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Abstract
In most of the research articles, demand is considered either constant or a function of single variable which is not practical;  
customers’ purchasing deeds may be affected by factors such as selling price and inventory level consequently in the 
present study we have considered demand rate as a function of stock-level and selling price both. Various researchers 
considered the situation in which shortages are either completely backlogged or completely lost which is not realistic 
therefore in development of this model it is assumed that shortages are partially backlogged and the most realistic backlog-
ging rate is considered. In this research, we proposed a partial backlogging inventory model for decaying items considering 
stock and selling price dependent demand rate in fuzzy environment. In developing the model demand rate, ordering 
cost, purchasing cost, holding cost, backordering cost and opportunity cost are considered as triangular fuzzy numbers. 
Graded mean integration representation method is used for defuzzification. A numerical example is provided to illustrate 
the problem. Sensitivity analysis of the optimal solution with respect to the changes in the value of system parameters is 
also discussed. 

1.  Introduction
Many realistic experiences disclose that some but not all 
customers will wait for backlogged items during a shortage 
period, such as for fashionable supplies and the products 
with short life cycle. The longer the waiting time is, the lesser 
the backlogging rate would be. According to such phenom-
enon, backlogging rate should not be disregarded. Thus it is 
necessary to consider backlogging rate. Researchers, such 
as Park [8], Hollier and Mak [9] and Wee [11] developed 
inventory models with partial backorders. Goyal and Giri 
[10] developed production inventory model with shortages 

partially backlogged. Wu et al. [12] developed a replenish-
ment policy for deteriorating items with stock-dependent 
demand and partial backlogging. Singh [17] presented a 
perishable inventory model with quadratic demand and 
partial backlogging. Skouri et al. [14] presented an inven-
tory model with ramp type demand rate, partial backlogging 
and Weibull deterioration rate.

Deterioration is a natural phenomenon in many real 
situations so it can plays an important role in developing 
an inventory model. Generally, deterioration is defined as 
damage, spoilage, decay and obsolescence, vaporization, 
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fuzzy surroundings. A numerical example to prove that 
the optimal solution exists and is unique is provided and 
the sensitivity analysis with respect to system parameters 
is discussed. The concavity is also shown through the  
figure 2.

2. Assumptions and Notations
The basic assumptions of the model (figure 1) are as follows:

(1)	The demand rate is a function of stock and selling 
price considered as f (t) = (a+bQ(t) − p) where a > 0, 0 
< b < 1, a > b and p is selling price.

(2)	Holding cost h(t) per item per time-unit is time  
dependent and is assumed to be h(t) = h + δt where  
δ > 0, h > 0.

(3)	Shortages are allowed and partially backlogged and 
rate is assumed to be 1/(1+ηt) which is a decreasing 
function of time.

(4)	The deterioration rate is time dependent.
(5)	T is the length of the cycle.
(6)	Replenishment is instantaneous and lead time is zero.
(7)	The order quantity in one cycle is Q.
(8)	The selling price per unit item is p.
(9)	A is the cost of placing an order.

(10)	c1 is the purchasing cost per unit per unit.
(11)	c2 the backorder cost per unit per unit time.
(12)	c3 the opportunity cost (i.e., goodwill cost) per unit.
(13)	P(T, t1, p) the total profit per unit time.
(14)	The deterioration of units follows the two param-

eter Weibull distribution (say) θ(t) = αβtβ-1 where 0 
< α < 1 is the scale parameter and β > 0 is the shape 
parameter.

(15)	During time t1, inventory is depleted due to deteriora-
tion and demand of the item. At time t1 the inventory 
becomes zero and shortages start going on.

etc., that result in decrease of value of the original one. 
In most of the classical problems deterioration is consid-
ered. The first model for decaying items was presented by 
Ghare and Schrader (21). It was extended by Covert and 
Philip (22) considering Weibull distribution deteriora-
tion. Goswami et al. [1] developed an inventory model for 
deteriorating items with shortages and a linear trend in 
demand also a complete survey for deteriorating inventory 
models was presented by Raafat (23). Some other papers 
relevant to this topic are Teng et al., (27), Chang et al. [13] 
and Abdul and Murata, (24). 

