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Abstract
The aim of this work is to study the Legendre wavelets for the solution of a class of nonlinear Volterra integro-
 differential equation. The properties of Legendre wavelets together with the Gaussian integration method are used to 
reduce the problem to the solution of nonlinear algebraic equations. Also a reliable approach for convergence of the 
Legendre wavelet method when applied to nonlinear Volterra equations is discussed. Illustrative examples have been 
discussed to demonstrate the validity and applicability of the technique and the results obtained by Legendre wave-
let method is very nearest to the exact solution. The results demonstrate reliability and efficiency of the  proposed 
method. 

Keywords: Legendre Wavelets, Integro-differential Equations, Gaussian Integration, Legendre Wavelet Method, 
Convergence Analysis.

1. Introduction

Integro-Differential Equation (IDE) is an equation that 
the unknown function appears under the sign of integra-
tion and it also contains the derivatives of the unknown 
function. Mathematical modeling of real-life problems 
usually results in functional equations, e.g. partial differ-
ential equations, integral and IDE, stochastic equations 
and others. Many mathematical formulations of physi-
cal phenomena contain IDE; these equations arise in 
fluid dynamics, biological models and chemical kinetics. 
In the past several decades, many effective methods for 
obtaining approximation/numerical solutions of linear/
nonlinear differential equations have been presented, such 
as Adomian decomposition method [1], Variational itera-
tion method [13, 15], Homotopy perturbation method  
[1, 9, 10, 11, 12], He’s Homotopy perturbation method 
[2, 3, 7, 12], Homotopy analysis method [14], wavelet 
method [4, 5, 6, 8, 11, 16] etc.,

Ghasemi et al. [12] presented He’s homotopy  perturbation 
method for solving nonlinear integro differential equations. 
Zhao and Corless [25] adopted finite difference method 
for integro-differential equations. Yusufoglu et al. [24] had 
solved initial value problem for Fredholm type linear inte-
gro-differential equation system. Seyed Alizadeh et al [18] 
discussed an Approximation of the Analytical Solution of 
the Linear and Nonlinear Integro-Differential Equations 
by Homotopy Perturbation Method.  Wazwaz [23] gave 
a reliable algorithm for solving boundary value problems 
for higher-order integro-differential equations.  Lepik [16] 
had solved the nonlinear integro differential equations 
using Haar wavelet method.  Ghasemi, et al. [9] discussed 
the comparison between wavelet Galerkin method and 
homotopy perturbation method for the nonlinear integro-
differential equations. Ghasemi  et al. [8, 11] established 
numerical solution of linear integro-differential equations 
by using sine-cosine wavelet method and they have also 
compared with homotopy perturbation method.
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In recent years, wavelets have found their way in to many 
different fields of science and engineering. Many research-
ers started using various wavelets for analyzing problems of 
greater computational complexity and proved wavelets to 
be powerful tools to explore new direction in solving differ-
ential equations. Recently, Venkatesh et al. [19, 20, 21, 22] 
applied Legendre wavelets for the solution of initial value 
problems of Bratu-type and higher order Volterra IDE, 
Cauchy problems and they have also discussed theoretical 
analysis of Legendre wavelets method for the solution of 
Fredholm integral equations. 

In the present article, we apply Legendre wavelet 
method to find the approximate solution of

 
u x f x g t u t u t dt

x
′ ′( )= ( )+ ( ) ( )( )∫ , ,

0  
(1)

with the initial condition u s0( )=  (a constant) where f(x) 
is the source term. The Legendre wavelet method (LWM) 
consists of conversion of integro-differential equations into 
integral equations and expanding the solution by Legendre 
wavelets with unknown coefficients. The properties of 
Legendre wavelets together with the Gaussian integration 
formula are then utilized to evaluate the unknown coeffi-
cients and find an approximate solution to Eq. (1).

The organization of the paper is as follows: In section 2, 
we describe the basic formulation of wavelets and Legendre 
wavelets required for our subsequent development. Section 
3 is devoted to the solution of (1) by using integral operator 
and Legendre wavelets. Convergence analysis and the error 
estimation for the proposed method have been discussed 
in section 4. In section 5, we report our numerical finding 
and demonstrate the accuracy of the proposed scheme by 
considering numerical examples. Concluding remarks are 
given in the final section.

