ[ ] [ ] [ ]( ) ( ) ( )⋅ ≥-1 ∆  

and g g gd d dF F Fx y x yˆ ˆ ˆ[ ] [ ] [ ]( ) ( ) ( )⋅ ≤ ∇-1  for every x y G, .∈

Proof. Suppose that (F̂, A) be an  IF- soft group over G.  
By definition we have

m m m m m
d d d d dF F F F F

x y x y x yˆ ˆ ˆ ˆ ˆ[ ] [ ] [ ] [ ] [ ]
( ) ( ) ( ) ( ) ( ),⋅ ≥ =- -1 1∆ ∆

and

g g g g g
d d d d dF F F F F

x y x y x yˆ ˆ ˆ ˆ ˆ[ ] [ ] [ ] [ ] [ ]
( ) ( ) ( ) ( ) ( ).⋅ ≤ ∇ = ∇- -1 1

This implies that m m md d dF F Fx y x yˆ ˆ ˆ[ ] [ ] [ ]( ) ( ) ( )⋅ ≥-1 ∆  and 

g g gd d dF F Fx y x yˆ ˆ ˆ[ ] [ ] [ ]( ) ( ) ( )⋅ ≤ ∇-1  for every x y G, ∈  and d ∈A.

Conversely, let m m m
d d dF F F

x y x yˆ ˆ ˆ[ ] [ ] [ ]
( ) ( ) ( )⋅ ≥-1 ∆  and 

g g g
d d dF F F

x y x yˆ ˆ ˆ[ ] [ ] [ ]
( ) ( ) ( )⋅ ≤ ∇-1  for every x y G, ∈  and d ∈A.  

We show that for each d ∈A, F
F F

ˆ
ˆ ˆ[ ] ,
[ ] [ ]

d m g
d d

= 〈 〉 is an 

 IF- subgroup of G. Since

m m m m
d d d dF F F F

e x e x xˆ ˆ ˆ ˆ[ ] [ ] [ ] [ ]
( ) ( ) ( ) ( ),⋅ ≥ = -∆ 1

and

g g g g
d d d dF F F F

e x e x xˆ ˆ ˆ ˆ[ ] [ ] [ ] [ ]
( ) ( ) ( ) ( ),⋅ ≤ ∇ = -1

for all x G∈  by supposition. This implies that 
m md dF Fx xˆ ˆ[ ] [ ]( ) ( )≥ -1  and g g

d dF F
x xˆ ˆ[ ] [ ]

( ) ( )≤ -1  but then

m m m m
d d d dF F F F

e x e x xˆ ˆ ˆ ˆ[ ] [ ] [ ] [ ]
( ) ( ) ( ) ( ),⋅ ≥ =-1 ∆

and

g g g g
d d d dF F F F

e x e x xˆ ˆ ˆ ˆ[ ] [ ] [ ] [ ]
( ) ( ) ( ) ( ).⋅ ≤ ∇ =-1

This implies that m m
d dF F

x xˆ ˆ[ ] [ ]
( ) ( )- ≥1  and 

g g
d dF F

x xˆ ˆ[ ] [ ]
( ) ( ).- ≤1  Thus we have m m

d dF F
x xˆ ˆ[ ] [ ]

( ) ( )- =1  

and g g
d dF F

x xˆ ˆ[ ] [ ]
( ) ( )- =1  for all x G∈  and d ∈A.  