Many classical research articles assumed that the 
demand is constant during the sales period. In real life, the 
demand may be inspired if there is a large pile of goods 
displayed on shelf. Levin et al. (6) termed that the more 
goods displayed on shelf, the more customer’s demand will 
be generated. Gupta and Vrat (26) were the first to build 
up models for stock-dependent consumption rate. Baker 
and Urban [2] established an EOQ model for a power-
form inventory-level-dependent demand pattern. Mandal 
and Phaujdar [3] then developed a production inventory 
model for deteriorating items with uniform rate of produc-
tion and linearly stock-dependent demand. Other papers 
related to this research area are [25, 4, 5, 7, 15, 16].

In real life situations, due to impreciseness of param-
eters in inventory, it is important to consider them as fuzzy 
numbers. The concept of fuzzy set theory first introduced 
by Zadeh L. [18], after that Park [19] extended the classi-
cal EOQ model by introducing the fuzziness of ordering 
cost and holding cost. A fuzzy model for inventory with 
backorder, where the backorder quantity was fuzzified as 
the triangular fuzzy number was presented by Chang et al. 
(28). Recently a supply chain inventory model under fuzzy 
demand was established by Ruoning Xu, Xiaoyan Zhai 
[20].

Above cited papers reveals that many research articles 
are developed in which demand is considered as the func-
tion of stock level or selling price, shortages are allowed 
and partially backlogged, but there is no such research 
paper which is partially backlogged assuming demand rate 
as the function of selling price and inventory level in fuzzy 
environment. In lots of business practices it is observed 
that several parameters in inventory system are imprecise. 
Therefore, it is necessary to consider them as fuzzy num-
bers while developing the inventory model.

In the present study we have developed a partial 
backlogging inventory model for deteriorating items  
considering stock and price sensitive demand rate in Figure 1.  Graphical representation of the model.
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3. Mathematical Formulation and 
Solution
Let Q(t) be the inventory level at time t (0 ≤ t ≤ T). During 
the time interval [0, t1] inventory level decreases due to the 
combined effect of demand and deterioration both and at 
t1 inventory level depletes up to zero. The differential equa-
tion to describe immediate state over [0, t1] is given by:

	 Q t t Q t a bQ t p′( ) ( ) ( ( ) )+ = − + −−a b b 1  0 ≤ t ≤ t1� (1)

Again, during time interval [t1,T] shortages stars occurring 
and at T there are maximum shortages, due to partial back-
ordering some sales are lost. The differential equation to 
describe instant state over [t1,T] is given by:

	
Q t

a p
T t

′( )
( )

[ ( )]
= −

−
+ −1 h

 t1 ≤ t ≤ T� (2)

With condition Q(t1) = 0 	
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Ordering cost is
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Shortage cost due to backordered is:
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Lost sales cost due to lost sales is:
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From (6), (7), (8), (9) and (10) total profit per unit time is given by:
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Let t1 = γT, 0 < γ < 1
Hence, we get the profit function
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Our objective is to maximize the profit function P(T, p). The necessary conditions for maximizing the profit are
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Using the software Mathematica-8.1, from equation (13) 
and (14) we can determine the optimum values of T * and p* 
simultaneously and the optimal value P*(T, p) of the aver-
age net profit is determined by (12) provided they satisfy 
the sufficiency conditions for maximizing P*(T, p) are

	 ∂
∂

<
2

2 0
P T p

T
( , ) , ∂

∂
<

2

2 0
P T p

p
( , )  and

	

∂
∂

∂
∂

−
∂

∂ ∂




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>
2

2

2

2

2 2

0
P T p

T
P T p

p
P T p
T p

( , ) ( , ) ( , )

4.  Numerical Example
Let A=250, a=180, b=0.015, c1=20, c2=5, c3=25, α=0.4, 
β=0.3, γ=0.5, h=0.6, η=0.5, δ=0.04
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Based on these input data, the findings are as follows: 

	 p*=102.259, t1
*=0.96327, Q*=159.338, T*=1.92654 and 

P*(T, p)=5943.42.

5.  Observations
Some important inferences drawn from the Figures 3 to 11 
are as follows:

(1)	 It is observe from the figures that optimal replen-
ishment quantity and total profit increases as the 
parameters a, b increases. 