2. Properties of Legendre 
Wavelets

2.1 Wavelets and Legendre Wavelets
Wavelets constitute a family of functions constructed from 
dilation and translation of a single function called the 
mother wavelet. When the dilation parameter ‘a’ and the 
translation parameter ‘b’ vary continuously, we have the fol-
lowing family of continuous wavelets as:

 
ψ ψa b t a t b

a
a b R a, ( ) , , , .= −



 ∈ ≠

−1
2 0

 

If we restrict the parameters a and b to discrete values as  
a = a0

−k, b = n b0 a0
−k

, a0 >1, b0 > 0 and n, and k positive 
integer, we have the following family of discrete wavelets:

ψ ψk n
kt a a t nb, ( )= −( )−1

2
0 0  where ψk n t, ( ) form a basis of 

L2(R). In particular, when a0 = 2 and b0 = 1 then ψk n t, ( ) forms an orthonormal basis. 

Legendre wavelets ψ ψnm t k n m t( )= ( )∧
, , ,  have four 

arguments: n n n k∧ −= − =2 1 1 2 3 2 1, , , ... , , k can assume any 
positive integer, m is the order for Legendre polynomi-
als and t is the normalized time. They are defined on the 
interval [0,1] as

 

ψnm

k

m
k

k kt m P t n for n t n

otherwise
( ) , ,

,
= + −( ) − ≤ ≤ +




∧
∧ ∧

1
2

2 2 1
2

1
2

0

2




 

(2)

where m = 0,1,2, … , M−1, n = 1,2,3, … , 2k−1. The coeffi-

cient m+ 1
2

 is for orthonormality, the dilation parameter 

is a = 2−k and translation parameter is b = n k∧ −2 .
Here Pm(t) is well-known Legendre polynomials of 

order m which are defined on the interval [−1,1], and can 
be determined with the aid of the following recurrence 
 formulae:

 

P t P t t

P t m
m

t P t m
m

P t m

o

m m m

( ) = ( ) =

( )= +
+





 ( )−

+




 ( )+ −

1
2 1

1 1

1

1 1

,

, ==1 2 3, , , ....
 

2.2 Function Approximation
A function f(t) defined over [0,1) may be expanded as  

 
f t c tnm nm

mn
( ) = ( )∑∑

=

∞

=

∞
ψ

01  
(3)

where c f t tnm nm= ( ) ( )( ),ψ , in which (. , .) denotes the inner 
product. If the infinite series in Eq.(3) is truncated, then 
Eq.(3) can be written as 

 
f t c t C tnm nm

T

m

M

n

k

( ) ≅ ( ) = ( )∑∑
=

−

=

−

ψ ψ
0

1

1

2 1

, 

where C and ψ t( ) are 2k−1M x 1matrices given by

 C c c c c c c cM M Mk k=  − − −− −10 11 1 1 20 2 1 2 0 2 11 1, , ... , , ..., , ..., , ..., 
T
, (4)

 
ψ

ψ ψ ψ ψ
ψ ψ

t
t t t t

t
M

M

( ) =
( ) ( ) ( ) ( )
( )

−

−
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, , ..., , , ...,
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T
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.
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3. Legendre Wavelet Scheme for 
Nonlinear Integro-differential 
Equations
Consider the integro differential equation given in Eq.(1)

Integrating Eq.(1) w.r.t ‘x’ both sides, we get 

 
u x s f x dx g t u t u t dt dx

xxx
( )= + + ∫∫∫ ( ) ( , ( ), ’( ))

000  

 
u x G x F t u t dx

x
( ) ( ) ( , ( ))= + ∫

0  (6)

where G x s f x dx
x

( ) ( )= + ∫
0

 and 

F x u x g t u t u t dt
x

( , ( )) ( , ( ), ( ))= ∫ ′
0

Let u x C xT( )= ( )ψ . (7)

Therefore we have C x G x F t C t dxT T
x

ψ ψ( )= + ( )( )∫( ) ,
0

.

 (8)
We now collocate Eq.(8) at 2k−1M points at xi  as

 
C x G x F C x dxT

i
T

i

xi

ψ ψ( )= + ( )( )∫( ) .
0  

(9)

Suitable collocation points are zeros of Chebyshev polyno-
mials 

 x i M i Mi
k k= +( )( ) = −cos / , , , ..., .2 1 2 1 2 2 1π  

In order to use the Gaussian integration formula for  
Eq. (9), we transfer the intervals [0,xi] into the interval 
[−1,1] by means of the transformation

 
τ= −2 1

x
t

i

.
 

