
Abstract
In this note, we extend and improve the corresponding result of Takahashi7. Fixed point theorem for amenable semi group
of non-expansive mappings. 
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1. Intoduction
Let K be a subset of a Banach space E. A self  mapping T 
on K is said to be non-expansive if T x T y x y( ) − ( ) ≤ −

for all x,y ∈ K. DeMarr3 proved the following theorem:

Theorem 1.1 For any non-empty compact convex
subset K of a Banach space E, each commuting family of
non-expansive self mappings on K has a common fixed
point in K.

DeMarr’s theorem can be further generalized for
some semigroups of non-expansive self-maps on K by the
following considerations.

Let S be a semi-topological semi group, i.e. S is a semi
group with a Hausdorff topology such that for each a ∈ S,
the mappings s → sa and s → as from S into S are  continuous.
S Is called left reversible if any two closed right ideals of S
having non-void intersection.

Let l  •(S) be the C*-algebra of all bounded
complex-valued functions on S with supremum norm
and point-wise multiplication. For each s ∈ S and,
f ∈l •(S) denote by ls (f) and rs (f) the left and right trans-
lates of f by s respectively, that is ls (f)(t) = f(st) and
rs (f)(t) = f(ts) for all t ∈ S. Let X be a closed subspace
of l •(S) containing  constants and be invariant under
translations. Then a linear functional m ∈ X• is called a 
mean if m m= ( ) =1 1 and a Left Invariant Mean (LIM) 

if  moreover m(ls(f)) = m(f) for s ∈S, f ∈X. Let Cb(S) be the
space of all bounded  continuous complex-valued func-
tions on S with supremum norm and LUC(S) be the space
of left uniformly continuous functions on S, i.e. all func-
tions f ∈ Cb(S) for which the mapping s →ls  f : S → Cb(S) 
is continuous when Cb(S) the sup-norm topology has.
Then LUC(S) is a C*-subalgebra of Cb(S) invariant under
translations and containing constant functions. S Is called 
Left Amenable if LUC(S) has a LIM. The space of all right
uniformly continuous  functions, RUC(S), and right
amenability are defined similarly. The semi-topological
semigroup S is called amenable if it is both left and right
amenable, in this situation there is a mean which is both
left and right invariant. Left amenable semi-topological
semi groups include commutative semi groups, as well as
compact and solvable groups. The free (semi) group on
two or more generators is not left amenable. When S is
discrete, LUC(S) = l •(S) and (left) amenability of S yields
the (left) reversibility of S. For more details on  amenability,
examples and relations1,2, 4,6.

An action of S on a topological space E is a mapping
(s,x) → s(x) from S ¥ E into E such that (st)(x) = s(t(x))
for all s, t ∈ S, x ∈ E. The action is separately continuous
if it is continuous in each variable when the other is kept
fixed. Every action of S on E induces a representation of S
as a semigroup of self-mappings on E denoted by S, and the
two semi groups are usually identified. When the action is 
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separately continuous, each member of S is a  continuous
mapping on E. A subset K Õ E is called S-invariant if sK Õ K
for each s ∈ S. We say that S has a common fixed point in E,
if there exists a singleton S-invariant subset of E. When E is 
a normed space the action of S on E is called non-expansive
if s x s y x y( ) − ( ) ≤ −  for all s ∈ S and x, y ∈ E.

Takahashi7 proved a generalization of DeMarr’s fixed
point theorem as follows:

Theorem 1.2 Let K be a non-empty compact  convex
subset of a Banach space E and S be an amenable discrete
semigroup which acts on K  separately  continuous and
non-expansive. Then S has a common fixed point in K.

It is well-known that every left amenable discrete
semigroup is left reversible4, so Mitchell [5] proved the
following generalization of Takahashi’s theorem:

Theorem 1.3 Let K be a non-empty compact convex  subset
of a Banach space E and S be a left reversible  discrete
semigroup which acts on K separately  continuous and
non-expansive. Then S has a common fixed point in K.

But it is not the case that all left amenable semi-
topological semi groups are left reversible as the  following
example shows4:

Example 1.4 Let S be a topological space which is regular
and Hausdorff. Then Cb(S) consists of  constant functions
only. Define on S the multiplication st = s for all s, t ∈S. Let
a ∈S be fixed. Define µ(f) = f (a) for all a ∈S. Then µ is a
left invariant mean on C(S), but S is not left reversible.

Now the question naturally arises as to whether this
is true if one considers a left amenable semi-topological
semi group in Takahashi’s theorem instead of an ame-
nable discrete semigroup. In this paper, we show that the
answer is affirmative. Our theorem happens to be new
and is not a result of any previous work.

2. Main Theorem
The space of almost periodic functions is the space of all
f ∈C(S) such that {ls f : s ∈ S} is relatively compact in the
sup-norm topology of C(S) and is denoted by AP(S). For
any semi-topological semi group S we have the following
theorem ([1], P.131 and P.164):

Theorem 2.1 (a) f ∈ AP(S) if and only if {rs f : s ∈ S} is
relatively compact in the sup-norm topology of C(S).
(b)  AP S LUC S RUC S( ) ⊆ ( ) ( ) .