(2)	 As the parameter c1 increases the order quantity 
increases but the total profit slightly decreases.

(3)	 The optimal replenishment quantity and total profit 
decreases as the parameters c2, α, η and h increases.

(4)	 The table shows that optimal order quantity decreases 
and the total profit increases as β increases.

(5)	 The optimal order quantity and total profit very slightly 
decreases as the parameter δ increases.
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Figure 2.  Concavity of the profit function.

 

Figure 3.  Net Profit v/s change in parameter a.

 

Figure 4.  Net Profit v/s change in parameter b.

 

Figure 5.  Net Profit v/s change in parameter c1.

 

Figure 6.  Net Profit v/s change in parameter c2.

 

Figure 7.  Net Profit v/s change in parameter α.
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6.  Fuzzy Mathematical Model
In this study we consider a, A, c1, c2, c3, h and δ as fuzzy num-
bers i.e, as a A c c c h and



 


 , , , , ,1 2 3 d  Then P*(T,P) is regarded as 
the estimate of total profit per unit time in the fuzzy sense.

a a a = − +( )∆ ∆1 2,a,  where 0 < ∆1 < a and ∆1∆2 > 0

A A A = − +( )∆ ∆3 4,A,  where 0 < ∆3 < A and ∆3∆4 > 0

c c c c

1 1 5 1 1 6= − +( )∆ ∆, ,  where 0 < ∆5 < c1 and ∆5∆6 > 0

c c c c

2 2 7 2 2 8= − +( )∆ ∆, ,  where 0 < ∆7 < c2 and ∆7∆8 > 0

c c c c

3 3 9 3 3 10= − +( )∆ ∆, ,  where 0 < ∆9 < c3 and ∆9∆10 > 0

h h h h = − +( )∆ ∆11 12, ,  where 0 < ∆11 < h and ∆11∆12 > 0

d d d d = − +( )∆ ∆13 14, ,  where 0 < ∆13 < δ and ∆13∆14 > 0

And the signed distance of a  to 0  is given by the relation 
d 1( , )a a 0 14 2= + −( )∆ ∆  where d( a , 0 ) > 0 and d( a ,  0 )
∈  [a – ∆1, a + ∆2] 

Similarly, the signed distance of other parameters to 0
is given by the relations

d( , ) ,A A
0 14 4 3= + −( )∆ ∆  where d ( A , 0 ) > 0 and d( A ,  

0 )∈  [A – ∆3, A + ∆4] 

d( , ) ,c c 

1 0 1
14 6 5= + −( )∆ ∆ where d ( c

1 , 0 ) > 0 and d( c
1 ,  

0 )∈  [c1 – ∆5, c1 + ∆6] 

d( , ) ,c c 

2 0 2
14 8 7= + −( )∆ ∆  where d ( c

2 , 0 ) > 0 and d( c 2
,  

0 )∈  [c2 – ∆7, c2 + ∆8] 

d( , ) ,c c 

3 0 3
14 10 9= + −( )∆ ∆  where d ( c 3 , 0 ) > 0 and d( c 3 ,  

0 )∈  [c3 – ∆9, c3 + ∆10] 

( )12 11
ˆ ˆd( ,0) ¼ ,h h= + ∆ − ∆  where d ( h , 0 ) > 0 and d( h , 

0 )∈  [h – ∆11, h + ∆12] 

d( , ) ,d d

0 14 14 13= + −( )∆ ∆  where d (d , 0 ) > 0 and d(d ,  
0 )∈  [h – ∆13, h + ∆14]

 

Figure 8.  Net Profit v/s change in parameter β.

 

Figure 9.  Net Profit v/s change in parameter h.

 

Figure 10.  Net Profit v/s change in parameter η.