Eq. (9) may then be written as

 
C x G x

x
F

x
C

x
dT

i i
i i T iψ τ ψ τ τ( )= + +( ) +( )









∫

−
( ) ,

2 2
1

2
1

1

1

 

By using the Gaussian integration formula, we get 

C x G x
x

w F
x

C
x

i

T
i i

i
j

i T i

j

s
ψ τ ψ τ( )≈ + +( ) +( )









∑

=
=

( ) , ,
2 2

1
2

1
1

11 2 2 1, , ..., ,k M−

 (10)

where τ is s zeros of Legendre polynomials Ps+1 and wj are the 
corresponding weights. The idea behind the above approxi-
mation is the exactness of the Gaussian integration formula 
for polynomials of degree not exceeding 2s+1. Eq. (10) gives 

2k−1 M nonlinear equations which can be solved for the ele-
ments of C in Eq. (7) using Newton’s iterative method.

4. Convergence Analysis
In this section, we discuss the convergence and error analy-
sis of our proposed method.

Theorem 4.1: Convergence theorem
The series solution Eq. (3) of problem (1) using LWM con-
verges towards u(x).

Proof:
Let L2(R) be the Hilbert space and let 

ψ ψk n
kt a a t nb, ( )= −( )−1

2
0 0

where ψk n t, ( )  form a basis of L2(R). In particular, when 
a0 = 2 and b0 = 1, ψk n t, ( ) forms an orthonormal basis.

Let u x C xi i
i

M
( )= ( )∑

=

−

1 1
1

1
ψ  where C u x xi i1 1= ( ) ( ),ψ  for 

k=1 and ., .  represents an inner product.

 
u x u x x xi i

i

n
( )= ( ) ( ) ( )∑

=
,ψ ψ1 1

1  

Let us denote ψ1i x( ) as ψ x( ).
Let a j u x x= ( ) ( ),ψ  
Define the sequence of partial sums {Sn} of a j jxψ ( )( );  

let Sn and Sm be arbitrary partial sums with n m≥ . We are 
going to prove that {Sn} is a Cauchy sequence in Hilbert 
space.

Let S xn j j
j

n
= ( )∑

=
a ψ

1

 
u x S u x xn j j

j

n
( ) = ( ) ( )∑

−
, , a ψ

1  

 = a j j
j

n
u x x( ) ( )∑

=
,ψ

1
 

 = a aj j
j

n

−
∑

1
 

 = a j
j

n 2

1−
∑  

We will claim that S Sn m j
j m

n
− = ∑

= +

2 2

1
a  for n > m

Now a a aj j
j m

n

i i
i m

n

j j
j m

n
x x xψ ψ ψ( )∑ = ( )∑ ( )∑

= + = + = +1

2

1 1
,  

 = a ai
j m

n

j i j
i m
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x x
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∑ ( ) ( )∑
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a aj
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a j
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i.e. S Sn m j
j m

n
− = ∑

= +

2 2

1
a  for n > m.

From Bessel’s inequality, we have a j
j

2

1=

∞
∑ is convergent 

and hence

 S Sn m− 2

 → →∞0 as m n, . 

i.e. S Sn m− → 0 and {Sn} is a Cauchy sequence and it con-
verges to say ‘s’.

We assert that u(x) = s
Infact, S u x x S x u x xj j j− ( ) ( ) = ( ) − ( ) ( ), , ,ψ ψ ψ

 = 
n

n j jLt S x
→∞

( ) −,ψ a  

 = 
n

n j jLt S x
→∞

( ) −,ψ a  
 = a aj j−  

⇒ S u x x j− ( ) ( ),ψ =0

Hence u x s( )=  and a j j
j

n
xψ ( )∑

=1
 converges to u(x) and 

this completes the proof.

5. Error Estimation
In this part, error estimation for the approximate solution 
of Eq. (6) is discussed. Let us consider e x u x u xn ( )= ( )− ( ) 
as the error function of the approximate solution u x( ) for 
u x( ), where u x( ) is the exact solution of Eq. (6).

u x G x F t u t dt H xn

x
( )= + +∫( ) ( , ( )) ( )

0
 where H xn ( ) is the 

perturbation term.

 
H x u x G x F t u t dtn

x
( ) = ( )− − ∫( ) ( , ( ))

0
.
 

