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Abstract
Background/objectives: Patients of kidney failure sometimes have 
incompatible donors. This study proposes an application to get 
the best matchings based on scoring data. Methods: For pairwise 
matching, we created a new graph from the original scoring matrix. 
This graph ensures pairwise matchings. To find an optimal matching, 
we used the Blossom algorithm. For multiway matching, we 
interpreted the scoring matrix as an assignment problem. For this, 
we used the Hungarian algorithm. The application was created using 
Python, NetworkX, NumPy, and PySimpleGUI. The app uses CSV files 
as input. Findings: Both algorithms made for polynomial run times. 
Matching is fast and is guaranteed to be optimal. The application 
itself gets instantaneous results even for large donor-patient 
matrices. Application/improvement: Hospitals or organizations 
can use this application for their kidney matching programs. 

Keywords: Blossom Algorithm, Hungarian Algorithm, Kidney 
Failure, Donor Matching.

1.  Introduction
Chronic kidney disease is the gradual loss of kidney function. This can progress to a state 
called end-stage renal disease (ESRD). This happens when the kidneys no longer meet the 
body’s needs [1]. At this point, kidney failure is usually permanent. Those who have ESRD 
can choose from two treatment options: dialysis or transplantation. Dialysis is a treatment 
that emulates the kidney’s functions. Dialysis centers offer machines to filter a patient’s 
blood. Unfortunately, ESRD patients will need dialysis for the rest of their lives. For those 
who cannot adapt to dialysis, their only hope is transplantation. 

In [2] the Philippines, there have been at least 2500 kidney transplants so far. Currently, 
over 7000 ESRD patients are on waiting lists for cadaver kidneys. In the U.S, there are over 
100,000 [3]. Median waiting time is 3.6 years. Because of this long wait time, doctors and 
patients turned to live-donor transplants.
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A healthy person can survive and remain healthy with only one kidney. That person 
can choose to donate one of their kidneys to a patient. Unfortunately, donors aren’t always 
compatible with their intended recipients. Incompatibilities may be immunological or due 
to blood type. To address this problem, exchange programs were created. These programs 
arrange exchanges between two or more incompatible donor-patient pairs. 

Let’s say that we have two of them, donor-patient X and donor-patient Y. Assuming 
compatibility, donor X donates to patient Y. Then donor Y donates to patient X. This can be 
extended to a larger pool of donor-patient pairs. The larger the pool, the higher the chance 
of getting a compatible exchange. Not only that, we can get a high scoring exchange. The 
primary criteria for scoring are blood type and tissue type. The Alliance for Paired Kidney 
Donation (AKPD) also scores for travel distance, age, and antigen mismatches among 
many others. In the US, AKPD and other organizations have national kidney exchange 
programs. As of now, there is no kidney exchange program in the Philippines.

Before a kidney exchange, donors are matched to prospective patients. These matches 
are tested for compatibility. The higher the compatibility, or matching score, the higher 
the success of an exchange. This would give us an idea if a patient’s body will accept the 
donated kidney. With a pool of matching scores (Figure 1), we could find an optimal 
matching. This would give us the best donor-patient exchanges.

The goal is to create a free, fast, and easy-to-use application for kidney-exchange 
matching. Here we provide two proven solutions adapted for pairwise and multiway 
matching.

2.  Pairwise Matching
A pairwise matching is a strict pair-to-pair matching. When donor X is matched to patient 
Y, donor Y should be matched to patient X (Figure 2).

FIGURE 1.  A sample scoring. Shown here is the matching score (higher is better) for each 
donor to a patient. If a donor is incompatible to a patient (or wasn’t compared at all), the 
score written is zero.

FIGURE 2.  Here we see three donor-patient pairs. In pairwise matching, a pair is matched 
to another pair.
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In [4] the past, kidney exchanges were restricted to this scheme. One of the reasons for 
this is logistics. A pairwise exchange involves four simultaneous surgeries. Increasing to a 
3-pair exchange would involve six simultaneous surgeries. Further increases would yield 
larger logistical problems. So how do we ensure this strict pair-to-pair matching?

