
Abstract
In this paper, a cure fraction model for interval-censored data with a change point according to a covariate threshold 
is proposed. Maximum likelihood estimators of the model parameters are obtained using the Expectation Maximization 
(EM) algorithm. A critical challenge to this method was that the likelihood function is not differentiable with respect to 
the  unknown change point parameter. Simulation studies were conducted to evaluate the performance of the  proposed 
 estimation method. The numerical results showed that the new model represents a valuable advancement of cure 
 models.
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1. Introduction

A change-point problem is a problem in which changes 
at unknown points are identified and the locations of 
these changes are estimated1. This type of problem occurs 
quite frequently in survival studies. For example, data 
obtained from a group of pre-school boys indicate that 
their weight/height ratios relate to their ages in one way 
before a certain age but that the observed functional 
 relation changes afterwards2. As another example, cancer 
incidence rates remain relatively stable in young people 
but change  drastically after a certain age threshold3.

A number of researchers have introduced  change-point 
models into the field of survival analysis. Matthews and 
Farewell4 assumed that the hazard function is constant, 
with the exception of a jump. Muller and Wang5 proposed 
non-parametric method for estimation of the changes in 
the hazard rate. Sen6 and Pons7 considered a Cox model 
with change point in accordance with an unknown 
threshold of a covariate. However, these models do not 
incorporate the proportion of cure. A cure rate model 
represents a combination of cure fractions and survival 
models and can be applied to clinical studies of several 

types of cancer such as breast cancer, head and neck 
 cancer, and prostate cancer. In such cases, a proportion of 
the population of patients may not be susceptible to the 
event of interest, namely, recurrence of cancer.

Survival cure models have been widely studied for 
decades. The interested readers can refer, for example, 
to the books of Maller and Zhou8 and Ibrahim et al.9, as 
well as to the review article prepared by Tsodikov et al.10 
or to the articles of Boag11, Berkson et al.12, Chen et al.13, 
Lambert et al.14, and Yu et al15. However, the literature on 
cure models with change-point problems is rather lim-
ited, and only few recent studies have addressed this type 
of model. For example, Zhao et al.16 proposed a mixture 
cure model with a change-point at an unknown threshold 
of failure time and Othus et al.17 developed a cure survival 
model that allowed for a change-point effect in covari-
ates in order to investigate a potential change point in the 
age of diagnosis of prostate cancer. Both of these stud-
ies employed right-censored data. However, this paper 
presents an approach to analysis of the cure rate model 
in the presence of interval-censored data with a change-
point at an unknown threshold of a covariate. Here, we 
study parametric maximum likelihood inference via the 
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Expectation Maximization (EM) algorithm, which can 
accommodate a smooth transition as well as an abrupt 
change to determine the parameters’ values.

This article is organized as follows: in Section 2, the 
notations and model are described. In Section 3, we 
 propose a model based on interval censoring and develop 
Maximum Likelihood Estimation (MLE) technique based 
on a covariate change point. Sections 4 and 5 present the 
estimation procedures, namely, the smoothed approach 
and the EM algorithm, while the simulation studies 
and their major findings are presented in Section 6. We 
 conclude with discussion of the major research findings 
and conclusions in Section 7.

2. Model Formulation
In this section, we first present a brief review of the  hazard 
function for survival data with a cure fraction. In this 
type of data, the survival time is assumed to take the form  
T = vT∗ + (1 - v)∞, where T∗ < ∞ denotes the failure time of 
an uncured subject and v is an indicator showing whether 
the sampled subject is cured (v = 0) or not (v = 1). Let 
η = Pr(v = 0) express the proportion of cured subjects,  
η Œ(0,1]. Then, the survival function for T, which is 
known as the cure model, is given by Zhou et al1.

 S t P T t S tr( ) ( ) ( ) ( )*= ≥ = + -h h1

where S∗(t) is the survival function for those who are 
uncured. A parametric model can be specified for the 
failure time. In this work, we consider the lognormal 
distribution, which is one of the commonly-used dis-
tributions for modeling the failure time of the uncured 
subjects. It is positively skewed and hence can be applied 
to right-skewed data arising from medical, biological, 
environmental and reliability studies. Further details 
on this issue can be found in Boag10 and Frankel and 
Longmate18.