Finally we show that m m m
d d dF F F

x y x yˆ ˆ ˆ[ ] [ ] [ ]
( ) ( ) ( )⋅ ≥ ∆  and 

g g g
d d dF F F

x y x yˆ ˆ ˆ[ ] [ ] [ ]
( ) ( ) ( ).⋅ ≤ ∇  Since

m m m m m
d d d d dF F F F F

x y x y x yˆ ˆ ˆ ˆ ˆ[ ] [ ] [ ] [ ] [ ]
( ) ( ) ( ) ( ) ( )⋅ ≥ =- -1 1∆ ∆ ,

and

g g g g g
d d d d dF F F F F

x y x y x yˆ ˆ ˆ ˆ ˆ[ ] [ ] [ ] [ ] [ ]
( ) ( ) ( ) ( ) ( ).⋅ ≤ ∇ = ∇- -1 1

This implies that m m m
d d dF F F

x y x yˆ ˆ ˆ[ ] [ ] [ ]
( ) ( ) ( )⋅ ≥ ∆  and 

g g g
d d dF F F

x y x yˆ ˆ ˆ[ ] [ ] [ ]
( ) ( ) ( )⋅ ≤ ∇  for all x y G, .∈  This completes 

the proof. 

Theorem 3.5 Let (F̂, A) be an  IF- soft group over  
G and x G∈ . Then for all d ∈A, m md dF Fx y yˆ ˆ[ ] [ ]( ) ( )⋅ =  and 
g g

d dF F
x y yˆ ˆ[ ] [ ]

( ) ( )⋅ =  for every y G∈  if m md dF Fx eˆ ˆ[ ] [ ]( ) ( )=  and 

g g
d dF F

x eˆ ˆ[ ] [ ]
( ) ( ).=

Theorem 3.6 Let (F̂, A) and (Ĝ, B) be two  IF- soft groups 
over G. Then so are ( , ) ( , )F A G Bˆ ˆ ˆ∧  and ( , ) ( , ).F A G Bˆ ˆ ˆ∩

Proof. We know that ( , ) ( , ) ( , ),F A G B A Bˆ ˆ ˆ ˆ∧ = ×Ξ  where 
Ξ̂ ˆ ˆ[ , ] [ ] [ ]d e d e= ∩F G  for all ( , ) ,d e ∈ ×A B  that is,

Ξ̂ ˆ ˆ ˆ ˆ[ , ] ( ) ( ), ( ) ( ) ,
[ ] [ ] [ ] [ ]

d e m m g g
d d d d

= ∧ ∨〈 〉
F F F F

x x x x

for all ( , ) .d e ∈ ×A B  Now for any ( , ) ,d e ∈ ×A B  since (F̂, A) 

and (Ĝ, B) are  IF- soft groups over G, for all x y G, ∈  and 
( , ) ,d e ∈ ×A B  we have

( )( ) ( ) ( )
{ ( )

[ ] [ ] [ ] [ ]

[ ]

m m m m
m m

d e d e

d

F G F G

F F

x y x y x y
x

ˆ ˆ ˆ ˆ

ˆ

∧ ⋅ = ⋅ ∧ ⋅
≥ ∆ ˆ̂ ˆ ˆ

ˆ ˆ ˆ

[ ] [ ] [ ]

[ ] [ ]

( )} { ( ) ( )}
{ ( ) ( )} {

d e e

d e

m m
m m m

y x y
x x

G G

F G F

∧
= ∧

∆
∆ [[ ] [ ]

[ ] [ ] [ ] [ ]

( ) ( )}
( )( ) ( )( ),

d e

d e d e

m
m m m m

y y
x y

G

F G F G

∧
= ∧ ∧

ˆ

ˆ ˆ ˆ ˆ∆

also

 

( )( ) ( ) ( )

( )
[ ] [ ] [ ] [ ]

[ ]

m m m m

m m
d e d e

d

F G F G

F G

x x x

x
ˆ ˆ ˆ ˆ

ˆ ˆ

∧ = ∧

= ∧

- - -1 1 1

[[ ] [ ] [ ]
( ) ( )( ),

e d e
m mx x

F G
= ∧ˆ ˆ

and
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[ ] [ ] [ ] [ ]
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g g g g
g g

d e d e

d

F G F G

F F

x y x y x y
x
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ˆ
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≤ ∇ ˆ̂ ˆ ˆ
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d e e

d e

g g
g g g
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x x

G G

F G F

∨ ∇
= ∨ ∇ [[ ] [ ]

