
Indian Journal of Science and Technology, Vol 9(2), DOI: 10.17485/ijst/2016/v9i2/86343, January 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

*Author for correspondence

Design and Implementation of Reconfigurable
ALU for Signal Processing Applications

J. Thameema Begum1*, S. Harshavardhan Naidu2, N. Vaishnavi1,
G. Sakana1 and N. Prabhakaran1

1Electronics and Communication Engineering, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala
Engineering College, Avadi, Chennai – 600062, Tamil Nadu, India; thameema84@gmail.com,

vaishnaviec07@gmail.com, sasikdnl@gmail.com, captainprabhakar1982@gmail.com
2Electronics and Electrical Engineering, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala

Engineering College, Avadi, Chennai – 600062, Tamil Nadu, India; sapineniharsha@gmail.com

Abstract
Background/Objectives: The main objective of the paper is to implement a reconfigurable ALU that is a combination
of a 32-bit floating point adder/subtractor and integer ALU. The integer ALU performs integer functions and logical
operations such as addition, subtraction, shifting and comparison. Methods/Statistical analysis: In this paper, a 32-bit
single precision format based on IEEE754 standard for the floating-point unit, with a 23-bit mantissa, 8-bit exponent and
1-bit sign value is considered. Findings: Verilog Hardware Description Language (HDL) is used and simulated by model
sim simulator and then synthesized with Spartan3E FPGA. The functional unit uses 25% number of slices, 9% number
of slice flip-flops, 18% of 4 input LUTs. From the timing report, the maximum frequency obtained is 81.614MHz. The
maximum power obtained by the system is 82.46mW. Applications/Improvements: This can be used for data-parallel
and computation intensive applications and in multimedia applications.

1. Introduction
With the development in the field of Programmable
Logic Devices (PLD’s), implementation of reconfigurable
systems have become possible to a large extent. One such
PLD is the Field Programmable Gate Array (FPGA), which
is a hardware device with programmable logic, routing,
memory, and I/O and its configuration is generally
specified using a hardware description language1.
Reconfigurable computing makes use of FPGA’s for
implementation of complex algorithms and when applied
to an Arithmetic Logic Unit (ALU), makes it possible
for the user to select the type of input and functionality
to be performed. This paper describes the design and

methodologies of the various functions performed by a
reconfigurable ALU.

The IEEE (Institute of Electrical and Electronics
Engineers) has given a standard to define floating-
point representation. Even though there are other
representations, it is the most commonly used for floating
point numbers. IEEE 754 standard specifies formats
and methods for floating-point arithmetic in computer
systems - standard and extended functions with single,
double, extended, and extendable precision - and
recommends formats for data interchange2. Exceptions
and the standard handling of these conditions have also
been specified3. The IEEE 754 standard describes three
formats for representing floating point numbers. These

Keywords: Field Programmable Gate Arrays (FPGA), Hardware Description Language (HDL), Reconfigurable Arithmetic
Logic Unit

Design and Implementation of Reconfigurable ALU for Signal Processing Applications

Indian Journal of Science and TechnologyVol 9 (2) | January 2016 | www.indjst.org 2

include the 32 bit single precision, 64 bit double precision
and 128 bit extended double precision3.

A 32-bit single precision format for our floating-point
addition and subtraction is considered in this paper. The
single precision format has 1-sign bit, 8 exponent bits and
23 mantissa bits. The bias value is 127. The exponent, e
= E+127, has an exponent range of Emin = -126 to Emax =
+1273, 4.

2. Design Hierarchy
The reconfigurable ALU implemented here performs
floating point and integer addition and subtraction,
integer multiplication, shifting and comparison and the
required function can be selected using a multiplexer5,6.
The basic top-level block diagram is shown in Figure 1.

