
An Optimal Technique for Reducing
the Effort of Regression Test

T. Prem Jacob1* and T. Ravi2
1Research Scholar, Sathyabama University, Chennai-119, India; premjac@yahoo.com

2Principal, Srinivasa Institute of Engineering & Technology, Chennai- 56, India; travi675@yahoo.com

Abstract
Regression test selection techniques are proposed often but are many times inaccurate when used with larger systems. The
proposed new selection technique will be safer, more precise, and can handle the object-oriented features even in larger
systems through its phases. Selecting the subset of the test case from the existing test suite is an important problem in re-
gression testing and is addressed in the regression test selection technique. Safe regression test selection technique selects
and identifies the program parts that are affected by the change. The test selection is performed by matching the identified
change information with the coverage information. A tool is implemented that reduces the testing effort efficiently and the
result shows that it can achieve considerable savings in the regression testing time.

Keywords: Test Selection, Testing, Software Maintenance, Regression Testing, Software Evaluation.

1. Introduction
Regression testing is an expensive task in the maintenance
of retesting the modified programs that helps to ensure that
those changes performed on the software will not have any
negative impact on the reliability of the software. As the
software evolves the regression testing will be applied to
the modified software versions which provides the confi-
dence that changed parts may behave as expected and the
changes which have not introduced any unexpected faults
which are known as the regression faults. Even for the small
changes that has been made the whole test suite has to be
re-executed in the program that has been modified. In the
scenario of the regression testing, D is the developer of the
software product i.e. P, where the latest version is tested
using the test suite i.e. T which are then released. Once the
latest version is tested the developer may have to perform
some modifications. At the time of maintenance, the devel-
oper D modified the program P for fixing the faults and

adding any new features [1]. Since the client can change the
requirements at any stage. After the changes are performed,
the developer will obtain the new software version P′ and
it has to be regression tested before committing those
changes to the repository before the release of the software
product.

If the retest all approach is used will consume large
amount of time and the resources which in turn will
increase the cost of performing the regression testing.
The developer has to face the problem for the selection of
the appropriate subset i.e. T′ of the test T for rerunning
on the program P` and this process is called as an RTST
(Regression Test Selection Technique). This selection tech-
nique will select only the subset of the test case from the
entire test suite. RTST has to rerun each of the test cases
from the test suite T on the program P′, to select the test
case T′ which is equal to the test suite T. As we have dis-
cussed earlier retest all approach where all the test cases
are rerun in test suite T which will be expensive. Suppose

*Corresponding author:
T. Prem Jacob (premjac@yahoo.com)

Indian Journal of Science and Technology

An Optimal Technique for Reducing the Effort of Regression Test5066

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645www.indjst.org | Vol 6 (8) | August 2013

if there is small changes between the program P and the
modified version P′, which may lead to unnecessary effort.
So we have to select a better technique. RTST technique
will use information’s from program P, modified versions
P′, test suite T for selecting a subset of T for testing P′. With
this technique considerable savings can be obtained since
the testing effort can be reduced when compared to the
retest all approach.

The RTST technique that selects each test case from
the test suite which may behave differently in modified
and original software versions [2]. Precision and efficiency
of the RTST technique which are related to the granular-
ity level in which these techniques operates. For the RTST
technique safety is more important which guarantees that
the subset T′, contains all the test cases which may able
to reveal the regression faults that occur in P′. The tech-
niques which work in a higher abstraction level. If the
RTST technique has to be more cost effective than the
cost for performing rerunning the subset of the selected
test case should be less when compared to the cost for
rerunning the test suite completely. In the cost models
for the regression testing cost terms depend on some spe-
cific scenario. The studies have shown that the existing
techniques will be more cost-effective and then studies
are performed using the subjects of some limited size [3].
Consider the example for the test suite which requires the
human interaction, savings should account human effort
to be saved. The precise technique will be too expensive
for using on larger systems. The safe techniques that exist
are not so cost effective if it is applied to the large software
and the efficient techniques will be more imprecise which
achieves little savings in the testing effort.

A new algorithm for RTST is presented that handles
the features of object-oriented language which will be
more precise and safe for the larger systems. The algo-
rithm has two phases that are partitioning, selection. In
partitioning phase a high-level of the graph representa-
tion for the program P, P′ is created. The analysis goal is
for identifying, based on the information in the changed
classes which interface the program parts P, P′ for
further analysing. A detailed graph is built in the algo-
rithm’s selection phase for the identified program parts
P, P′. The graphs are analysed for identifying the differ-
ences between programs which selects for the rerun of
the test cases that are in T, which traverse these changes.
Although these techniques which are defined in the Java
language and it can also be adapted for object-oriented
language.

