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Abstract 
In this article, we introduce the homology group of the dynamical trefoil knot. Also the homology group of the limit dynam-
ical trefoil knot will be achieved. The knot group of the limit dynamical sheeted trefoil knot is presented. The dynamical 
trefoil knots of variation curvature and torsion of manifolds on their homology groups are deduced. Theorems governing 
these relations are obtained.
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1. Introduction and Background
Homology theory is the axiomatic study of the  intuitive 
geometric idea of homology of cycles on topological spaces, 
to any topological space X and any natural number n;  
one can associate a set H Xn( ), whose elements are called 
(n- dimensional) homology classes. There is a well-defined 
way to add and subtract homology classes, which makes 
H Xn( ) into an abelian group, called the n-th  homology group 
of X. In heuristic terms, the size and structure of H Xn( ) gives 
information about the number of n- dimensional holes in 
X. For example, if X is a figure eight, then it has two holes, 
which in this context count as being one-dimensional. The 
corresponding homology group H X1( ) can be identified 
with the group Z Z⊕   of pairs of integers, with one copy of 
Z for each hole. While it seems very straightforward to say 
that X has two holes, it is surprisingly hard to formulate this 
in a mathematically rigorous way; this is a central purpose 
of homology theory.
A singular n-simplex is a continuous mapping sn from the 
standard n-simplex ∆n to a topological space X. Notationally, 
one writes  sn

n X: ∆ → . This mapping need not be injec-
tive, and there can be non-equivalent  singular simplices 
with the same image in X. The boundary of sn

n( )∆  denoted 

as ∂ ∆n n
n( ( ))s , is defined to be the formal sum of the sin-

gular (n–1)-simplices represented by the  restriction of s 
to the faces of the standard n-simplex, with an alternat-
ing sign to take orientation into account. A formal sum 
is an element of the free abelian group on the simpli-
ces. Thus, if we designate the range of sn by its  vertices 
[ , , , ]=[ ( ), ( ), , ( )]0 1 0 1p p p e e en n n n n s s s  corresponding to 
the vertices ek  of the standard n-simplex ∆n (which of course 
does not fully specify the standard simplex image produced 
by sn, then ∂ ∆ ∑ − − +n n

n
n

k

k
k k np p p p( ( )) = ( 1) [ , , , , , ]

=0
0 1 1s    is a 

formal sum of the faces of the simplex image designated 
in a specific way. That is, a particular face has to be the 
image of sn applied to a designation of a face of ∆n which 
depends on the order that its vertices are listed. Thus, for 
example, the boundary s[p p0 1, ] (a curve going from P0 
to P1 is the formal sum or “formal difference” [ ]1p −[ ]0p . 
Singular chain complex, the usual construction of singular 
 homology  proceeds by defining formal sums of simplices, 
which may be understood to be elements of a free abelian 
group, and then showing that we can define a certain group, 
the  homology group of the topological space, involving 
the boundary operator. Consider first the set of all pos-
sible  singular n-simplices sn

n( )∆  on a topological space X. 
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This set may be used as the basis of a free abelian group, 
so that each sn

n( )∆  is a generator of the group. This set of 
generators is of course usually infinite, frequently uncount-
able, as there are many ways of mapping a simplex into a 
typical topological space. The free abelian group generated 
by this basis is commonly denoted as C Xn( ). Elements of 
C Xn( ) are called singular n-chains; they are formal sums of 
singular simplices with integer coefficients. In order for the 
theory to be placed on a firm foundation, it is commonly 
required that a chain be a sum of only a finite number 
of  simplices. The boundary ∂ is readily extended to act 
on singular n-chains. The extension, called the boundary 
operator, written as ∂ → −n n nC C: 1 is a homomorphism of 
groups. The boundary operator, together with the Cn form a 
chain complex of abelian groups, called the singular com-
plex. It is often denoted as ( ( ), )C X• •∂  or more simply C X•( ).  
The kernel of the boundary operator is Z Xn n( ) = ( )ker ∂ , 
and is called the group of singular n-cycles. The image of 
the boundary operator is B X imn n( ) = ( )1∂ + , and is called the 
group of singular n-boundaries. It can also be shown that
∂ ∂ +n n 1 = 0. The n-th homology group of X is then defined 
as the factor group H X Z X B Xn n n( ) = ( )/ ( ). The elements of 
H Xn( ) are called homology classes [1-3, 5, 11–15].

Dynamical systems theory is an area of mathematics 
used to describe the behavior of complex dynamical systems, 
usually by employing differential equations or difference 
equations. When differential equations are employed, the 
theory is called continuous dynamical systems. When dif-
ference equations are employed, the theory is called discrete 
dynamical systems. When the time variable runs over a set 
which is discrete over some intervals and continuous over 
other intervals or is any arbitrary time-set such as a cantor 
set then one gets dynamic equations on time scales. Some 
situations may also be modeled by mixed operators such as 
differential-difference equations. A dynamical system in the 
space X is a function q f p t= ( , ) which assigns to each point 
p of the space X and to each real numbert, ∞ ∞< <t  a definite 
point q X∈  and possesses the following three  properties:

a- Initial condition : f p p( ,0) =  for any point p X∈ .
b-  Property of continuity in both arguments simultane-

ously :

 
lim p p t t f p t f p t→ →

0 0 0 , 0
( , ) = ( )

c- Group property f f p t t f p t t( ( , ), ) = ( , )1 2 1 2+  [4,6-9,16].

