
Indian Journal of Science and Technology, Vol 10(3), DOI: 10.17485/ijst/2017/v10i3/110622 January 2017
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

* Author for correspondence

1. Introduction

Computer technology has evolved with various
architectures since the birth of the first generation of
computers around the 1940s until now and people are
always looking for ways to improve the performance
of computer1. An instruction pipeline is a technique
often used in the design of modern microprocessors,
microcontrollers and CPUs to increase their instruction
throughput per unit time1,2.

Pipelining is a standard feature in Reduced Instruction
Set Computing (RISC) processors analogous to a
manufacturing plant assembly line. This is because the
processor works on different steps of the instruction at
the same time and more instructions can then be executed

in a shorter period of time3. Pipelining is implemented
through RISC processor rather than in Complex
Instruction Set Computing (CISC) processor. Pipelining
has proved to be more efficient as traditional instruction
cycle leads to waste of CPU resources as instructions may
include other services such as read/write from/to memory,
storage or input/output devices, and CPU becomes idle at
this time. This will prolong the latency of an instruction
as well as the throughput of a program. As computer
systems evolve, greater performances are achieved by
taking advantage of improvements in technology, such
as faster circuitry and organizational enhancements such
as adding instruction pipelining to the processor1,4–6. By
implementing pipelining, the processing of instructions
is overlapped as illustrated in Figure 1, meaning while

Abstract
In modern computing, multitasking is the most favorable aspect. An un-pipelined instruction cycle (fetch-execute cycle)
CPU processes instructions one after another increasing duration at lesser speed in completing tasks. With pipelined
computer architecture, unprecedented improvement in size and speed are achievable. This work investigates the possibility
of a better improvement to computer architecture through understanding the inner workings of instruction pipelining
in operating system. A design of a 5 stage pipelined architecture simulator for RiSC-16 processors using Visual Basic
programming has been achieved contrary to the common available four stage simulators. The simulator also future two
most common pipeline instruction hazards generally missing in most available simulators. Thus, the designed simulator
becomes an appropriate tool for understanding the concept of pipelining on a step-by-step visualization based instruction-
cycle processors hence facilitating a more efficient design in computer architecture. The simulator has been evaluated
based on its closeness to real time pipelined computer architecture and through execution of all 8 basic RiSC-16 instruction
set with data dependency and control hazard.

Keywords: Computer Processor & Architecture, Instruction Pipelining, RiSC-16 Simulator

Design and Implementation of a Five Stage
Pipelining Architecture Simulator for

RiSC-16 Instruction Set
Rashidah F. Olanrewaju1*, Fawwaz E. Fajingbesi1, S. B. Junaid2,

Ridzwan Alahudin1, Farhat Anwar1 and Bisma Rasool Pampori3

1Department of Electrical and Computer Engineering, IIUM, Malaysia; frashidah@iium.edu.my,
fawwazfajingbesi@yahoo.com, wanxneo89@gmail.com, farhat@iium.edu.my

2Department of Electrical and Computer Engineering, Ahmadu Bello University, Zaria;
abuyusra@gmail.com

3Department of Information Technology, Central University of Kashmir,
Srinagar–190015, Jammu and Kashmir, India

Vol 10 (3) | January 2017 | www.indjst.org Indian Journal of Science and Technology2

Design and Implementation of a Five Stage Pipelining Architecture Simulator for RiSC-16 Instruction Set

the first instruction is in the decode stage; the second
instruction is fetched. When the first instruction is in the
execute stage, the second instruction moves to the decode
stage and another instruction, instruction 3 is fetched.
The first instruction is complete only after three cycles.
Subsequently, an instruction is completed on every cycle.

Figure 1. Fetch-execute cycle with pipelining.

This differs from a non-pipelined system shown in
Figure 2 where three cycles are required per instruction.

Figure 2. Un-pipelined fetch-execute cycle.