2.1.  Creating a Graph that Ensures a Pair-to-pair Matching
First, treat each donor-patient pair as a single entity. Instead of matching donors to patients, 
we match pairs instead. Caveat: this assumes that donors are incompatible with their 
paired patients. Thus, we won’t have self-pairings. Each donor-patient pair will be a vertex 
in our graph G. Next, form the edges. Each edge represents a possible matching between 
two donor-patient pairs. The higher the edge weight, the better the pairwise matching. 

For this application, we form edges (and edge weights) using either:

	a)	� The average score of the pairwise matching (Figure 3). This is the default option.

edge_weight = AVERAGE (score (donorX -> patientY), score (donorY -> patientX))

	b)	� A modified average score. This gives a higher weight to matches that have low variance 
with each other.

FIGURE 3.  Here we see donor-patient pairs treated as vertices. Matching vertices ensures 
a pairwise matching. The edge between these vertices is the average of their original 
matching scores (see Figure 1).1

FIGURE 4.  There is an option to not produce edges with an incompatible match (zero 
score). This makes the whole pairwise matching incompatible.
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edge_weight = AVERAGE (score (donorX -> patientY), score (donorY -> patientX)) * 
[MAX_SCORE - ABS_DIFF (score (donorX -> patientY), score (donorY -> patientX))]

There is an extra option to omit edges if there is an incompatible match in the original 
scoring (Figure 4). This makes the pairwise matching also incompatible. The user may 
choose this to make the graph sparser. Otherwise, the app tries to get the best possible 
matching regardless of incompatibles.

Using the sample scoring from Figure 1 would result in the following graph (Figure 5).

2.2.  Edmonds’s Blossom Algorithm
We now have a new graph G composed of the donor-patient pairs (vertices) and the 
pairwise scores (edges). Next is to find the best possible matchings. Let’s first define the 
following:

A matching M is a subset of edges in G such that none of the edges in M share a common 
vertex. Matched vertices are vertices in M while unmatched vertices are those not in M.

A maximal matching is a matching such that if any edge not in M is added to M, it is no 
longer a matching (Figure 6).

A maximum matching is a matching that contains the largest possible number of edges 
(or vertices) (Figure 6). This is the largest maximal matching on G.

FIGURE 6.  A maximal matching (left). Adding another edge would no longer make it a 
matching. A maximum matching (right). Here the matching contains the largest possible 
number of edges.

FIGURE 5.  Data from Figure 1 converted to a pairwise matching graph using default 
options. 



233 / 247

Juan Miguel J. Bawagan

Indian Journal of Science and Technology� Vol 13(02), DOI: 10.17485/ijst/2020/v13i02/149446, January 2020

A maximum weight matching is a matching in a weighted graph where the sum of the 
weights is the largest. 

As we can see (Figure 5), our problem is now a maximum weight matching problem. 
We want to get the pairwise matches that give us the best total score. To do this, we’ll 
use Jack Edmonds’s Blossom algorithm [5]. This algorithm is a bit complex, so we’ll try to 
explain it as simple as possible.

The Blossom algorithm computes for a maximum matching on a general graph G = 
(V, E). It improves a matching by iteratively finding augmenting paths in G. But what are 
augmenting paths?

Given a matching M, an alternating path is a path whose edges alternate from being in M 
to not in M. An augmenting path is an alternating path that starts and ends on unmatched 
vertices [6] (also known as free vertices). According to Berge’s lemma [7], a matching M is 
maximum if and only if there is no augmenting path in G. If an augmenting path exists, we 
can invert it to produce a better matching (Figure 7). The Blossom algorithm finds these 
paths using a modified Breadth-First Search (BFS). It does this efficiently by finding and 
contracting blossoms.

While doing BFS, the algorithm might encounter odd-length cycles (Figure 8). These 
are called blossoms. Blossoms consist of 2k + 1 edges where exactly k belongs to M. We 
call the path from the BFS root to the blossom, the stem. The last edge of this stem must 
always be in M. The algorithm contracts these blossoms to form a supernode (Figure 9). 

FIGURE 7.  An augmenting path (top). The Blossom algorithm finds these paths and 
inverts them to produce better matchings (bottom).

FIGURE 8.  A graph with an initial matching (highlighted in red with strokes). Encircled is 
an odd-length cycle called a blossom. Assuming that vertex 1 is the root of the BFS, edge 
1–2 is the stem of this blossom.
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This creates a smaller graph G’ that makes it easier to find augmenting paths. This is the 
core aspect of Edmonds’s Blossom algorithm.