In medical studies, one often has to deal with  censored 
survival times due to a variety of potential reasons, such 
as dropping-out of patients from the study or termina-
tion of the observation period. In general, data drawn 
from patients who are cured will always appear as cen-
sored. However, a censored patient is not necessarily a 
cured one. Let C denote the censoring time and let X be a 
covariate related to T∗ and the cure indicator v. Following 
the usual formulation, we define the observable survival 
time Ti  by T T C= min( , )  and d = ≤I T C( )  where I(.) is 

the indicator function, which takes the value of 1 if T is 
an exact failure time (uncensored) and the value of 0 if T 
is censored. It is further assumed that T is independent 

of T. Then, the observations consisting of ( , , )T Xi i id for
i n= 1 2, ,...,  are independent and identically-distributed 

consisting of ( , , )T Xd . Based on the cure model in 1 and 
the lognormal distribution, the density function of T at 

t can be written 1
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3.  The Model with Interval 
Censoring

Regarding interval-censored data, the exact failure 
time T is unknown even for a subject who is not right 
 censored. Instead, an interval (tLi, tRi] is observed, where 
T t ti Li Ri∈( , ]  and tLi ≤ tRi

19. In this section, we describe 

the cure rate model for the interval-censored data and 
extend it to the cure rate model with a change-point effect 
in the  covariate X. The model can be used for multiple 
 covariates.

3.1 Data and Likelihood
Considering a setting in which the event time Ti  is 
known to have occurred within two points (tLi, tRi] where 
tLi is the latest examination time before the event and tRi is 
the earliest examination time after the event, and tR = ∞ if 
a subject has not experienced the event of interest before 
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the last follow-up. Then, the observed data are (tLi, tRi, Xi), 
i=1, 2,..., n and model1 can be re-expressed as

 
P t T t P T t P T tr Li i Ri r i Li r i Ri≤ ≤( ) = ≥( ) - ≥( )

 
= - - 

∗ ∗( ( )) ( | ) ( | )1 h X S t X S t Xi Li Ri

The present study assumes that the change-point of 
the model depends on the covariate X, and at this point, 
the probability of cure, or survival function, takes a sud-
den jump or fall. Suppose that the change-point is τ. If X 
≤ τ, then let η(X) = p1 and S(X) = S1. However, if X > τ, 
then η(X) = p2 and S(X) = S2. Now, reformat the censoring 
indicator бi as follows: бi = I(tR < ∞) for tLi < Ti ≤ tRI and 
define the unknown parameters as θ = (p1, p2, μ1, μ2, σ1, 
σ2, τ). Then, the likelihood function for the n observed, 
interval-censored data based on the Mixture Cure Model 
(MCM) with a change-point effect in a covariate, referred 
to as Ln

∗ ( )q , is3
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Because the change point-parameter τ is unknown 
and according to the classical likelihood approach, the 
likelihood function is not differentiable with respect to 
τ. In consequence, one of the regularity prerequisites for 
the normal asymptotic theory, that is, a specific degree 
of smoothness of the objective function concerning the 
parameters is violated. In order to address this critical 
problem, the smoothed likelihood function is suggested.

4. Smoothed Likelihood Approach
To circumvent the critical problem of non-smoothing, a 
smoothed likelihood approach is proposed. The idea of 
this approach is to use a continuous and  differentiable 

function to approximate the indicator functions  
I(X ≤ τ) and I(X > τ). Let K(u) be a continuous function 
such that K(u) satisfies lim ( )

u
K u

→-∞
= 0  and lim ( ) .

u
K u

→∞
= 1  

Let K u K u hn n( ) ( / )=  where hn is a small positive con-
stant that depends on the sample size. A special case 
of this class of functions is the logistic function where 

K u
u h

u hn
n

n
( )

exp[ / ]
exp[ / ]

=
+1

. It is recognized in the density 

estimation literature that the choice of the smoothing 
function does not affect the asymptotic properties of the 
density estimator1. In view of this, we conducted the simu-
lations with two different distribution functions for K(u): 
the logistic function and the distribution function of the 
standard normal distribution. Then, based on this func-
tion, the smoothed likelihood function for the observed 
data ( , , , )t t XLi Ri i id , which is referred to as Ln(θ), is
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The likelihood function4 does not have closed-form 
solutions for the maximum likelihood estimators, and 
use of a numerical technique is thus necessary. Following 
Peng and Dear20 and Zhang and Peng21, we simplify the 
computation by rewriting the likelihood function using 
partially-complete censored observations. Thus, the 
complete likelihood  function4 can be converted into the 
following modified likelihood function5:
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where vi is a latent variable whose value is not  observable 
for a right-censored subject. In other words, if δi = 1, 
then vi = 1 but if δi = 0, then vi is not observed and it can 
be either one or zero. Therefore, to perform maximum 
likelihood estimation for the parameter θ, we need to 
implement an EM algorithm. For more details, the reader 
is referred to the works of Peng and Dear20 and McLachlan 
and Krishnan22.