Note that however beautiful pipelining may sound,
there are situations where the next set of instruction
cannot execute in the next clock cycle. The situation
isusually termed hazards. There are three basic types
of hazards which include structural, data and control
hazards7. Understanding the hazard and how they affect
processor operations would increase overall efficiency of
such systems hence the need for a simulator design.

As seen in 19978 a pipeline simulator for the DLX
processor known as WinDLX software was created. It
was a MS-Windows (16 bit) based pipeline simulator
written in C++. The simulator model and design was on
Hennessy-Patterson’s DLX at the architectural level. It was
intended for educational purpose to help visualize the
concept of instruction pipelining.

Other implementation of pipeline simulation was
include ModelSim simulator and Xilinx ISE tool software2.
They divided pipelining into four sub stages such as fetch,
decode, execute, store using Verilog HDL to design each
stage of pipelining. The technology schematics for each

stage were presented and by using this technique, a user
could gain better understanding of the internal workings
of a processor. However, the user is required to possess
special skills in order to simulate pipelining in ModelSim
and Xilinx tool.

Similar work on pipeline simulator was using
Java programming with a specific focus on student
interactivity9. They chose RiSC-16 processor because it is
simple, complete and has been designed for educational
purposes. Their system offered user the ability to define
its own programs in assembly language and the ability
to see graphically the corresponding internal dynamic
behavior of the processor.

Subsequently, other design have future like web-
simulation model capable of exploring the state-space
defined by a Unified Parallel Model and simulator7,10. They
stated that the simulator could be used as a calculator,
deterministically calculating speedups given input
parameters. The Unified Parallel Model and simulator
can be used to explore the continuity of parallel speedup
possibilities allowing users to explore different computer
architectures with hardware support at any or all of five
levels of parallelism, from intra-instruction (pipeline)
through a distributed n-tier client/server system. The
tool developed supports the simulation of various user-
configurable architectures and interconnection networks,
running a user-configurable and variable workload.

The rest of this work is organized as follows: Section
II presents the methodology, Section III results and
discussion while Section IV and V are conclusion and
references respectively.

2. Methodology

The focus of this work is on a 5-stage pipeline simulator
design and implementation for a RiSC-16 instruction
set processor. Figures 3 and 4 are examples of five-stage
pipeline architecture.

Figure 3. Five stage pipeline model11.

Rashidah F. Olanrewaju, Fawwaz E. Fajingbesi, S. B. Junaid, Ridzwan Alahudin, Farhat Anwar and Bisma Rasool Pampori

Vol 10 (3) | January 2017 | www.indjst.org Indian Journal of Science and Technology 3

Figure 4. Five stages pipelined11.

The designed algorithm is simple yet novel as it
offers not only user-friendliness but also detail features
required for understanding and visualizing the concept
of pipelining instruction cycle. Features offered include
Data and control Hazards with their solutions, multiple
methods for instruction supply and translations making it
unique amongst its pairs. The system can be broken down
into five stages performing the following functions, which
include Instruction fetch (IM), Decode with Register read
(REG), Execute (ALU), Data Memory (DM) and Register
write (REG).

2.1 Design and Algorithm of Components
Algorithm
For CLOCK

For the timer in VB.net which alternates between true
and false: positive and negative clock pulses. Boolean
variable:

IF clocksig is false then clocksig = true
ELSE IF clocksig is true then clocksig = false
Controlling the five stages and the 5 latches
IFclocksig is true; call all the functions of the five

stages and the five latches

For LATCH
Five latches represented by set of rich textbox. All

of these latches will update their values when there is
positive clock pulse. Each latch may contain different
numbers of values:

PC: contains program counter value (the address of
an instruction that will be fetched). The value will be
updated by an increment of a value provided by stage 2.

L1 contains an instruction that has been fetched by
IM stage

L2 contains the operand that is to be executed at ALU
and the memory access signal

L3 contains the result of the ALU operation together
with register address and the memory access

L4 contains a value that will be stored into a register
together with the register address

An adder in which the increment is set to one by
default controls the value of PC.