[ ] [ ] [ ] [ ]

( ) ( )}
( )( ) ( )( )},

d e

d e d e

g
g g g g

y y
x y

G

F G F G

∨
= ∨ ∇ ∨

ˆ

ˆ ˆ ˆ ˆ

( )( ) ( ) ( )
{ ( )

[ ] [ ] [ ] [ ]

[ ]

g g g g
g g

d e d e

d

F G F G

F F

x y x y x y
x

ˆ ˆ ˆ ˆ

ˆ

∨ ⋅ = ⋅ ∨ ⋅
≤ ∇ ˆ̂ ˆ ˆ

ˆ ˆ ˆ

[ ] [ ] [ ]

[ ] [ ]

( )} { ( ) ( )}
{ ( ) ( )} {

d e e

d e

g g
g g g

y x y
x x

G G

F G F

∨ ∇
= ∨ ∇ [[ ] [ ]

[ ] [ ] [ ] [ ]

( ) ( )}
( )( ) ( )( )},

d e

d e d e

g
g g g g

y y
x y

G

F G F G

∨
= ∨ ∇ ∨

ˆ

ˆ ˆ ˆ ˆ

also

 

( )( ) ( ) ( )

( )
[ ] [ ] [ ] [ ]

[ ]

g g g g

g g
d e d e

d

F G F G

F G

x x x

x
ˆ ˆ ˆ ˆ

ˆ ˆ

∨ = ∨

= ∨

- - -1 1 1

[[ ] [ ] [ ]
( ) ( )( ).

e d e
g gx x

F G
= ∨ˆ ˆ

This shows that ( , ) ( , )F A G Bˆ ˆ ˆ∧  is an  IF- soft group over 

G. The proof of ( , ) ( , )F A G Bˆ ˆ ˆ∩  is similar to the proof of 
( , ) ( , )F A G Bˆ ˆ ˆ∧ .

Theorem 3.7 Let (F̂, A) and (Ĝ, B) be two  IF- soft groups 
over G. Then so are ( , ) ( , )F A G Bˆ ˆ ˆ∨  and ( , ) ( , ).F A G Bˆ ˆ ˆ∪

Proof. We know that ( , ) ( , ) ( , ),F A G B A Bˆ ˆ ˆ ˆ∨ = ×Ξ  where 
Ξ̂ ˆ ˆ[ , ] [ ] [ ]d e d e= ∪F G  for all ( , ) ,d e ∈ ×A B  that is,

Ξ̂ ˆ ˆ ˆ ˆ[ , ] ( ) ( ), ( ) ( ) ,
[ ] [ ] [ ] [ ]

d e m m g g
d e d e

= ∨ ∧〈 〉
F G F G

x x x x

for all ( , ) .d e ∈ ×A B  Now for any ( , ) ,d e ∈ ×A B  since (F̂, A) 
and (Ĝ, B) are  IF- soft groups over G, for all x y G, ∈  and 
( , ) ,d e ∈ ×A B  we have

( )( ) ( ) ( )

{ ( )
[ ] [ ] [ ] [ ]

[ ]

m m m m

m m
d e d e

d

F G F G

F F

x y x y x y

x
ˆ ˆ ˆ ˆ

ˆ

∨ ⋅ = ⋅ ∨ ⋅

≥ ∆ ˆ̂ ˆ ˆ

ˆ ˆ ˆ

[ ] [ ] [ ]

[ ] [ ]

( )} { ( ) ( )}

{ ( ) ( )} {
d e e

d e

m m

m m m

y x y

x x
G G

F G F

∨

= ∨

∆

∆
[[ ] [ ]

[ ] [ ] [ ] [ ]

( ) ( )}

( )( ) ( )( ),
d e

d e d e

m

m m m m

y y

x y
G

F G F G

∨

= ∨ ∨
ˆ

ˆ ˆ ˆ ˆ∆

also

 