5. The EM Algorithm
The EM algorithm is a very powerful approach to 
 estimation of parameters when the likelihood includes 
incomplete data. Let the data in the form (tLi, tRi, δi, Xi)  
be the observed data and the cure status vi be the miss-
ing data. In the E-step of the EM algorithm, we calculate 
E lc

m[ ( ) | ]q q , the conditional expectation of the log of the 

likelihood function5 with respect to vi, given the current 
estimates θ(m), which is given by6:
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where gi is the expectation of νi given the current  estimates 
of θ(m), which can be obtained from:
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The M-step is intended to maximize6 with respect to 
the unknown parameter θ for fixed gi. Maximization in 
this step can be achieved using standard optimization 
methods such as the Newton-Raphson method.

6. Simulation Studies
Simulation studies were conducted in the current work 
to investigate finite sample performance of the proposed 
estimator considering two smoothing functions K(.); the 
logistic function and the distribution function of the stan-
dard normal distribution. For each studied function, two 
simulation scenarios were taken into consideration. In 
one scenario, a Uniform (U (0, 1)) random variable with 
a change-point at 0.5 was used while in the other scenario 
a truncated Normal (tN(1, 1, 0, 2) random variable with 
a change-point at 1 was employed. The interval-censored 
survival times (tL, tR, δ) with the cure fraction were gener-
ated in a manner similar to that employed by Pan23, and 
Kim and Jhun19. First, we generated random numbers ui 
from uniform distribution based on (0, 1) to determine 
whether a subject is cured ui ≤ η, or not. Interval-censored 
data (tLi, tRi, δi) were then generated as follows:

If the subject is cured, then sample •	 Ti = TLi from the 
lognormal distribution with (2, 0.15) and δi = 0.
If the subject is not cured, then generate •	 Ti from a 
 log-normal model with (μ, σ) and generate the censor-
ing time Ci from the lognormal distribution with (2, 
0.15), which results in a censoring rate of approximately 
35%. δi is equal to 1 if Ti ≤ Ci and to 0 otherwise.
For •	 δi  = 1, we generate lens from uniform distribution 
on (0.2, 0.7) and li from uniform distribution on (0, 1). 
Then, from (0, li], (li, li + len],...,(li + k ∗ len, ∞), k=1,  
2, ... , we choose as that satisfying TLi  < Ti ≤ TRi.
For •	 бi = 0, let TLi < TRi = ∞.

Summary statistics based on 500 replications with the 
sample sizes 200, 400 and 800 data points are presented 
in Table 1, which show the values of bias, Standard Error 
(SE), and Root Mean-Square Error (RMSE).

The results of simulation studies suggest that the 
 proposed estimation method has small biases, thus  implying 
that estimates of cure probability and  change-point using 
the suggested method are quite accurate under all the 
investigated settings. The biases in the estimates for all of 
the examined parameters decreased with increasing  sample 
size for both the normally- and uniformly- distributed 
 covariates. Increasing the sample size ensures that the 
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 sample characteristics get closer to the properties defined 
by the data-generating model/process, hence reducing bias. 
This observation demonstrates that the estimator of the 
parameters is statistically consistent. Given the consistency 
of the estimator and the increased accuracy with increasing 
sample size, both the SE and RMSE decreased with increas-
ing sample sizes for all considered parameters.

The aforementioned analysis was repeated with K(.) 
as the cumulative distribution function of the standard 

normal random variable, K u e t
tu

( ) = ∂
-

-∞
∫1

2

2

2

p
, and the 

results are presented in Table 2. The results indicate that 
the estimated values are very similar for the two smooth-
ing functions, and thus it is concluded that accuracies of 
the estimates are not sensitive to the type of the  smoothing 
function employed.