While, for L1 to L4, functions latch*() will copy the
output from their respective stages at every positive clock
pulse where * represents 1-4.

For STAGES
FOR Instruction Fetch
Set default output: “0000000000000000”
Only fetch if the PC is less than number of program

memory or the program will stop.
Skip stage if the program memory slot at address given

by PC contains nothing
Increment PC if an instruction is fetched
FOR Decode ®Read
Set default outputs to zeros
Skip if previous stage has not fetched any instruction
Set default PC increment to 1
Set default multiplexers control signal values (for

bypassing data dependencies)
Read the first 3bits from an instruction string as

opcode
Get the address of register A (3bits) from an instruction

(except for BEQ operation)
Identify the operation of the instruction based on the

opcode:
“000” or “010” (add or nand)
“001” or “100” or “101” (addi or sw or lw)
“011” (lui)
“110” (beq)
“111” (jalr)
Check for dependency (*only if user ticked bypassing

/forwarding in hazard group box)
Write the meaning of the instruction in “Operation:”

rich textbox
IF “000” or “010” (add or nand)
Get the address of register B (3bits) and address of

register C (3bits) from instruction code
Get the values of register B and register C
Set output of stage 2:

Vol 10 (3) | January 2017 | www.indjst.org Indian Journal of Science and Technology4

Design and Implementation of a Five Stage Pipelining Architecture Simulator for RiSC-16 Instruction Set

Output0: “00” (addition) /”01” (Nand)
Output1:regB value in decimal
Output2: regC value in decimal
Output3: regA address
Output4: 0 (no Data Memory Access)
Dependency: Check if there are registers B and C in

latch 2 or 3, if yes then set the multiplexer input to the next
latch that will be the output of the respective registers.
Exception for register with address “0”

IF “001” or “100” or “101” (addi or sw or lw)
Get the address of register B from instruction code
Get the value of signed immediate from the instruction

code
Get the value of register B
Set the output of stage 2:
Output0: 00(add)
Output1: regB value in decimal
Output2: signed Imm value in decimal
Output3: regA address/ regA value (for sw operation)
Output4:
= 0 for “001” (addi) operation -no Data Memory stage)
= 1 for “100” (sw) operation-from memory to register)
= -1 for “101” (lw) operation-from register to memory)
*Dependency: Check for register B content in latch 2

or 3, if yes then set the multiplexer input to the next latch
that will be the output of the respective register. Exception
for register r0

IF “011” (lui)
Get the value of unsigned immediate (10 bits) from

instruction code
Set the output of stage 2:
Output0: “10” (and)
Output1: unsigned immediate value in decimal
Output2: &HFFC0
Output3: regA address
Output4: 0 (no Data Memory stage)
IF “110” (beq)
Get the address of register B
Get the value of register B and register A
Get the value of signed Imm
*Dependency: Check if there are registers A and B in

latch 2, 3, or 4,
IF True, then replace register(s) value based on

statement below (except for register r0):
IF register is in latch 2 then the latest value will be in

stage 3 output
IF register is in latch 3 then the latest value will be in

latch 3 output

IF register is in latch 4 then the latest value will be in
latch 4 output

Perform Branch-if-equal operation:
If Ra = Rb Then ‘beq operation (branch if equal), change

the PC increment to signed Imm value
Set stage 2 outputs to default.
IF “111” (jalr)
Get the address of register B
Get the value of register B, register A and latch (PC-1)
*Dependency: Check for register B content in latch

2 or 3, if yes then set the multiplexer input to the next
latch which will be the output of the respective register.
Exception for register

Store the address of the jalr operation (PC-1) to register
A and PC and move PC to register B value