2. Related Work
There are different techniques developed for the regres-
sion testing of the software. Ren technique can identify
the test cases that are affected by the code change, which
test cases can affect each of the test case. These techniques
focus only on the unit test cases. Most of the approaches
will be based on the identification of the differences in the
old and the new versions of program and the selection is
based on the difference with the coverage information of
the test case.

Our technique can able to handle the object oriented
features and it does not require analyzing the entire system
and requires only the identified partition at the initial phase.
The advantage of our partitioning can able to compute
the simple dependences and it postpones those expensive
analysis at the second phase.

3. The Two Phases of the RTST
Techniques
In this technique we combine the RTST effectiveness
which is precise, it may be not efficient for the larger sys-
tems with the efficiency of the techniques which works
on a higher level and may be imprecise. This can be done
using the two phase approach which performs an ini-
tial analysis at a high level which identifies the system
parts that has to be analysed further, in-depth analy-
sis of the parts identified that selects those test cases
which are in T are rerun. In partitioning phase where
the technique can analyse those programs for identify-
ing aggregation, hierarchical and it uses the relationship
between the interface and the classes [4]. This technique
which uses those information’s about those relationships
and the information about the classes and the interfaces
have changed syntactically, for identifying the program
parts which may get affected by those changes between
the program P, P′.

The output of this phase will be the subset of those
interfaces and the classes in those programs. In selec-
tion phase this technique which the input as the partition
that are identified in the first phase. The test selection at
the edge level selects the test case just by analysing the
changes and the coverage information’s at a level of flow
of the control between the statements [5, 6]. Due to the
partitioning that is performed at the phase one, expensive
analysis, low level is performed to the small fraction in
the whole program[7, 8]. Since a partial portion of the

T. Prem Jacob and T. Ravi 5067

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645www.indjst.org | Vol 6 (8) | August 2013

programs is analysed, it is performed under safe assump-
tions because, the partitioning will identify all the
interfaces and the classes whose behaviour changes due
to modifications to the program P, Edge-level technique
which is used in selection phase will be safe.

3.1 The Partitioning Phase
This approach first phase will performs the high-level anal-
ysis for program P and the modified program P′ and to the
relationships between the interface and the classes from the
program.

3.2 The Syntactic Change-accounting
Without losing generality, we have classified the program
changes as two groups, changes in statement level, change
in declaration level. The changes in statement level consist
of addition, modification, deletion of the executable state-
ments. This change can be handled easily by the RTST, each
of the test case which traverse the newly modified part of
the code has to be re-executed.

A change in the declaration level consists of modifica-
tions in a declaration. The example of these changes will
be the modifications in the type of the variable, removal
or addition of any method, the inheritance relationship
modification, the change of the type in the catch clause, the
modifiers list change. These changes will be problematic for
the RTST than the changes in the system level because they
can affect program behaviour indirectly in the non-obvious
way. Changes in the declaration level have complex effects
compared to the changes in the statement level and if it is
not handled suitably will cause the RTST technique unsafe,
imprecise or both [9].

3.3 The Partitioning Algorithm
The input for the algorithm is set of the syntactic-changed
types in C, two Interclass Relation Graph’s, original version,
modified versions of the program.

Step 1: Add the partition part which involves the changed
types

Step 2: Add each type to a temporary set
Step 3: Add the types in the temporary set of partition
Step 4: Return partition

3.4 The Selection Phase
In this second phase we compute the change information
just by analysing those types that are identified in the first

phase, then we perform the test selection just by matching
change information computed with the coverage infor-
mation.

4. Performing the Test Selection
Whenever testing the program P, the testers will measure
their coverage of the test suite i.e. T, for accessing the test
suite adequacy. Coverage will be computed for the pro-
gram entities like edges, statements. For each of the test
case t which is in T the information is recorded on which
entities to the program P that are executed by the test case
t. Those coverage information that is collected automati-
cally, using the coverage tools and it is represented as the
coverage matrix, like one row for each entity, one column
for each test case [10]. From the investigation of the effi-
ciency and effectiveness of this technique it is applied to
the medium and the larger systems. We present a tool
DejaVu, which implements this technique on the set of
those subjects. From the study we have investigated that
how much percentage of program which is under test is
selected by the partitioning technique, and how the over-
all RTST cost gets affected [11, 12]. We have investigated
how much we have gained in precision when this tech-
nique operates at high abstraction level and the overall
savings that our technique has achieved in the process of
regression testing.

The DejaVu architecture consists of three components
InsECT, DEI, Selector as in figure 1. The InsECT is an
extensible, modular, coverage analyzer developed using
java. It is used to gather the information on edge-coverage
of the program when it is executed against the test suite.
Dangerous Edge Identifier (DEI) and the Selector which is
used to implement the two phased technique.