Once the algorithm does find an augmenting path, it will try to invert it. If the augmenting 
path includes a supernode, it first expands the supernode. The augmenting path is then 
reconstructed through the blossom. After this, the augmenting path is inverted to produce 
a new matching M’ (Figure 10). The Blossom algorithm terminates when there are no 
more augmenting paths in G. For a more detailed explanation.

2.3.  Pseudocode of the Blossom Algorithm
BEGIN
 WHILE F != ∅ DO  (*set of free nodes F*)
  pick r ∈ F
queue.push(r)       (*BFS queue*)

FIGURE 9.  Contracting a blossom into a supernode makes the graph smaller.

FIGURE 10.  A) We find an augmenting path in G’ (dotted line). B) The augmenting path 
is reconstructed through the expanded blossom. C) The augmenting path is inverted. D) A 
new better matching M’.
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  T ← ∅          (*BFS tree T*)
T.add(r)
  WHILE queue != ∅
   v ← queue.pop()
   FOR ALL neighbors w of v DO
   IF w ∉ T AND w matched THEN
T.add(w)
T.add(mate(w))
queue.push(mate(w))
   ELSE IF w ∈ T AND even-length cycle detected THEN
    CONTINUE
   ELSE IF w ∈ T AND odd-length cycle detected THEN
    contract cycle
   ELSE IF w ∈ F THEN
    expand all contracted nodes
    reconstruct augmenting path 
    invert augmenting path
END

2.4.  An Example Using the Blossom Algorithm
Let’s start with a simple graph containing four donor-patient pairs. All vertices are 
unmatched (Figure 11).

Starting from the first unmatched vertex (1), we try to find an augmenting path via BFS. 
From the root node, we construct a tree of alternating paths (BFS tree). This stops when 
we reach another unmatched vertex (2). The neighbor (2) is already an unmatched vertex, 
thus we have an augmenting path. Take note that a single edge containing two unmatched 
vertices is an augmenting path (Figure 12).

We invert the augmenting path to create a new matching. Now we have edge 1–2 in our 
matching. Since there are still unmatched vertices, we again search for augmenting paths. 
We start BFS at the next unmatched vertex (3) (Figure 13).

Vertex 3’s neighbor is already matched, so we add the neighbor and its pair to the BFS 
tree. We check its next neighbor and we see that there is a cycle. This cycle has an odd 

FIGURE 11.  A pairwise graph containing four pairs. Unmatched vertices are in yellow.
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number of edges thus we found a blossom (Figure 14). We contract the blossom (B) to 
form a smaller graph G’. From B, we continue doing BFS (Figure 15).

FIGURE 12.  Searching for an augmenting path using BFS. The root of the BFS is colored 
red.

FIGURE 13.  Augmenting paths are inverted (left). We repeat the search for augmenting 
paths (right). Vertex 1 (orange) is already matched.

FIGURE 14.  BFS tree is augmented (left) and we find a blossom (right).

FIGURE 15.  Blossom is contracted (left) and the search continues (right).
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B’s neighbor (4) is an unmatched vertex, thus there is an augmenting path (B-4). The 
augmenting path runs between the root of the BFS (3) to vertex 4. We expand the blossom 
to get the whole augmenting path (3–1–2–4) (Figure 16).

We invert the augmenting path. The number of edges in the new matching is increased 
by one (1–3, 2–4). Thus, we have an improved matching M’. Since there are no more 
unmatched vertices, the algorithm terminates. We have found the largest possible matching 
(Figure 17). 

2.5.  Running Time and Modifications for Weighted Graphs
Let n be the number of vertices and m the number of edges. In Jack Edmonds’s original 
paper, he calculated the running time of the Blossom algorithm as . The BFS implementation 
by Riedl runs at .

As you may have seen, the Blossom algorithm finds a matching in unweighted graphs. 
There are various implementations for it to work on weighted graphs. But the core aspect 
remains the same. 

An example implementation: 
Start with an empty matching. In each stage, find an augmenting path with the largest 

weight increase. After k stages, we’ll have a matching of maximum weight among matchings 
of size k.

A more efficient approach uses the primal-dual method. This is taken from the duality 
theory of linear programming. Galil derived the running time as . Our application uses 
this. For more information, see Galil, 1986.