( )( ) ( ) ( )

( )
[ ] [ ] [ ] [ ]

[ ]

m m m m

m m
d e d e

d

F G F G

F G

x x x

x
ˆ ˆ ˆ ˆ

ˆ ˆ

∨ = ∨

= ∨

- - -1 1 1

[[ ] [ ] [ ]
( ) ( )( ),

e d e
m mx x

F G
= ∨ˆ ˆ

and

( )( ) ( ) ( )

{ ( )
[ ] [ ] [ ] [ ]

[ ]

g g g g

g g
d e d e

d

F G F G

F F

x y x y x y

x
ˆ ˆ ˆ ˆ

ˆ

∧ ⋅ = ⋅ ∧ ⋅

≤ ∇ ˆ̂ ˆ ˆ

ˆ ˆ ˆ

[ ] [ ] [ ]

[ ] [ ]

( )} { ( ) ( )}

{ ( ) ( )} {
d e e

d e

g g

g g g

y x y

x x
G G

F G F

∧ ∇

= ∧ ∇
[[ ] [ ]

[ ] [ ] [ ] [ ]

( ) ( )}

( )( ) ( )( ),
d e

d e d e

g

g g g g

y y

x y
G

F G F G

∧

= ∨ ∇ ∨
ˆ

ˆ ˆ ˆ ˆ

also

( )( ) ( ) ( )

( )
[ ] [ ] [ ] [ ]

[ ]

g g g g

g g
d e d e

d

F G F G

F G

x x x

x
ˆ ˆ ˆ ˆ

ˆ ˆ

∧ = ∧

= ∧

- - -1 1 1

[[ ] [ ] [ ]
( ) ( )( ).

e d e
g gx x

F G
= ∧ˆ ˆ

This shows that ( , ) ( , )F A G Bˆ ˆ ˆ∨  is an  IF- soft group over 
G. The proof of ( , ) ( , )F A G Bˆ ˆ ˆ∪  is similar to the proof of 
( , ) ( , ).F A G Bˆ ˆ ˆ∨

Theorem 3.8 Let (F̂, A) and (Ĝ, B) be two  IF- soft groups 
over G. Then so is ( , ) ( , ).F A G Bˆ ˆ∩

Proof. We know that ( , ) ( , ) ( , ),F A G B Cˆ ˆ ˆ∩ = Ξ  where 
C A B= ∪ . Now for any d ∈C and x y G, ,∈  we consider the 
following cases

Case 1: For any d ∈ -A B, we have

m m m m

m m
d d d d

d

Ξ

Ξ Ξ

∆

∆
ˆ ˆ ˆ ˆ

ˆ ˆ

[ ] [ ] [ ] [ ]

[ ] [

( ) ( ) ( ) ( )

( )

x y x y x y

x
F F F

⋅ = ⋅ ≥

=
dd]
( ),y

also m m m m
d d d dΞ Ξˆ ˆ ˆ ˆ[ ] [ ] [ ] [ ]

( ) ( ) ( ) ( ),x x x x
F F

- -= = =1 1  and

g g g g

g g
d d d d

d

Ξ

Ξ Ξ

ˆ ˆ ˆ ˆ

ˆ ˆ

[ ] [ ] [ ] [ ]

[ ] [

( ) ( ) ( ) ( )

( )

x y x y x y

x
F F F

⋅ = ⋅ ≤ ∇

= ∇
dd]
( ),y

also g g g g
d d d dΞ Ξˆ ˆ ˆ ˆ[ ] [ ] [ ] [ ]

( ) ( ) ( ) ( ).x x x x
F F

- -= = =1 1

Case 2: For any d ∈ -B A, we have

m m m m

m m
d d d d

d

Ξ

Ξ Ξ

∆

∆
ˆ ˆ ˆ ˆ

ˆ ˆ

[ ] [ ] [ ] [ ]