(11)

We proceed to find an approximation e xn ( ) to the error 
function e xn ( ) in the same way as we did before for the 
solution of the problem. Subtracting Eq. (11) from Eq. (6), 
the error function e tn ( ) satisfies the problem.

 
e x F t u t dt xn

x
( )+ ∫ = − ( )( , ( ))

0
Hn  

(12)

It should be noted that in order to construct the approxi-
mate e xn ( ) to e xn ( ), only Eq. (12) needs to be recalculated in 
the same way as we did before for the solution of Eq. (6).

We ensure the stability of LWM through this conver-
gence and error estimation.

6. Illustrative Examples
In this section, we apply LWM to solve some nonlinear 
IDE [4, 11, 17] and compare the LWM solutions of these 

problems with Homotopy perturbation Method (HPM), 
Wavelet Galerkin Method (WGM) and Hybrid methods.

Example 4.1
Consider the following nonlinear Volterra IDE:

 
u x u t u t dt

x
′ ′( ) ( ) ( )= + ∫1

0  
(13)

for x ∈[ , ]0 1  with the initial condition u(0)=0.
Applying LWM on Eq. (13), we have

 

C x x
x

w F
x

C
x

i

T
i i

i
j

i T i

j

s
ψ τ ψ τ( )≈ + +( ) +( )









∑

=
=2 2

1
2

1

1 2
1

, ,

, ,, ..., ,2 1k M−

 (14)

where F x u x u t u t dx
x

, ’( ) ( )( )( )= ∫
0

On solving equation Eq. (14) with k=1 and M=8, we find

 c c c c c

c c

10 11 12 13 14

15 16

0 1
2 3

0 1
120 7

0

1
120960 11

0

= = = = =

= =

, , , , ,

, ,…

 

Hence the approximate solution is 

u x x x x x( ) ...= + + + +
3 5

7

6 30
17

2520
, and the exact solution is 

2
2

tan x



 . 

We compare the LWM solution with the results given 
in [4, 11] and is presented in Table 1. The comparison 
between LWM and the exact solutions are depicted in  
Figure 1. 

Figure 2. shows the plot of error using LWM with  
M = 2, 4, 8, and 16. From the Figure, we observe that 
LWM converges to the exact solution as M values  
increases.

Example 4.2
Consider the nonlinear Volterra IDE:

 
u x u t dt

x
′( ) ( )= − + ∫1 2

0  
(15)

for x ∈[ , ]0 1  with the initial condition u(0)=0, Apply LWM 
on (15), we have 

C x x
x

w F
x

C
x

i

T
i i

i
j

i T i

j

s
ψ τ ψ τ( )≈ − + +( ) +( )









∑

=
=2 2

1
2

1

1
1

, ,

,22 2 161,..., , ( )k M−

 

where F x u x u t dx
x

, ( )( )( )= ∫ 2

0
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On solving equation (16) with k = 1 and M = 14, we 
have 

 
u x x x x x x( ) ...= − + − + − +

4 7 10 13

12 252 6048 145152  

We compared the LWM solution with the results given in 
[4, 11] and is presented in Table 2.

Example 4.3
Consider the following nonlinear Volterra IDE [17]

 
u x x t u t dt x x x

x
′( ) cos( ) ( ) sin cos cos− −∫ = − − −2

0
2 1

3
2
3

2

 (17)

with the initial condition u( )0 1= .

Table 1. Numerical results of Example 4.1

X Exact WGM HPM LWM Error
0 0 0 0 0 0

0.0625 0.06254 0.0626 0.06254 0.06253 1.0721e-05
0.1250 0.12532 0.1253 0.12533 0.12532 6.5413e-06
0.1875 0.18860 0.1886 0.18861 0.18860 6.4129e-06
0.2500 0.25263 0.2527 0.25264 0.25263 7.1357e-06
0.3125 0.31768 0.3177 0.31769 0.31768 7.6070e-06
0.3750 0.38404 0.3841 0.38403 0.38403 1.3496e-05
0.4375 0.45201 0.4520 0.45199 0.45198 3.2517e-05
0.5000 0.52193 0.5220 0.52188 0.52187 6.0515e-05
0.5625 0.59416 0.5942 0.59405 0.59404 1.2863e-04
0.6250 0.66914 0.6692 0.66890 0.66890 2.4193e-04
0.6875 0.74731 0.7473 0.74685 0.74684 4.7980e-04
0.7500 0.82923 0.8293 0.82838 0.82837 8.6897e-04
0.8125 0.91554 0.9156 0.91401 0.91400 1.5480e-03
0.8750 1.00688 1.0069 1.00433 1.00432 2.5661e-03
0.9375 1.10419 1.1042 1.10002 1.10002 4.1731e-03
1.0000 1.20846 1.2085 1.20185 1.20184 6.6202e-03