The trefoil knot is the simplest example of a nontrivial 
knot. The trefoil can be obtained by joining together the two 
loose ends of a common overhand knot, resulting in a  knotted 

loop. As the simplest knot, the trefoil is  fundamental to the 
study of mathematical knot theory, which has diverse appli-
cations in topology, geometry, physics, and chemistry [10]. 
Given spaces X and Y with chosen points x X0 ∈  and y Y0 ∈ ,  
then the wedge sum X Y∨  is the quotient of the disjoint union 
X Y∪  obtained identifying x0 and y0 to a single point [13].

2. Main Result
Theorem 1. Let K be a trefoil knot then there are two types 
of dynamical trefoil knot D K K ii : , =1,2 ,→  D K Ki ( ) ,≠  
which induces dynamical trefoil knot D H K H Ki n n: ( ) ( )→  
such that D H Ki n( ( ))  is a free abelian group of rank ≤ 4 .

Proof. Let D K K1 : →  be a dynamical trefoil knot 
such that D K1( )  is dynamical crossing i.e. the point 
of upper arc crossing touch the point of lower cross-
ing, where D c p1 1( ) =  as in Figure 1(a) then we have  the 
induced dynamical trefoil knot D H K H K1 1 1( ) ( ): →  
such that D H K H D K H S H S1 1 1 1 1 1

1
1 2

1( ( )) = ( ( )) ( ) ( ),≈ ⊕  thus  
 ( ( ))1 1D H K Z Z≈ ⊕ , so D H K1 1( ( )) is a free  abelian 
group of rank =2. Also, if D K K1 : →  such that 
D c p D b p1 1 1 2( ) = , ( )= , as in Figure 1(b) then 
D H K H D K H S H S H S1 1 1 1 1 1

1
1 2

1
1 3

1( ( )) = ( ( )) ( ) ( ) ( )≈ ⊕ ⊕  and so  
D H K1 1( ( )) is a free abelian group of rank =3.  
Moreover ,if D K K1 : →  such that D c p D b p1 1 1 2( ) = , ( ) = , 
D a p1 3( ) = ,  as in Figure 1(c) thus D H K H D K1 1 1 1( ( )) = ( ( )) ≈  
H S H S H S H S1 1

1
1 2

1
1 3

1
1 4

1( ) ( ) ( ) ( ),⊕ ⊕ ⊕ hence D H K1 1( ( )) is a  
free abelian group of rank = 4. Also, we get the induced 
dynamical trefoil knot D1:H K H K0 0( ) ( )→  such that 
D H K H D K Z1 0 0 1( ( )) = ( ( )) .≈ . Now for n ≥ 2 we can get D1: 
H K H Kn n( ) ( )→  such that D H K H D Kn n1 1( ( )) = ( ( )) = 0.
There is another type D K K2 : →  such that D K2( ) 
is dynamical trefoil knot with singularity as in Figure 1(d)  
then we obtain the induced  dynamical trefoil knot  
D H K H K nn n2 : ( ) ( ), 0→ ≠  such that D H K H Dn n2 2( ( )) = (  
( )) = 0.K  Moreover, we get D H K H K2 0 0: ( ) ( )→  such that 
D H K H D K Z2 0 0 2( ( )) = ( ( )) .≈

Theorem 2. The Homology group of the limit  dynamical 
trefoil knot is a free abelian group of rank ≤1. 

Proof. Let D K K1 1: → ,
D D K D K2 1 1 2: ( ) ( ),...,→

D D D D K D D D Km m m m m m: ( ) ( ( ) ( ) ( ( )1 2 1 1 2 1− − − −→  )

such that lim )
n m mD D D K

→∞ −( ( ) ( ( ) )1 1  is a point as in 
Figure 2 (a,b) ,then

H D D D K for nn m m m( ( ( ) ( ( ) )) = 0, 11 1lim )
→∞ − ≥ 

, and

H D D D K Z
m m m0 1 1( ( ( ) ( ( ) ) ) .lim )

→∞ − ≈   Hence, H Dn m m( (lim
→∞

( ) ( ( ) ))1 1D D Km−   is a free abelian group of rank ≤1.
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Theorem 3. There are different types of  dynamical link 
graph L which represent a trefoil knot ,where D L L( ) ≠  such 
that H D Ln( ( ))  is a free abelian group of rank ≤3.