[ ] [

( ) ( ) ( ) ( )

( )

x y x y x y

x
G G G

⋅ = ⋅ ≥

=
dd ]

( ),y

also m m m m
d d d dΞ Ξˆ ˆ ˆ ˆ[ ] [ ] [ ] [ ]

( ) ( ) ( ) ( ),x x x x
G G

- -= = =1 1  and

g g g g
g g

d d d d

d

Ξ

Ξ Ξ

ˆ ˆ ˆ ˆ

ˆ ˆ

[ ] [ ] [ ] [ ]

[ ] [

( ) ( ) ( ) ( )
( )

x y x y x y
x

G G G⋅ = ⋅ ≤ ∇
= ∇ dd ]( ),y

also g g g gd d d dΞ Ξˆ ˆ ˆ ˆ[ ] [ ] [ ] [ ]( ) ( ) ( ) ( ).x x x xG G
- -= = =1 1

Case 3: For any d ∈ ∩A B, we have m m
d eF Gˆ ˆ[ ] [ ]

∩  and 
g g

d eF Gˆ ˆ[ ] [ ]
.∪  Analogous to the proof of Theorem 3.6, we have

 m m m g gd d d d dΞ Ξ Ξ Ξ Ξ∆ˆ ˆ ˆ ˆ ˆ[ ] [ ] [ ] [ ] [ ]( ) ( ) ( ) ( ) ( )x y x y x y x⋅ ≥ ⋅ ≤ ∇ and gg dΞ̂[ ]( ),y

also m m
d dΞ Ξˆ ˆ[ ] [ ]

( ) ( )x x- =1  and g g
d dΞ Ξˆ ˆ[ ] [ ]

( ) ( ).x x- =1 . Thus 

in any case we have m m m
d d dΞ Ξ Ξ

∆ˆ ˆ ˆ[ ] [ ] [ ]
( ) ( ) ( )x y x y⋅ ≥  and 

g g g
d d dΞ Ξ Ξˆ ˆ ˆ[ ] [ ] [ ]

( ) ( ) ( ).x y x y⋅ ≤ ∇  Thus ( , ) ( , )F A G Bˆ ˆ∩  is an 

 IF- soft group over G. 

Theorem 3.9 Let (F̂, A) and (Ĝ, B) be two  IF- soft groups 

over G. Then so is ( , ) ( , ).F A G Bˆ ˆ∪

Definition 3.10 The necessity operation on an intuitionistic 
fuzzy soft set (F̂, A) is denoted by ❑ (F̂, A) and is defined as
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( , ) , ( ), ( ) : .{ }
[ ] [ ]

F A x x x x G A
F F

ˆ
ˆ ˆ= ∈ ∈〈 〉m m d

d d
 and 

Here m
dF

xˆ[ ]
( ) is the fuzzy membership degree that object x 

holds on parameter d, m
dF̂[ ]

 is the fuzzy membership degree 
that object x does not hold on parameter d, and F̂ is a map-
ping F A IF Gˆ : ( ).→

Definition 3.11 The possibility operation on an intuitionis-
tic fuzzy soft set (F̂, A) is denoted by ◊( , )F Aˆ  and is defined as

◊ = ∈ ∈〈 〉
◊ ◊

( , ) , ( ), ( ) : .{ }
[ ] [ ]

F A x x x x G A
F F

ˆ
ˆ ˆg g d

d d
 and 

Here g d◊F xˆ[ ]( ) is the fuzzy membership degree that object x 
does not holds on parameter d, g d◊F xˆ[ ]( ) is the fuzzy mem-
bership degree that object x hold on parameter d, and F̂ is a 
mapping F A IF Gˆ : ( ).→

Theorem 3.12 Let (F̂, A) be an  IF- soft group over a group 
G. Then

(1) ( , )F Aˆ  is an  IF- soft group over a group G,
(2) ◊( , )F Aˆ  is an  IF- soft group over a group G.