 

Figure 11.  Net Profit v/s change in parameter δ.
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Now, by the fuzzy triangular rule fuzzy total profit per unit is

FP( a , A , c
1
, c

2
, c

3
, h ,d) = (F1,F2,F3)

And F1, F2, F3 are obtained as

F
T

p a p T b a p p T b T T

1

1 1

2 2 3 3 2 2

1

2 3 2

=

− − + − − + +
+







−
+ +

( ) ( )∆ ∆ g g ag
b

b b

(( )

( )( )
log (

A

c a p
T b T T

T

+

− + − −
+ +

+

+ + −

+ +

∆

∆ ∆

4

1 6 1

2 2 1 1

2 1
1 1

g g ag
b

h
h g

b b

TT

c a p
T T T T

)

( )( )
( ) log ( )

( )



















−
+ − −

− − + −( ){2 8 1
2 1

∆ ∆
h

h g h g }}

−
+ − −

− − + −( ){ }

− + −

−

( )( )
( ) log ( )

( )

(

c a p
T T T T

a p

h

3 10 1

2

1

1
∆ ∆

∆

∆

h
h g h g

11
2 2

13
3 3

11
3 3

13
4 4 2

1

2 6 6 24
) ( ) ( ) ( ) (g d g g d gT T b h T b T b h

+
−

+
−

+
−

−
−∆ ∆ ∆ ∆ 11

4 4

2
13

5 5
11

2 2
11

2

8

15 2

)

( ) ( ) ( )

g

d g a g
b

a gb b b

T

b T h T h T
−

−
+

−
+

−
−+ + +∆ ∆ ∆ bb b b

b b

b b
a d g

b

a g

+ + +

+ +

+ +
+

−
+

−
−

2
13

3 3

11
3 3

1 2
3

2 3

2

( )( )
( )

( )

( )
(

∆

∆

T

b h T
bb

a dg
b

a d g
b

a d gb b b b b

+
−

+
+

−
+

−
−+ + + + +

1 2 6 4

3 3
13

4 4
13

) ( )
( )

( )
( )T b T b∆ ∆ 44 4

2
11

2 2 2 2

2

2
13

2 3 2

2 2

2 1

T

h T T

b

b b b b

b
a g

b
a d g

+

+ + + +

+

−
−

+
−

−

( )

( )
( )

( )∆ ∆ 33

2 2 3( )( )b b+ +































































































� (15)

    	          F
T

p a p T b a p p T b T T A

c a

2

2 2 3 3 2 2

1

1

2 3 2

=

− + − + +
+







−

−

+ +

( ) ( )

(

g g ag
b

b b

−−
+ +

+

+ + −( )



















−

+ +

p
T b T T

T T

c
)

log ( )

g g ag
b

h
h g

b b2 2 1 1

22 1
1 1

(( )
( ) log ( )

( )
( ) log (

a p
T T T T

c a p
T T T

−
− − + −( ){ }

−
−

− − + −

h
h g h g

h
h g h

2

3

1

1 gg

g dg g dg g dg

T

a p

h T T bh T b T b h T b

)

( )

( ){ }

− −

+ + + − −
2 2 3 3 3 3 4 4 2 4 4 2

2 6 6 24 8

55 5 2 2

2 2 3 3

15 2

1 2
3

2 3

T h T

h T T

+
+

−
+ +

+
+

+ +

+ + + +

a g
b

a g
b b

ad g
b

b b

b b b b

( )( ) ( )) ( ) ( ) ( )
−

+
−

+
+

+

−

+ + + + + +a g
b

ad g
b

ad g
b

ad

b b b b b bbh T T b T

b

3 3 3 3 4 4

2 1 2 6 4

gg
b

a g
b

a d g
b b

b b b b b b+ + + + + +

+
−

+
−

+

4 4 2 2 2 2 2

2

2 2 3 2 3

2 2 2 1 2 2
T h T T

( ) ( ) ( )( ++





































































3)
















� (16)



An Inventory Model for Decaying Items, Considering Multi Variate Consumption Rate with Partial Backlogging4878

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645www.indjst.org | Vol 6 (7) | July 2013

F
T

p a p T b a p p T b T T

3

2 2

2 2 3 3 2 2

1

2 3 2

=

+ − + + − + +
+









 −

+ +

( ) ( )∆ ∆ g g a g
b

b b

(( )

( )( )
log (

A

c a p
T b T T

T

−

− − + −
+ +

+

+ + −

+ +

∆

∆ ∆

3

1 5 2

2 2 1 1

2 1
1 1

g g a g
b

h
h g

b b

TT

c a p
T T T T

)

( )( )
( ) log ( )

( )



