Set the output of stage 2 to default.
FOR ALU-perform logic and mathematical operation
Get the operands from the multiplexers
Get the address of register A and operation code from

latch 2
Perform operation for the given operation code:
IF 00: operand1 + operand2
IF 01: Not (operand1 and operand2)
IF 10: operand1 and operand2
Set the outputs of stage 3:
Output0: result of the operation
Output1: register A
Output2: Output4 of stage 2.
Data Memory-perform memory access
Get third output of latch 3
Perform operation based on the output as follow:
IF “0” (dummy), Pass the other two outputs to the

next latch
Output0 of stage 4 = Output0 of latch 3
Output1 of stage 4 = Output1 of latch 3
IF “1” (get data from memory)
Output0 of stage 4 = dataMemory [ouput0 of latch 3]
Output1 of stage 4 = Output1 of latch 3
IF “-1” (store data to memory)
dataMemory [ouput0 of latch 3] = Output1 of latch 3
Set the output of stage 4 to zeros
FOR RegWrite- write the result into specified register
Get the outputs of latch 4
Store outputs of latch 4 into register r [output1 of latch 4]

For PROGRAM MEMORY
Represent instructions code of 16-bits in binary

format

Rashidah F. Olanrewaju, Fawwaz E. Fajingbesi, S. B. Junaid, Ridzwan Alahudin, Farhat Anwar and Bisma Rasool Pampori

Vol 10 (3) | January 2017 | www.indjst.org Indian Journal of Science and Technology 5

Array of textbox which form 40 textboxes in total
Addresses are in decimal format
16-bit addressing

For DATA MEMORY
Present 16-bits data in binary format
Array of textbox that form 10 textboxes in total
Addresses are in decimal format
16-bit addressing

For REGISTER
Use to store data of 16-bits in binary format
Array of textbox that form 8 textboxes in total
Addresses are in decimal format
16-bit addressing
The register 0 is read-only and contains the null value

For MISCELLANEOUS
“Hazard” group box: allow user to choose whether to

use dependency checker or not
“Buttons”
“RUN”: activate/deactivate Clock that controls the

pipeline system.
“Reset Program”: reset latches and stages input/output

to default
“Write New”: open a new form for user to write set of

instructions.
“Load”: open a txt file to be loaded into program

memory.
“Clear”: reset the simulation to default.
“Operation” richtextbox: provide translation of each

instruction to the user view
toDecimal() function: convert binary number to

decimal format
toBinary() function: convert decimal number to

binary
mux1() and mux2() functions: act as multiplexer

between latches to provide input to stage 3(ALU) which
for dependency hazard solution.

3. Result and Discussion

The designed simulator user interface and data input
screenshot are Figures 5and 6 respectively. The simulator
evaluation was majorly to test the response to data hazard,
control hazard and combination of all 8 basic RiSC-16
Instructions set and its results are shown in Figures 7–12.
The operations and code are been given below.

For Data Hazard evaluation:
Perform addition of operands:

 addi 1, 0, 4 addi 2, 0, 5 add 1, 1, 2 add 3, 2, 1

Translate as:
R1 should contain 4+5 = 9: [1001B]
R3 should contain 9+5 = 13: [1110B]
Data dependency between:

 addi 2, 0, 5 and add 1, 1, 2
add 1, 1, 2 and add 3, 2, 1

First solution: stall/nop operation –increase IPC
Second solution: bypassing/forwarding

•	 Implement multiplexers which are control by Decode
stage

•	 Checking dependency by comparing operands’
registers with previous store-to register at each latch

•	 Set the multiplexer to correspond latest value of the
operand(s)

For Control Hazard evaluation
Branch operation:

 addi 1, 0, 2 addi 2, 0, -1 addi 3, 0, 3 beq 1, 0, 4
add 0, 0, 0 add 1, 1, 2 jalr 7, 3 add 0, 0, 0
add 7, 0, 2

Translate as:
r1 = 2, r2 = -1, r3 = 3
While r1 not equal r0,
do r1= r1+r2
End while
r0+r2→ r7
Decrement r1 by one until it equals to zero and finally

adds r2 to r7
•	 Instruction after branch operation will be fetched and

executed even if the condition is true or false
To avoid any false execution, branch-delay slot

method is applied at compiler and the slots are filled with
“nop” operations.