Proof. (1) Let (F̂, A) be an  IF- soft group over a group G 
and let for any x y G, ∈  and d ∈A, we have

m m

m m

h m

d d

d d

 

 



F F

F F

x y x y

x y
ˆ ˆ

ˆ ˆ

[ ] [ ]

[ ] [ ]

( ) ( )

{ ( ) ( )}

{

⋅ = - ⋅

≤ -

=

1

1 ∆

FF F

F F

F

x y

x y
ˆ ˆ

ˆ ˆ

ˆ

[ ] [ ]

[ ] [ ]

[

( ) ( )}

( ( )) ( ( ))

(

d d

d d

m

h m h m

m

∆


 



= ∇

= -1
dd d

d d

m

m m
] [ ]

[ ] [ ]

( )) ( ( ))

( ) ( ),

x y

x y
F

F F

∇ -

= ∇

1


 

ˆ

ˆ ˆ

also

m m m m
d d d d   F F F F

x x x xˆ ˆ ˆ ˆ[ ] [ ] [ ] [ ]
( ) ( ) ( ) ( ).- -= - = - =1 11 1

Hence (F̂, A) is an  IF- soft group over G.
(2) The proof is similar to the proof of (1). 

Theorem 3.13 Let G be a classical group and (F̂, A) be an 
 IF- soft set over G. Then (F̂, A) is  IF- soft group over G iff for 
arbitrary l q, [ , ],∈ 0 1  if F̂[ ] ,( , )d fl q ≠  then ( , )( , )F Aˆ

l q  is a soft 
group over G.

Proof. Let (F̂, A) be an  IF- soft group over G and 
x y F, [ ] ,( , )∈ ˆ d l q  for arbitrary l q, [ , ]∈ 0 1  and d ∈A. Then, we 
have m l

dF
xˆ[ ]

( ) ,≥  g q
dF

xˆ[ ]
( ) ≤  and m ldF yˆ[ ]( ) ,≥ , g q

dF
yˆ[ ]

( ) .≤  
Since (F̂, A) is an  IF- soft group over G, then we have

 m m m l l l
d d dF F F

x y x yˆ ˆ ˆ[ ] [ ] [ ]
( ) ( ) ( ) ,⋅ ≥ ≥ =∆ ∆

and

 g g g q q q
d d dF F F

x y x yˆ ˆ ˆ[ ] [ ] [ ]
( ) ( ) ( ) .⋅ ≤ ∇ ≤ ∇ =

Therefore, x y F⋅ ∈ ˆ[ ] .( , )d l q  Furthermore m m l
d dF F

x xˆ ˆ[ ] [ ]
( ) ( )- = ≥1  

m m l
d dF F

x xˆ ˆ[ ] [ ]
( ) ( )- = ≥1  and g g q

d dF F
x xˆ ˆ[ ] [ ]

( ) ( ) .- = ≤1  So x F- ∈1 ˆ[ ] .( , )d l q  
Hence ( , )( , )F Aˆ

l q  is a soft group over G. Conversely, suppose 
that,

 
m m m gd d d dF F F Fx y x y x yˆ ˆ ˆ ˆ[ ] [ ] [ ] [ ]( ) ( ) ( ) (0 0

1
0 0 0 0⋅ /≥ ⋅- -∆   and  11

0 0) ( ) ( ),[ ] [ ]/≤ ∇g gd dF Fx yˆ ˆ

 
m m m gd d d dF F F Fx y x y x yˆ ˆ ˆ ˆ[ ] [ ] [ ] [ ]( ) ( ) ( ) (0 0

1
0 0 0 0⋅ /≥ ⋅- -∆   and  11

0 0) ( ) ( ),[ ] [ ]/≤ ∇g gd dF Fx yˆ ˆ

for x y G0 0, ∈  and d ∈A. Let us assume that, m m m
d d dF F F

x y x yˆ ˆ ˆ[ ] [ ] [ ]
( ) ( ) ( ).