The reconfigurable ALU consists of the following
modules: The floating point adder and subtractor which
performs the addition and subtraction of the floating
point numbers, the integer adder and subtractor which
performs the addition and subtraction of the integer
numbers, the shifter used to shift the input in either left
or right direction, the comparator for logical comparison
of the two inputs. All the inputs are 32 bits.

Figure 1. Top-level block diagram.

2.1 Floating Point Number Addition and
Subtraction

According to the IEEE 754 single precision format,
the 32-bit input can be divided into three parts namely
sign, exponent and mantissa, which is presented in
Figure 2.

S = SIGN (1-bit), E = EXPONENT (8-bits), M = MANTISSA (23-bits)
Figure 2. Three components of 32-bit input.

Two 32-bit inputs each of them divided into the sign,
exponent and mantissa forms are considered (Figure 2).
Comparison of the two exponent values and assigning of
the larger and smaller exponents and fractions follow this.
The smaller fraction is then right shifted by the difference
value (of the two exponents). A control bit is used to
decide whether addition or subtraction operation is to
be performed. For addition, XOR the two sign bits and if
the output bit is zero then perform addition else perform
subtraction. For subtraction, take the complement of one
sign and XOR the two sign bits. If the output bit is zero
then perform addition else perform subtraction.

2.1.1 Exponent Block
In the Figure 3, multiplexer-1(MUX1) is used to select the
larger exponent. The select lines to the MUX1 are given
from the control unit and the output from the MUX1,
which is the larger exponent, goes into the normalization
unit.

MUX
2

2's
C
O
M
P
L
M
E
N
T

N
O
R
M
A
L
I
Z
A
T
I
O
N

U
N
I
T

S E M

SUBSTRACTOR

MUX
1

Ea

CONTROL
UNIT`

COMPARATOR

Ea

Eb

ENCODE
R

A

A

A

S

S

Eb

Ea

Eb

Fb

Fa

Fa

Fb

Fb
Fa

gnd

gnd

Figure 3. Floating point addition/ subtraction unit.

2.1.2 Sign Block
The output sign is the sign bit of the input with the larger
exponent.

2.1.3 Mantissa Block
Comparison of the two-mantissa values is done using the
comparator and there are three possible outputs: First

J. Thameema Begum, S. Harshavardhan Naidu, N. Vaishnavi, G. Sakana and N. Prabhakaran

Indian Journal of Science and Technology 3Vol 9 (2) | January 2016 | www.indjst.org

mantissa is greater than second mantissa. Second mantissa
is greater than first mantissa. Both the mantissa values are
equal. These outputs are then given into an encoder and
the encoder output is used to select the output from the
multiplexer-2 (MUX2). A shifter is then used to shift the
smaller mantissa by the difference in exponents, given
by the exponent subtractor and the resultant mantissa is
given into the normalization unit.

2.1.4 Normalization Block
The output exponent and mantissa of the addition/
subtraction process is given into the normalization unit
where the normalization of the mantissa is done and the
corresponding change in exponent occurs and the final
exponent and mantissa is obtained.

2.2 Exception Handling
Exception handling has also been considered. The three
basic exceptions checked here are: 1. Output zero, 2.
Output infinity and 3. Not a Number (NaN). A three-bit
register is used to indicate the occurrence of exceptions.
The final output is given out as (sout, eout, fout). The
flowchart for floating point adder/subtractor is given in
Figure 4. By looking at the flowchart, the functionality of
floating point addition and subtraction as explained for
the block diagram is understood.

2.3 Integer Addition/ Subtraction
This module in Figure 5 performs the addition or
subtraction of two integer inputs. It is implemented using
four 8-bit full adders each of which is implemented using
eight 1-bit full adders. Here each bit of the second input
is XORed separately with the input carry bit. When input
carry bit, cin, is low the module performs addition of
the two inputs and when input cin is high, subtraction
is performed. During addition the second input is fed
as such to the adder whereas during subtraction the 2’s
complement form of the second input is fed to the adder.