−
− + −

− − + −( ){2 7 2
2 1

∆ ∆
h

h g h g }}

−
− + −

− − + −( ){ }

− − −

+

( )( )
( ) log ( )

( )

(

c a p
T T T T

a p

h

3 9 2

1

12

1
∆ ∆

∆

∆

h
h g h g

)) ( ) ( ) ( ) (g d g g d g2 2
14

3 3
12

3 3
14

4 4 2
12

2 6 6 24
T T b h T b T b h

+
+

+
+

+
+

−
+∆ ∆ ∆ ∆ ))

( ) ( ) ( )

g

d g a g
b

a gb b b b

4 4

2
14

5 5
12

2 2
12

2

8

15 2

T

b T h T h T
−

+
+

+
+

−
++ + +∆ ∆ ∆ ++ + +

+ +

+ +
+

+
+

−
+

2
14

3 3

12
3 3

1 2
3

2 3

2

( )( )
( )

( )

( )
(

b b
a d g

b
a g

b

b b

b b

∆

∆

T

b h T
++

−
+

+
+

+
+

−
++ + + +

1 2 6 4
14

3 3
14

4 4
14

)
( )

( )
( )

( )
(a d g

b
a d g

b
a db b b b∆ ∆ ∆T b T ))

( )

( )
( )

( )

b T

h T

g
b

a g
b

a d g

b b

b b b

+ +

+ + +

+

−
+

+
−

+

4 4

2
12

2 2 2 2

2

2
14

2

2 2

2 1
∆ ∆ 33 2 3

2 2 3
T b

b b

+

+ +






















































( )( )









































  

� (17)

Now, defuzzified average profit is given by

	
P T p

F F F
( , ) =

+ +1 2 32
4 � (18)

Also, the defuzzified order quantity is Q and is given by
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The necessary conditions for maximizing the average profit 
are

	 ∂
∂

=
P T p

T
( , )

0  and ∂
∂

=
P T p

p
( , )

0

Using the software Mathematica-8.1, from the above two 
equations we can determine the optimum values of T  and 
p  simultaneously and the optimal value P (T, p) of the 

average net profit is determined by (18).

7.  Numerical Example
Let A = 250, Δ3 = 12.5, Δ4 = 25, a = 180, Δ1 = 9, Δ2 = 18, b = 
0.015, c1=20, Δ5 = 1, Δ6 = 2, c2 = 5, Δ7 = 0.25, Δ8 = 0.50, c3 = 

25, Δ9 = 1.25, Δ10 = 2.5, α = 0.4, β = 0.3, γ = 0.5, h = 0.6, Δ11 = 
0.03, Δ12 = 0.06, η = 0.5, δ = 0.04, Δ13 = 0.002, Δ14 = 0.004.

Based on these input data, the findings are as follows: 

�pf
*= 103.545, t1f

*= 0.970155, Qf
*= 162.444, Tf

*= 1.94031 
and P (T, p) = 6106.36.

8.  Sensitivity Analysis
Optimal solution for the model with fuzzy demand rate, 
ordering cost, holding cost, purchasing cost, shortage cost, 
opportunity cost. 

9.  Observations
(1)	 When (Δ1, Δ2), varies, the optimal profit P  ( pf

*, Tf
*) 

decreases.
(2)	 The optimal profit P  (pf

*, Tf
*) slightly increases when 

(Δ3, Δ4), (Δ7, Δ8) and (Δ9, Δ10) varies.
(3)	 When (Δ5, Δ6), varies, the optimal profit P  (pf

*, Tf
*) 

increases.
(4)	 It is observed from the above table that there is a very 

small increment in profit P  (pf
*, Tf

*) as (Δ11, Δ12) and 
(Δ13, Δ14) varies.
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of deteriorating items with time-varying demand and short-

10.  Conclusion
In the current study an inventory model is presented in 
which demand rate is considered as a function of price and 
stock both. In the development of model it is assumed that 
shortages are allowed and partially backlogged. The model is 
proposed in the following two senses: (1) crisp sense and (2) 
fuzzy sense. A numerical example to illustrate the problem 
in both the environments is provided and sensitivity analy-
sis with respect to system parameters is also carried out. 

In the present study a partially backlogged inventory 
model with stock and price sensitive demand is 
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