0 0
1

0 0
⋅ /≥- ∆ 

m m m
d d dF F F

x y x yˆ ˆ ˆ[ ] [ ] [ ]
( ) ( ) ( ).

0 0
1

0 0
⋅ /≥- ∆  This implies

 m m m
d d dF F F

x y x yˆ ˆ ˆ[ ] [ ] [ ]
( ) ( ) ( ).

0 0
1

0 0
⋅ <- ∆

Let m ldF xˆ[ ]( ) ,0 1=  m ldF yˆ[ ]( ) ,0 2=  and m l
dF

x yˆ[ ]
( ) .

0 0
1

3
⋅ =-   

If we take l l l= 1 2∆ , then x y F0 0
1⋅ /∈- ˆ[ ] .( , )d l q  For each q,

 m l l l l
dF

xˆ[ ]
( ) ,

0 1 1 2
= ≥ =∆

and

 m l l l l
dF

yˆ[ ]
( ) .

0 2 1 2
= ≥ =∆

But by choosing q, satisfying the condition g q
dF

xˆ[ ]
( )

0
≤  

and g q
dF

yˆ[ ]
( ) ,

0
≤  we have x y F0 0, [ ] .( , )∈ ˆ d l q  This contradict 

with the fact that ( , )( , )F Aˆ
l q  is a soft group over G. In case 

g g g
d d dF F F

x y x yˆ ˆ ˆ[ ] [ ] [ ]
( ) ( ) ( ),

0 0
1

0 0
⋅ /≤ ∇-  we can obtain this result 

in similar way.

Theorem 3.14 Let (F̂, A) and (Ĝ, B) be two  IF- soft groups 
over G. Then

(1) (( , ) ( , )) ( , ) ( , ) ,( , ) ( , ) ( , )F A G B F A G Bˆ ˆ ˆ ˆ ˆ ˆ∩ = ∩l q l q l q

(2) (( , ) ( , )) ( , ) ( , ) ,( , ) ( , ) ( , )F A G B F A G Bˆ ˆ ˆ ˆ ˆ ˆ∪ = ∪l q l q l q

(3) (( , ) ( , )) ( , ) ( , ) ,( , ) ( , ) ( , )F A G B F A G Bˆ ˆ ˆ ˆ∩ ∩l q l q l q=

(4) (( , ) ( , )) ( , ) ( , ) .( , ) ( , ) ( , )F A G B F A G Bˆ ˆ ˆ ˆ∪ ∪l q l q l q=

Proof. (1) Let (F̂, A) and (Ĝ, B) be two  IF- soft groups over 
G and A B∩ ≠ f. We know that ( , ) ( , ) ( , ),Ξ̂ ˆ ˆ ˆC F A G B= ∩  
where C A B= ∩  and Ξ̂ ˆ ˆ[ ] [ ] [ ]d d d= ∩F G  for all d ∈C. Now 
for any d ∈C and x G∈ , we have
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⇔ ≤
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( )
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d d l q

d d

d

ˆ ˆ

ˆ ˆ

ˆ  orr g q

g g
d

d l q d l q

G

F G

x

x
ˆ

ˆ ˆ

[ ]

[ ] ( , ) [ ] ( , )

( )

( ) ( ) .

≤

⇔ ∈ ∪

This shows that (( , ) ( , )) ( , ) ( , ) .( , ) ( , ) ( , )F A G B F A G Bˆ ˆ ˆ ˆ ˆ ˆ∩ = ∩l q l q l q

The proofs of (2), (3) and (4) are similar to the proof  
of (1). ❑

4. Cartesian Product of 
Intuitionistic Fuzzy Soft Groups
In this section, we define cartesian product of  IF- soft groups 
and investigate some related properties.