For Combination of all 8 basic instructions:
addi 1, 0, 5 addi 2, 0, -3 add 3, 1, 1 add 5, 2, 2
add 3, 3, 1 add 5, 5, 2 add 3, 3, 1 nand 5, 5, 5
add 3, 3, 1 addi 5, 5, 1 add 4, 3, 3 add 6, 5, 5
add 6, 6, 5 add 7, 6, 4 sw 7, 0, 3 lui 1, 77
addi 2, 0, -1 addi 3, 0, 19 lw 4, 0, 3 beq 4, 1, 5
add 0, 0, 0 add 4, 4, 2 jalr 6, 3 add 0, 0, 0
add 0, 0, 0 sw 2, 0, 0.

Vol 10 (3) | January 2017 | www.indjst.org Indian Journal of Science and Technology6

Design and Implementation of a Five Stage Pipelining Architecture Simulator for RiSC-16 Instruction Set

Translates as:
Perform 2x2 + 3y2 with x = 5 and y = -3
Store the result in data memory at location 3.

Decrement the result until it equals 64
Then store to R2 value to data memory at location 0

Figure 5. Main user interface of the simulator.

Figure 6. “Write New Instruction” window.

Rashidah F. Olanrewaju, Fawwaz E. Fajingbesi, S. B. Junaid, Ridzwan Alahudin, Farhat Anwar and Bisma Rasool Pampori

Vol 10 (3) | January 2017 | www.indjst.org Indian Journal of Science and Technology 7

Figure 7. Operation with occurrence of data dependency.

Figure 8. Operation with bypassing method.

Figure 9. Register values before the “beq” operations.

Figure 10. Register values after all operations.

Figure 11. Registers and data memory after computation.

Figure 12. Registers and data memory after completion of
all instructions.

4. Conclusion

This research has presented a novel design and
implementation for a pipeline instruction set simulator
using Visual Basic. The simulator offers visualization
hence proper understanding of the concept and processes
involved in pipelined instruction cycle for a RiSC-16
processor. It is capable of simulating and solving data
dependency and control hazard experienced in real
processors which is lacking in most available simulators
as ascertained by review; and is however a key component
in pipeline concept. The solutions to this hazard are also
within the simulator. When users implement bypassing
and branch delay techniques to counter hazards, the
process can be visualized within the simulator. The
designed simulator is also equipped to operate at three

Vol 10 (3) | January 2017 | www.indjst.org Indian Journal of Science and Technology8

Design and Implementation of a Five Stage Pipelining Architecture Simulator for RiSC-16 Instruction Set

different clock speeds, accept up to forty instructions at
once in three different user friendly ways (ASM, Text and
Predefined Template), thereby providing its user with the
best learning environment for computer architecture and
processor pipelining.

5. Acknowledgement

This work was partially supported by Ministry of Higher
Education Malaysia (Kementerian Pendidikan Tinggi)
grants under numbers FRGS15-254-0495 and RIGS16-
084-0248.

Table 1. Literature review summary
Author Method Merits and Comment
Current work Built using Visual

Basic programming
for RiSC16 processor
architecture

•	 Simple design concept

•	 User-friendly with no professional
skills required as instruction set
can be in plain text, ASM or RiSC
key word

•	 Five stage pipeline for higher
efficiency

•	 Capable of Simulating Data and
control Hazards with their
solutions

•	 Fully capable of handling 5 stage
pipelined architecture of RiSC-16
Processor

•	 Capable of handling up to 40
instructions

•	 Visualization for better
understanding of pipeline concept

•	 Perfect for educational purpose

Rakesh et al.2 Built Using Verilog HDL
on a predesigned utility
simulator (ModelSim)
and Xilinx ISE tools

•	 Modelled at architecture level

•	 Intended for educational purposes

•	 Requires professional skill to
operate

•	 Simulates through pre-published
software as no dedicated simulator
was built from scratch.