2.4 Shifter
A barrel shifter shown in Figure 6 is used for shift
application. Both left and right shifts are possible. The
amount of shift can also be controlled. There are three
inputs to the shifter module. A 32-bit input is provided to
the shifter module. The direction of the shift is specified
by the input d, d = 0 specifies left shift and d = 1 specifies

Figure 4. Flowchart of floating point adder/subtractor.

32 BIT ADDER\SUBTRACTOR

XOR

B(32-bit)

 A(32-bits)

 Cin

Cout (1-bit) Sum (32-bits)

Figure 5. Integer adder/subtractor.

Design and Implementation of Reconfigurable ALU for Signal Processing Applications

Indian Journal of Science and TechnologyVol 9 (2) | January 2016 | www.indjst.org 4

right shift. The amount of shift is determined by the input
sc. Shifts of 1, 2, 4, 8 and 16 bits are possible; sc is a 5 bit
register. When sc = 00001, it is a 1 bit shift. When sc =
00010, it is a 2 bit shift, sc = 00100 indicates a 4 bit shift
and so on. Thus d = 1 and sc = 00010 indicates a shift of 2
bits to the right.

`

1 SHIFT

2 SHIFT

4 SHIFT

8 SHIFT

16 SHIFT

d

SC

OUT

IN

Figure 6. Barrel shifter.

2.5 Logical Comparator
A 32-bit comparator has been shown in Figure 7. There
are 3 outputs to the module: greater, equal and lesser.
The two inputs each are of size 32-bits and are compared
bitwise. The comparator is implemented using AND, OR
and NOR gates. The outputs of the comparator becomes
one when A is greater than, equal to or lesser than B. Thus
the output ‘greater’ becomes 1 when A is greater than
B. The output ‘equal’ becomes 1 when A = B and ‘lesser’
becomes 1 when A<B.

NOT

NOR

NOT

AND

AND OR

IN A

IN B

OR G

E

L

Figure 7. Logical comparator.

3. Implementation
Consider the two inputs 00111110100000000000000000
000000 and 11000010110010000000000000000000. The
implementation in each module is as follows.

In the floating-point unit the two inputs are split into the
sign, exponent and mantissa. Thus sa = 0, ea = 01111101
and fa = 00000000000000000000000. Similarly sb = 1, eb =
10000101, fb = 10010000000000000000000. The exponent
bits of the two inputs are then compared. Since ea<eb, el
= eb = 10000101 and es = ea = 01111101 where el and
es represents larger and smaller exponents respectively.
Similarly fl = fb = 10010000000000000000000 and fs =
00000000000000000000000. Now the difference between
the two exponents is calculated to be 00001000. fs is
shifted by the difference in the exponents and is obtained
as 00000001000000000000000 and es is incremented by 8
bits iees = 10000101 = el. For addition, the two sign bits are
XORed to obtain the result as 1. Now the two mantissas
are subtracted to obtain 10001111000000000000000. The
output is then normalized to obtain the result 1100001
011001111000000000000000. For subtraction the same
procedure is followed except that the complemented form
of sb is used.

In the integer adder/subtractor module addition
and subtraction is performed on the basis of cin
input considered. If the cin input is 0, then XOR
operation of A, B, cin is done and sum = 100000001
010010000000000000000000 is obtained and when
the cin input is 1, subtraction is performed and sum =
110010010110000000000000000000 is obtained.

Let the shifter module be fed with the first input. Let
the input be shifted to the left with a shift amount of 2 bits.
The result of the shifter becomes 11111010000000000000
000000000000.

The comparator compares the two inputs and gives
three results as follows; greater, equal and lesser. Here since
input B is greater than input A, the result of comparator
becomes greater = 0, equal = 0 and lesser = 1.

4. Results and Discussion
The proposed paper has been simulated in Model Sim and
synthesized in Xilinx. According to the top-level diagram
in Figure 1, when the select line of the mux is 00, the
floating-point unit is selected. The floating-point output
is shown in Figure 8. The final output is a 32-bit value.