7. Conclusion
Incorporation of the change point parameter into the 
cure rate model involves intriguing theoretical  difficulties 
in both detection and estimation of such phenomena. 
In this article, we have proposed a change point  mixture 

Table 2. Results for change-point MCM with 
interval-censored data using the standard normal 
smoothed function

X ~ Uniform(0,1) X~ tN(1,1,0,2)
θ0 Bias SE RMSE Bias SE RMSE

N = 200
p1 0.4 0.009 0.046 0.047 0.005 0.050 0.050
μ1 0.3 –0.015 0.018 0.023 –0.005 0.021 0.022
σ1 0.1 –0.004 0.016 0.016 0.002 0.020 0.020
p2 0.3 –0.013 0.041 0.043 –0.013 0.041 0.043
μ2 0.4 0.012 0.016 0.020 0.009 0.018 0.020
σ2 0.1 –0.002 0.015 0.015 –0.002 0.015 0.015
τ 0.5(01) 0.008 0.076 0.076 0.080 0.120 0.144
N = 400
p1 0.4 0.010 0.035 0.036 0.003 0.035 0.035
μ1 0.3 –0.011 0.014 0.018 –0.005 0.013 0.014
σ1 0.1 –0.003 0.011 0.011 –0.001 0.013 0.013
p2 0.3 –0.012 0.031 0.033 –0.008 0.031 0.032
μ2 0.4 0.009 0.012 0.015 0.007 0.012 0.014
σ2 0.1 –0.002 0.011 0.011 –0.002 0.011 0.011
τ 0.5(01) 0.013 0.052 0.054 0.039 0.061 0.072
N = 800
p1 0.4 0.006 0.024 0.025 0.003 0.023 0.023
μ1 0.3 –0.009 0.009 0.013 –0.005 0.010 0.011
σ1 0.1 –0.003 0.008 0.009 –0.001 0.008 0.008
p2 0.3 –0.010 0.022 0.024 –0.007 0.021 0.022
μ2 0.4 0.008 0.009 0.012 0.005 0.009 0.010
σ2 0.1 0.002 0.007 0.007 –0.001 0.008 0.008
τ 0.5(01) 0.009 0.034 0.035 0.022 0.028 0.036

Note: θ0 , true values of parameters (true value of τ for tN covariate); 
Est is the mean of estimates; SE is the mean of standard errors; RMSE 
is root mean square error.

Table 1. Results for change-point MCM with 
interval-censored data using the logistic smoothed 
function

X ~ Uniform(0,1) X~ tN(1,1,0,2)
θ0 Bias SE RMSE Bias SE RMSE

N = 200
p1 0.4 0.014 0.042 0.044 0.010 0.045 0.046

μ1 0.3 –0.014 0.017 0.022 –0.013 0.020 0.024

σ1 0.1 –0.007 0.014 0.016 –0.002 0.017 0.017

 p2 0.3 –0.020 0.038 0.043 –0.016 0.043 0.046
μ2 0.4 0.019 0.016 0.025 0.013 0.016 0.021

σ2 0.1 –0.005 0.014 0.015 –0.003 0.015 0.015
τ 0.5(01) 0.015 0.076 0.077 0.068 0.099 0.120

N = 400
p1 0.4 0.013 0.029 0.032 0.009 0.033 0.034
μ1 0.3 –0.014 0.013 0.019 –0.011 0.012 0.016

σ1 0.1 –0.006 0.010 0.012 –0.003 0.011 0.011
p2 0.3 –0.010 0.029 0.031 –0.011 0.028 0.030
μ2 0.4 0.010 0.011 0.015 0.010 0.011 0.015

σ2 0.1 –0.005 0.011 0.012 –0.003 0.010 0.010
τ 0.5(01) 0.013 0.051 0.052 0.046 0.057 0.073
N = 800

p1 0.4 0.010 0.022 0.024 0.008 0.023 0.024
μ1 0.3 –0.011 0.010 0.015 –0.008 0.010 0.013
σ1 0.1 –0.006 0.008 0.010 –0.003 0.008 0.009
p2 0.3 –0.016 0.020 0.026 –0.010 0.021 0.023
μ2 0.4 0.004 0.009 0.010 0.008 0.009 0.012
σ2 0.1 0.004 0.007 0.008 0.003 0.007 0.008
τ 0.5(01) 0.012 0.032 0.034 0.027 0.033 0.043

Note: θ0, true values of parameters (true value of τ for tN covariate); 
Est is the mean of estimates; SE is the mean of standard errors; RMSE 
is root mean square error.
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cure model for interval-censored data. We obtained an 
 estimate of the change-point under interval  censoring 
using a modified objective function to eliminate the 
non-smoothness problem of the likelihood function. The 
estimation method is a combination of the maximum 
likelihood method and the EM algorithm. For various 
sample sizes, we implemented a simulation to generate 
samples with a cure fraction, and then under this setup 
we obtained the maximum likelihood estimators of the 
model. The values of the bias and MSE that were obtained 
from simulation studies show that the proposed  estimation 
method  performs well in the situations considered.
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