Figure 1. The comparison of the LWM solution and Exact 
solution of Example 4.1.
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Figure 2. Plot of error for LWM with different values of M 
(2, 4, 8, 16).
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Table 2. Numerical results of  Example 4.2

X WGM HPM LWM
0 0 0 0

0.0625 _0.0625 _0.06250 _0.06249
0.1250 _0.1250 _0.12498 _0.12497
0.1875 _0.1874 _0.18740 _0.18739
0.2500 _0.2497 _0.24968 _0.24967
0.3125 _0.3117 _0.31171 _0.31170
0.3750 _0.3734 _0.37336 _0.37335
0.4375 _0.4345 _0.43446 _0.43445
0.5000 _0.4948 _0.49482 _0.49482
0.5625 _0.5542 _0.55423 _0.55422
0.6250 _0.6124 _0.61243 _0.61243
0.6875 _0.6692 _0.66917 _0.66916
0.7500 _0.7242 _0.72415 _0.72415
0.8125 _0.7771 _0.77710 _0.77709
0.8750 _0.8277 _0.82767 _0.82766
0.9375 _0.8756 _0.87557 _0.87556
1.0000 _0.9205 _0.92048 _0.92047
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Solving Eq. (17) with k = 1 and M = 5 using LWM, we 

get the approximate solution u x x x x x( ) ...= − − + + +1
2 6 24

2 3 4

,  

and the exact solution is u x x x( ) cos sin= − .
The comparison among the LWM solution besides the 

solution in [17] and exact solutions are shown in Table 3.
Figure 3 shows the comparison between LWM and the 

exact solutions of example 4.3.
Figure 4 shows the plot of error using LWM with M = 2, 

4, and 8. From the Figure, we observe that LWM converges 
quickly to the exact solution even when M = 8.

Example 4.4
Consider the following nonlinear Volterra IDE [17]

 

u x u x x u t dt

x x x x x

x
′( ) ( ) sin ( )

cos ( ) sin cos sin .

+ − ∫ =

+ − +

2

1

2

0
2  

(18)

with the initial condition u( )0 0= .
Solving Eq. (18) with k = 1 and M = 8 using LWM, we get 

the approximate solution u x x x x x( ) ...= − + − +
3 5

7

6 120
1

5040
, 

and the exact solution is u x x( ) sin .=
The comparison among the LWM solution besides the 

solution in [17] and exact solutions are shown in Table 4.  
From Tables and Figures, we observe that the LWM solu-
tions coincide with other mentioned methods. 

7. Conclusion 
In this work, we have proposed the Legendre wavelet  
method (LWM) for solving the nonlinear IDE. The proper-
ties of the Legendre wavelets together with the Gaussian 
integration method are used to reduce the problem to the 
solution of nonlinear algebraic equations. Also the conver-
gence of the Legendre wavelet method is proved for the 
given function approximation. Illustrative examples clearly 
depict the validity and applicability of the technique.  

Table 3. Numerical results of Example 4.3

X
Solution  
in [25]

LWM 
solution

Exact  
solution

Error

0.0 0.999999 1 1 0.0
0.1 0.895186 0.89517074 0.895170748 8e-09
0.2 0.781653 0.78139724 0.781397247 7e-09
0.3 0.659732 0.65981623 0.659816282 5.2e-08
0.4 0.530699 0.53164231 0.531642651 3.41e-07
0.5 0.398169 0.39815538 0.398157023 1.64e-06
0.6 0.260969 0.26068720 0.260693141 5.94e-06
0.7 0.120671 0.12060684 0.1206245 1.76e-05
0.8 −0.020638 -0.02069475 -0.020649381 4.53e-05
0.9 −0.161638 -0.16182136 -0.161716941 1.04e-04
1.0 −0.301983 -0.30138888 -0.301168678 2.20e-04
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Figure 4. Plot of error for LWM with different values of M 
(2, 4, 8).

Figure 3. The comparison of LWM solution and Exact 
solution of Example 4.3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

u

Exact

LWM



Wavelet Solution for Class of Nonlinear Integro-differential Equations4676

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645www.indjst.org | Vol 6 (6) | June 2013

Furthermore, since the basis of Legendre wavelets are poly-
nomial, the values of integrals for the nonlinear integral 
equations of the form in Eq. (6) are calculated as approxi-
mately close to the exact solutions.
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