Lemma 2.2 Let S be a semi-topological semi group
which acts separately continuous and non- expansive on
a compact subset M of a Banach space E. Then for each
m ∈M and each f ŒC(M) we have fmŒ LUC(S) where
fm(s) = f(sm) (s ∈S).

Proof: For f ∈ C(M) define a new function A: M →
C (S) by A(m) = fm, so A(m)(s) = f (sm) for all s ∈ S. Put
sup-norm  topology on C(S). We show that A is con-
tinuous. Given m ∈ M, e > 0 we must find a suitable
neighborhood for m such that for all m′ in it the inequal-
ity ′ <A m A m( ) − ( ) e holds. By continuity of f and 
compactness of M the  function f is uniformly continuous,
so there is a  positive number δ such that if u, v ∈ M and 

− < du v , then f u f v( ) − ( ) < e
2 .

. By Archimedean 

property of real numbers, there is a natural number k for 

which 1
k 

< d . For each m′ in the ball B m 
k

, 1





 and each 

s ∈ S we have

sm m m 
k

′ − < ′ < <sm − d 1

because the action is non-expansive. Now
use uniform continuous property of f to get 

f sm f sm 
k

′ <( ) − ( ) 1 . Hence corresponds to e > 0

we found the ball B m 
k

, 1





 so that if m B m 
k

′ ∈ 





, 1  , 

then

f sm f sm A m s A m s′ ′ <( ) − ( ) = ( )( ) − ( )( ) e
2

For all s ∈ S. Consequently

A A s S( ) ( )( ) :m A m sup m s A m s′ ′ <− = − ∈{ }( ) ( )( ) e

Which shows that A is continuous. On the other hand for
each right translate of f m= A(m) we have

r fa m m am( )(s) ( ) ( )f f sa f sam s = A am s s a S= = = ∈( ) ( )( ); ( ,   )

That is ra f m = A(am) hence {ra fm: a ∈S} = {A(am) :   
a ∈S} = A(Sm). The set Sm is relatively compact in M 
and A is continuous, so A(Sm) is relatively compact in
the  sup-norm topology of C(S). Therefore by theorem 
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∃u co M such that r m u m M M∈ ( ) = − ∈{ } ( )__ : .0 sup < d

Define, then X B m r0 
m M

0=  
∈

, is a non-empty 

(indeed u ∈X0 ) compact convex proper subset of X
such that sX0 Õ X0 for each s in S (the inclusion follows
from the fact that M is S-preserved and the action is
non- expansive). But this contradicts the minimality of X.
Therefore M contains only one point which is a common
fixed point for the action of S. ■

Obviously every amenable discrete semigroup is a
left amenable semi-topological semigroup, so we can
apply theorem 2.3 to obtain the following result of
Takahashi7: 

Corollary 2.4 (Takahashi) Let K be a non-empty compact
convex subset of a Banach space E and S be an amenable
discrete semigroup which acts on K separately  continuous
and non-expansive. Then S has a common fixed point
in K.
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2.1 part (a) we see that fm = A(m) ∈AP (S) and from part 
(b) fm ∈ LUC(S).■

Now we use the above lemma to modify Takahashi’s 
proof7 for left amenable semi-topological semi groups
which are not necessarily discrete. Notice that in
Takahashi’s theorem the semi group is discrete and ame-
nable, while in our theorem the semi group is a general
semi-topological semi group which is left amenable.

Theorem 2.3 Let K be a non-empty compact convex subset
of a Banach space E and S be a left amenable semi-topolog-
ical semi group which acts on K separately continuous and
non-expansive. Then S has a common fixed point in K.

Proof: An application of Zorn’s lemma shows that
there exists a minimal non-empty compact convex and 
S-invariant subset X Õ K. If X is a singleton we are done,
otherwise apply Zorn’s lemma for the second time to get
a minimal  non-empty compact and S-invariant subset
M Õ X. 

We claim that M is S -preserved, i.e. sM = M for all
s ∈ S Let v be a left invariant mean on LUC(S) and define
µ(f) = v(fm), where fm is defined as in lemma 2.2. By Riesz
representation theorem, µ induces a regular probabil-
ity measure on M ( still denoted by µ ) such that µ(sB)
= µ(B) for all Borel sets B Õ M and s ∈ S. Let F be the
support of µ. Each s ∈ S defines a measurable continuous
function from M into M, so by basic properties of  support
F Õ sM and µ(sM) = µ(M) = 1 (see7). Assume that χF is
the  characteristic function of F. For each s ∈ S,

1 1= ( ) = ( ) = ( ) = ( )∫ ∫ −m m m mF y d sy d s FFM M F� �χ  χ ,

(s–1F means the pre-image of F under s) again by the
definition and properties of support we see that F
Õ s–1F, meaning that F is S-invariant. Hence F = M by
the  minimality of M. Consequently M = F Õ sM for each
s ∈ S. But M was already S-invariant, so sM = M for each
s in S.

Now if M is singleton we are done, otherwise if
δ(M) = diam(M) > 0, we get a contradiction by DeMarr’s
lemma3 which implies that