The Figure 9 shows the integer adder/subtractor
module output. The output is obtained when the select
line of the mux is 01. The shifter output is shown in Figure
10. The sc value is 00010, and d is 0, which implies a left
shift is done by two positions. Input, in_1 is taken as
input for the shift. The Figure 11 shows the comparator

J. Thameema Begum, S. Harshavardhan Naidu, N. Vaishnavi, G. Sakana and N. Prabhakaran

Indian Journal of Science and Technology 5Vol 9 (2) | January 2016 | www.indjst.org

output. Here the two inputs have been compared and the
three LSB bits of the output indicates whether the result is
greater, equal or lesser respectively.

Figure 8. Floating-point output.

Figure 9. Integer adder and subtractor output.

Figure 10. Shifter output.

Figure 11. Comparator output.

This RTL schematic is similar to the top-level block
diagram as shown in Figure 1. The top-level schematic of
the modules are shown in Figure 12. The floating point

adder/subtractor schematic has been generated and
shown in Figure 13. It is seen that the output from the
floating-point adder subtractor block is the first input
into the final selection mux. The output is given out when
the select line becomes 00.

Similar to the Figure 13, Figure 14 shows the integer
adder subtractor block and the output from this block is
the second input into the final selection mux. The output
is shown when the select line becomes 01. The Figure 15
shows the barrel shifter. The output of this block is given
as the third input of the mux, which is given as output
from mux when select line is 10. The Figure 16 shows
the RTL schematic of comparator block. The output is
selected when the select line is 11.

Figure 12. Top-level RTL schematic.

Figure 13. Floating point adder/subtractor RTL schematic.

Design and Implementation of Reconfigurable ALU for Signal Processing Applications

Indian Journal of Science and TechnologyVol 9 (2) | January 2016 | www.indjst.org 6

Figure 14. Integer adder/subtractor RTL schematic.

.
Figure 15. Barrel shifter RTL schematic.

Figure 16. Comparator RTL schematic.

The Figure 17 shows the Synthesis report and the output
shows the functional unit which uses 25% number of
slices, 9% number of slice flip-flops, 18% of 4 input LUTs.

5. Conclusion
This system was implemented using the simulation tool
and the functional unit uses 25% number of slices, 9%
number of slice flip-flops, 18% of 4 input LUTs. From
the timing report, the maximum frequency obtained
as 81.614MHz. The power of the system was obtained
as 82.46mW.As future enhancement the system can be
implemented using a decoder instead of a mux. This
will reduce the power consumption. Also multiplier

and divider logic can be included in the floating point
as well as integer units. More logical operations can also
be implemented. This can be used for both floating point
and integer operations. The system has been designed for
32 bit inputs and therefore must be generalized for other
input bit sizes.

6. References
 1. Brown SD. Field Programmable Gate Arrays. Kluwer

Academic Publishers; 1992; 180.
 2. IEEE. IEEE standard Floating-Point Arithmetic. IEEE Std

574-2008. 2008. p. 1–58.
 3. Ismail RC, Coleman JN, Norzahiyah N, Sauli Z. A

Comparative analysis between logarithmic number system
and floating-point ALU. Advances in Environmental
Biology. 2013; 7(12):3601–6.

 4. Hollasch S. IEEE Standard 754 Floating Point Numbers.
2005. p. 1–8.

 5. Suhaili S, Sidek O. Design and implementation of
reconfigurable ALU on FPGA. 3rd International Conference
on Electrical and Computer Engineering; Dhaka:
Bangladesh. University of Malaysia; 2004. p. 28–30.

 6. Khaladkar RB, Anita Angeline A, Kanchana Bhaaskaran
VS. Dynamic logic ALU design with reduced switching
power. Indian Journal of Science and Technology. 2015 Aug;
8(20):1–8.

Figure 17. Synthesis Report.