•	 Designed with focus on handling
four stage pipelining

•	 No provision for executing and
handling hazards which are crucial
in understanding and perfecting
pipeline concept

Oséeet al.9 Built Using Java for
RiSC16 processor archi-
tecture

•	 Designed from scratch

•	 Capable of only 4-stage pipelined
architecture of RiSC16 processor

•	 Intended for educational purposes

•	 No provision for executing and
handling hazards which are crucial
in understanding and perfecting
pipeline concept

Hongansonset al.7,10 Built a Web based simu-
lation model

•	 Complex design

•	 Supports multiple architecture

•	 Capable of handling five stage
pipelining

•	 Speed calculation capabilities

•	 Intended for educational purposes

•	 No provision for executing and
handling hazards which are crucial
in understanding and perfecting
pipeline concept

Grünbacheret al.8 Built Using C++
programming for DLX
processor (WinDlx) in
MS-Windows (16 bit)

•	 Target at pipeline simulator for the
DLX processor (WinDlx)

•	 Modelled at architecture level

•	 Intended for educational purpose

•	 No provision for executing and
handling hazards which are crucial
in understanding and perfecting
pipeline concept

Rashidah F. Olanrewaju, Fawwaz E. Fajingbesi, S. B. Junaid, Ridzwan Alahudin, Farhat Anwar and Bisma Rasool Pampori

Vol 10 (3) | January 2017 | www.indjst.org Indian Journal of Science and Technology 9

6. References
1. Rakesh MR, Ajeya B, Mohan AR. Novel architecture of 17

bit address RISC CPU with pipelining technique using Xil-
inx in VLSI Technology. International Journal of Engineer-
ing Research and Applications.2014; 4(5):116–121.

2. Rakesh MR.Design and simulation of four stage pipelining
architecture using the Verilog. International Journal of Sci-
ence and Research. 2014; 3(3):108–12.

3. Rana S, Mehra R. Design &simulation of RISC processor
using hyper pipelining technique. IOSR Journal of Mechan-
ical and Civil Engineering (IOSR-JMCE). 2013; 9(2):49–57.

4. Trivedi P. Design &analysis of 16 bit RISC processor us-
ing low power pipelining. 2015 International Conference
on Computing, Communication & Automation (ICCCA);
2015:1294–7.

5. Finlayson I, Uh GR, Whalley DB, Tyson G. An overview
of static pipelining. IEEE Computer Architecture Letters.
2012; 11(1):17–20.

6. Cheah HY, Fahmy SA, Kapre N. Analysis and optimization
of a deeply pipelined FPGA soft processor. 2014 Interna-
tional Conference on Field-Programmable Technology
(FPT); 2015. p. 235–8.

7. Hoganson KE. High-performance computer architecture
and algorithm simulator. Journal on Educational Resources
in Computing. 2002; 2(1):131–48.

8. Grunbacher H. Teaching computer architecture/organisa-
tion using simulators. 28th Annual Frontiers in Education
Conference, FIE’98. Treitlstrasse Vienna Austria. 1998;
3:1107–12.

9. Osée M, Richard A, Biest AV, Mathys P. Educational simu-
lation of the RiSC processor. International Conference on
Engineering Education(ICEE 2007); 2007.

10. Hoganson K. The unified parallel speedup model and sim-
ulator. Southeast Regional ACM Conference; 2001. p. 1–23.

11. Balasubramonia R. CS6810 computer architecture. Univer-
sity of Utah: Youtube; 2012.

12. Jacob PB. The pipelined RiSC-16. ENEE 446: Digital Com-
puter Design, Fall 2000; 2000. p. 1–9.

	page52
	page53
	page54
	page55
	page56
	page57