Proof. Let L be a link graph which represent a 
 trefoil knot and consider the following dynamical 
edges  D e a D f c D g b( ) = , ( ) = , ( ) =  as in Figure 3(a) then 
H D L H S1 1

1( ( )) ( )≈  and so H D L1( ( )) is a free  abelian group of 
rank 1. Now, if D e e D f f D g g( ) , ( ) , ( )≠ ≠ ≠  as in Figure 3(b)
we get the same result. Also, if D e e D f f D g g( ) = , ( ) = , ( )  ≠  

as in Figure 3(c) then, H D L H S H S H S1 1 1
1

1 2
1

1 3
1( ( )) ( ) ( ) ( )≈ ⊕ ⊕ ,

thus H D Ln( ( )) is a free abelian group of rank 3. Moreover, 
if D e e D f f D g g( ) = , ( ) , ( )≠ ≠  as in Figure 3(d) then 
H D L H S H S1 1 1

1
1 2

1( ( )) ( ) ( )≈ ⊕ . Hence H D L1( ( )) is a free abe-
lian group of rank 2. Also for n ≠ 1, we get H D Ln( ( )) is a 
free abelian group of rank ≤ 1 . Therefore H D Ln( ( ))  is a 
free abelian group of rank ≤3.

Theorem 4. Let K be the link graph of m vertices. Then 
H D K

m1( ( ( )))lim
→∞

 is a free abelian group of rank m, also for 

n ≠ 1,  H D Kn m
( ( ( )))lim

→∞
 is a free abelian group of rank ≤ 1 .

Proof. Let K be link graph of n vertices , then  ( ( ))lim
m

D K
→∞

 
is a graph with only one vertex and m-loops as in Figure 4 , 
for m=3 and so H D K

m1( ( ( )))lim
→∞

= ( ) ...1 =1

1H S Z Z Z
i

m

i
m

∨ ≈ ⊕ ⊕ ⊕
  

terms
.  

Hence, H D K
m1( ( ( )))lim

→∞
 is a free abelian group of rank m. 

Also, for n ≠ 1, clearly we get H D Kn m
( ( ( )))lim

→∞
 is a free 

 abelian group of rank ≤ 1. 
Theorem 5. Let I1 be the closed interval [0,1]. Then there 

is a sequence of dynamical manifolds D I I i mi i i: , =1,2,...,1→ +

with variation curvature and torsion such that lim
m m mD I

→∞
( ) 

is trefoil knot and H R D In m m m( ( ))3 −
→∞

lim  is a free abelian 
group of rank ≤ 1 . 

Figure 1. Dynamical trefoil knots with crossing and cutting.

Figure 2. Limit of  dynamical trefoil knot.

Figure 3. Dynamical link graph.

Figure 4. Limit of dynamical link graph with 3 vertices.
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Proof. Consider the sequence of dynamical manifolds  
with variation curvature and torsion: D I I D1 1 2 2: , :→  
I I D I Im m m2 3 1,..., :→ → + such that lim

m m mD I
→∞

( ) is a trefoil 
knot as in Figure 5, thus, H R D I Z

m m m1
3( ( ))− ≈

→∞
lim  and 

H R D I Z
m m m0

3( ( )) .− ≈
→∞

lim Now for n ≥ 2 ,  clearly we get 

H R D Im m m m( ( )) = 0.3 −
→∞

lim  Therefore, H R D In m m m( ( ))3 −
→∞

lim  
is a free abelian group of rank ≤ 1 . 

Theorem 6. The knot group of the limit  dynamical 
sheeted trefoil knot is a free abelian group of rank ≤ 1.

Proof. Let K  be a sheet trefoil knot with  boundary A B,{ } 
as in Figure 6 and D K K: →  is dynamical sheeted trefoil 
knot of K  into itself,then we get the following sequence: 

D K K D D K D K D D D Km m1 2 1 1 1 1: , : ( ) ( ) , , : ( ) ( ( ) )→ → →−  

    
( ) ( ( ) )1 1D D Km−   such that lim

m m mD D D K k
→∞ −( ( ) ( ( ) ) =1 1   

where, k is a  trefoil knot as in Figure 6(a) then H R k Zn( )3 − ≈  
for n = 0,1 and H R kn( ) = 0 ,3 −  for n ≥ 2 Also, if 
lim

m
m mD D D K

→∞
− =( ( ) ( ( ) )1 1   point as in Figure 6(b,c) then 

H R D D D K H R one pointn m m m n( ( ( ) ( ( ) )) = ( ).3
1 1

3− −
→∞ −lim  

 

Hence H R D D D Kn m m m( ( ( ) ( ( ) )) = 0 ,3
1 1−

→∞ −lim    for n ≠ 0 
and H R D D D K Z

m m m0
3

1 1( ( ( ) ( ( ) ) )− ≈
→∞ −lim )  . Therefore, 

the knot group of the limit dynamical sheeted trefoil knot is 
a free abelian group of rank ≤ 1.

Figure 5. Limit of dynamical line segment with variation curvature and torsion.

Figure 6. Limit of  dynamical sheeted trefoil knot.
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