FIGURE 16.  An augmenting path is found (left) and is expanded through the blossom 
(right).

FIGURE 17.  A new maximal matching is found.
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3.  Multiway Matching
Unlike pairwise matching, multiway matching has no pair-to-pair restrictions. If donor 
X is matched to patient Y, donor Y may or may not be matched to patient X (Figure 18). 

This produces a higher matching score at the cost of logistical problems. Long chains 
can occur which would make simultaneous operations improbable. In 2007, a rare six-way 
simultaneous operation did occur and was a success [8]. The hospital needed six surgical 
teams to do the operation. 

If simultaneity is not an issue, multiway matching reduces risk from broken links. In 
pairwise matching, if a pair becomes unavailable so does its matched pair. In multiway 
matching, that pair can be replaced since it’s non-simultaneous.

3.1.  Multiway Matching as an Assignment Problem
In multiway matching, we can simply assign a donor to a patient. With the priority being, 
getting the best total score. This is the assignment problem.

The assignment problem is also known as minimum weight matching in bipartite 
graphs. Here we have a matrix C. Each cell, C [i, j], is the cost of matching vertex i (donors) 
to vertex j (patients). Our original sample scoring (Figure 19) is a good example of this. 
The goal is to find an assignment of the donors to patients of minimal cost [9]. We’ll invert 
our scoring matrix to fit the problem. Where each cell’s new value C[i][j] = largest (C) − 
C[i][j] (Figure 20).

3.2.  The Hungarian Algorithm
We can actually use the Blossom algorithm for the assignment problem. Since the graph 
is bipartite, there will be no blossoms. But for this problem, we’ll use a simpler, specialized 
method, the Hungarian algorithm.

FIGURE 18.  An example of a multiway matching.

FIGURE 19.  A multiway matching cycle/chain.
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The Hungarian algorithm (or method) was developed by Harold Kuhn in 1955. It solves 
the assignment problem in polynomial time. Efficient implementations run at . To use this, 
it requires that the number of rows is equal to the number of columns. This is also known 
as a balanced assignment. If they are not equal, we create dummy rows or columns with 
zero values.

The algorithm [10] goes as follows:

Phase 1: Row and column reductions
Step 1: Find the minimum of each row and subtract from each row the minimum value 
(row reduction).
Step 2: Find the minimum of each column and subtract from each column the minimum 
value (column reduction).

Phase 2: Optimization of the problem
Step 1: Draw a minimum number of lines to cover all the zeros of the matrix. Entries that 
are drawn over by lines will be ignored.

a)	 Row scanning:

•	 Starting from the first row, ask the question: “Is there exactly one zero in that row?”  
If yes, mark that zero entry and draw a vertical line passing through that zero. 
Otherwise, skip that row.

FIGURE 20.  The original scoring from Figure 1 (top) and the inverted matrix (bottom). 
The largest value in the original scoring is 9. To invert, we subtract 9 with the values in the 
original cell.
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•	 After scanning the last row, check whether all the zeroes are covered with lines. 
If yes, go to step 2.  
Otherwise, do column scanning.

b)	 Column scanning:
•	 Starting from the first column, ask the question: “Is there exactly one zero in that column?” 

If yes, mark that zero entry and draw a horizontal line passing through that zero. 
Otherwise, skip that column.

•	 After scanning the last column, check whether all the zeroes are covered with lines. 
If yes, go to step 2.
Otherwise, select the zeroes “diagonally” opposite with each other (unmarked zeroes 
that are of not the same column and row; diagonal selection). This means that there is 
more than one optimal solution.

Diagonal selection:
Starting from the first row, mark a zero (there should be multiple zeroes in the row) and 
mark a vertical line from that zero. 
Mark a zero in the next row of a different column and mark a vertical line from that 
zero.
Repeat until all rows are done. All zeroes should be covered. We can get the other 

optimal solutions by marking different zeroes.

Step 2: Check whether the number of marked zeroes is equal to the number of rows of the 
matrix. If yes, go to step 4, otherwise, go to step 3.

Step 3: Identify the minimum value of the undeleted cell values.

a)	 Add the minimum undeleted cell value at the intersection points of the current matrix.
b)	 Subtract the minimum undeleted cell values from all the undeleted cell values.
c)	 Go back to step 1.