Definition 4.1 Let (F̂, A) and (Ĝ, B) be two intuitionistic 
fuzzy soft sets over G1 and G2 , respectively. Then the cartesian 
product of  IF- soft sets (F̂, A) and (Ĝ, B) is defined as

 ( , ) ( , ) ( , ),F A G B P A Bˆ ˆ ˆ⊗ = ×

where P F G F G F G
ˆ ˆ ˆ

ˆ ˆ ˆ ˆ[ , ] [ ] [ ] , ,[ ] [ ] [ ] [ ]d J d J m gd J d J= × = 〈 〉× ×  for all 
( , )d J  ∈ A B× .

Here m m md J d JF G F Gx y x yˆ ˆ ˆ ˆ[ ] [ ] [ ] [ ]( , ) ( ) ( )× = ∧  and g g g
d J d JF G F G

x y x yˆ ˆ ˆ ˆ[ ] [ ] [ ] [ ]
( , ) ( ) ( )

×
= ∨ 

g g g
d J d JF G F G

x y x yˆ ˆ ˆ ˆ[ ] [ ] [ ] [ ]
( , ) ( ) ( )

×
= ∨  for all ( , )x y G G∈ ×1 2 and ( , )d J   

∈ A B× .

Definition 4.2  An intuitionistic fuzzy soft set ( , ) ( , )F A G Bˆ ˆ⊗  
over G G1 2×  is called an intuitionistic fuzzy soft group over 
G G1 2×  if it satisfies

(1) m

m m
d J

d J d

F G

F G F G

x y x y

x y
ˆ ˆ

ˆ ˆ ˆ

[ ] [ ]

[ ] [ ] [ ]

(( , ) ( , ))

( , )
×

× ×

⋅ ≥
1 1 2 2

1 1
∆ ˆ̂[ ]

( , );
J

x y
2 2

(2) g

g g
d J

d J d

F G

F G F G

x y x y

x y
ˆ ˆ

ˆ ˆ ˆ

[ ] [ ]

[ ] [ ] [ ]

(( , ) ( , ))

( , )
×

× ×

⋅ ≤

∇
1 1 2 2

1 1 ˆ̂ [ ]
( , );

J
x y

2 2

(3)  m m
d J d JF G F G

x y x yˆ ˆ ˆ ˆ[ ] [ ] [ ] [ ]
( , ) (( , ) )

× ×
-=

1 1 1 1
1

 and g g
d J d JF G F G

x y x yˆ ˆ ˆ ˆ[ ] [ ] [ ] [ ]
( , ) (( , ) ),

× ×
-=

1 1 1 1
1

g g
d J d JF G F G

x y x yˆ ˆ ˆ ˆ[ ] [ ] [ ] [ ]
( , ) (( , ) ),

× ×
-=

1 1 1 1
1

for all ( , ),( , )x y x y G G1 1 2 2 1 2∈ ×  and ( , )d J  ∈ A B× .

Theorem 4.3 Let (F̂, A) and (Ĝ, B) be two intuitionistic 
fuzzy soft groups over G1 and G2, respectively. Then the car-
tesian product ( , ) ( , )F A G Bˆ ˆ⊗  is an intuitionistic fuzzy soft 
group over G G1 2× .

Proof. Let (F̂, A) and (Ĝ, B) be two intuitionistic fuzzy  
soft groups over G1 and G2, respectively. For any 
( , ),( , )x y x y G G1 1 2 2 1 2∈ ×  and ( , )d J  ∈ A B× . We have
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Hence this shows that ( , ) ( , )F A G Bˆ ˆ⊗  is an intuitionistic 
fuzzy soft group over G G1 2× .
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5. Conclusion
In this paper, we introduced the notion of the intuitionistic 
fuzzy soft groups and we studied this structure. In addition, 
we provided relationship between intuitionistic fuzzy soft 
groups and ( , )l q -level subsets. Finally, we proved some 
results on direct product of intuitionistic fuzzy soft groups 
under soft functions.
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