Step 4: We’re done. The marked zeroes show the row-column position of the optimal 
solution (in the original matrix).

3.3.  An Example Using the Hungarian Algorithm
Let’s use the inverted matrix from Figure 20 for this example. D1, D2,…, D5 are donors 
and P1, P2,…, P5 are patients.

Phase 1:

Step 1: Row reduction. We find the minimum in each row. Then subtract each row 
minimum to that row (Figure 21).

Step 2: Column reduction. We find the minimum in each column. Then subtract each 
column minimum to that column (Figure 22).

Phase 2: Optimization of the problem
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Step 1a. Row scanning. For each row, if there is only one zero, mark that zero then draw 
a line over that column. Otherwise, skip that row (Figure 23).

Step 1b. Since not all zeros are covered, we do column scanning. For each column, if 
there is only one zero, mark that zero then draw a line over that row. Otherwise, skip that 
column. Take note that we ignore columns marked by row scanning. In this example, we 
skipped both columns (Figure 24).

FIGURE 21.  Row reduction.

FIGURE 22.  Column reduction.
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Since not all zeros are still covered, we do an additional step called diagonal selection. 
For each row, we arbitrarily pick a zero then draw a vertical line. We repeat this but for 
zeros of a different column (Figure 25).

Step 2. We check if the number of marked zeros is equal to the number of rows (Figure 
26). Since they are equal, we go to step 4.

Step 4. We are done. The marked zeros show the optimal matches in the original 
uninverted matrix (Figure 27).

FIGURE 23.  Row scanning. Columns that are drawn over will be ignored in the next step.

FIGURE 24.  Column scanning. No rows were drawn over since both columns have mul-
tiple zeros.

FIGURE 25.  Diagonal selection. 
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5.  The Application
The app was created using:

•	 Python 3 for the base code
•	 NumPy for its fast N-dimensional array object implementation
•	 NetworkX 2.4 for its graph implementation and max_weight_matching algorithm 

(Blossom algorithm).
•	 PySimpleGUI 4.7.0 for the fast and robust GUI

This app uses CSV (comma-separated values) files as input. The CSV format is perfect 
since scores are in matrix form (Figure 1). We write patient names in the column headers 
and donor names as row headers. Each donor-patient matching score is written in the 
corresponding cell. Popular applications like MS Excel or Google Spreadsheets already 
provide an easy way to write these. For saving results, the app uses the CSV format as well.

FIGURE 26.  The number of marked zeros is equal to the number of rows.

FIGURE 27.  The optimal matches in the original matrix (top) and the matches (below).
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Current features:

•	 CSV file opening and saving – with basic CSV format checking
•	 Score matrix view – a view of the opened CSV file. Currently limited to 8 columns due 

to PySimple GUI limitations
•	 Choose a matching option – pairwise or multiway matching
•	 For pairwise matching, there is an option for using regular averaging or modified, and 

to not add edges with zero weight to make the graph sparser
•	 Matching results view – a simple view showing the results

Sample tests and results:

1)	 Using test data from Figure 1. 5 donor-patient pairs with complete data (Figures 28 and 
29).

2)	 8 donor-patient pairs with incomplete data (Figures 30 and 31).

3)	 15 donor-patient pairs with complete scorings. Even with a large matrix (15 × 15 scor-
ings), the app ran this almost instantaneously (Figure 32).

6.  Conclusion
Overall, this app provides a fast and easy way to match donors to patients. The algorithms 
used here are tested and proven to be fast and optimal. Run times for the app itself were 

FIGURE 28.  The kidney matching app using the matrix from Figure 1 as input. Shown 
here are pairwise matching results.
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FIGURE 30.  Pairwise results for an incomplete 8 donor-patient matrix.

FIGURE 31.  Multiway matching results for an incomplete 8 donor-patient matrix.

FIGURE 29.  Using the matrix from Figure 1. Shown here are the multiway matching 
results.
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fast. The app had no trouble for even large and unlikely scenarios, e.g. a 20 × 20 patient-
donor matrix. With these in mind, new kidney exchange programs may integrate this app 
for their use. 

Future improvements are still being planned for this app. We hope that this app gets 
real-world use. The app and test cases are available at bit.ly/2KPXUAX or just email me at 
jjbawagan@up.edu.ph. Feedback is most welcome.
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