As subjects we have used three medium to large sized
programs like JABA, DAIKON, JBoss. From these three
programs five consecutive version are extracted and we
stimulated the way the regression testing will occur. In
the experimental design we have modified the DejaVu so
that once the partition is identified at phase1 and it skips
the phase 2, in turn selects all the test cases by using the
partition. For these techniques we have measured the test
suite selected, execution time for the test suite selected, the
analysis time.

From the empirical studies that are performed using
the tool on Java subjects that ranges between 70 to 600
KLOC. From these studies we have shown that our tech-
nique is more efficient compared to the precise existing

An Optimal Technique for Reducing the Effort of Regression Test5068

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645www.indjst.org | Vol 6 (8) | August 2013

techniques, which operates to a fine abstraction level
i.e. 89% on the average of those average subjects. It also
showed the selection have achieved some considerable
savings in the overall time for regression testing. Of these
three subjects (retest all, high level, two phases) this tech-
nique has saved an average 19%, 36%, 63% in the time
taken for regression testing.

5. Results and Discussion
We have empirically investigated the efficiency and effec-
tiveness of our technique by applying to some larger
systems and by developing the tool to implement this
technique, we have performed a study on these subjects. In
this study we have explored how much percentage will be
selected by the partitioning technique from the program
and analysed how the RTST costs gets affected by this,

how much precision is gained, the savings that is achieved
by our technique in the process of regression testing. The
advantage of our partitioning can able to compute the sim-
ple dependences and it postpones those expensive analysis
at the second phase.

6. Conclusions
From the new technique presented for the test selection
in the Java software which is designed for larger systems.
One technique which is based generally on the two phase
approach, where the phase one that performs fast, high
level analysis for identifying the various parts of the sys-
tem which may get affected by those changes. In the phase
two that performs the low level analysis of the parts for
performing the test selection precisely. This paper per-
formed the study on three medium to larger systems

Figure 1. Architecture of DejaVu regression-test-selection-system.

Figure 2. The Overall time taken for the regression testing process.

T. Prem Jacob and T. Ravi 5069

Indian Journal of Science and Technology | Print ISSN: 0974-6846 | Online ISSN: 0974-5645www.indjst.org | Vol 6 (8) | August 2013

subjects for investigating the effectiveness and efficiency of
our technique. These studies have produced an encourag-
ing results, which can able to produce some considerable
time saved at the time of regression testing as in figure 2.
The results led us in an interesting direction of research
for the further improvement in our RTST technique. In
the future work we can work on for improving efficiency
of the tool used and performing the controlled experiment
for the large versions.

7. References
 1. Rothermel G, Untch R H et al. (1999). Test case prioritiza-

tion: an empirical study, Proceedings of the International
Conference on Software Maintenance, 179–188.

 2. Jacob T P (2013). Regression testing: Tabu search technique
for code coverage, Indian Journal of Computer Science and
Engineering, vol 4, No.3, 208–215.

 3. Elbaum S, Rothermel G et al. (2004). Selecting a cost-ef-
fective test case prioritization technique, Software Quality
Control, vol 12, No. 3, 185–210.

 4. Jacob T P, and Ravi T (2013). Optimal regression test case
prioritization using genetic algorithm, Life Science Journal,
vol 10(3), 1021–1033.

 5. Rothermel G, and Harrold M J (1997). A safe, efficient
regression test selection technique. ACM TOSEM, vol 6(2),
173–210.

 6. Bible J, Rothermel G et al. (2001). A comparative study of
coarse and fine-grained safe regression test selection tech-
niques. ACM TOSEM, vol 10(2), 149–183.

 7. Walcott K R, Soffa M L et al. (2006). Time-aware test suite
prioritization, International Symposium on Software Testing
and Analysis, 1–11.

 8. Do H, Elbaum S G et al. (2005). Supporting controlled
experimentation with testing techniques: an infrastructure
and its potential impact, Empirical Software Engineering,
vol 10(4), 405–435.

 9. Li Z, Harman M et al. (2007). Search algorithm for regres-
sion test case prioritization, IEEE Transactions on Software
Engineering, vol 33, No. 4, 5–7.

10. Jeffrey D, and Gupta N (2007). Improving fault detection
capability by selectively retaining test cases during test suite
reduction, IEEE Transactions on software Engineering, vol
33, No. 2, 122–127.

11. Li Z, Harman M et al. (2007). Search algorithms for regres-
sion test case prioritization, IEEE Transactions on Software
Engineering, vol 33, No. 4, 225–237.

12. Kim J M, and Porter A (2002). A history-based test prioritiza-
tion technique for regression testing in resource constrained
environments, Proceedings of the 24th International
Conference on Software Engineering, 119–129.

8. Authors Biography

T. Prem Jacob received the B.E degree in Computer
Science and Engineering from C.S.I Institute of
Technology, Manonmaniam Sundaranar University,
Nagercoil, India in 2004 and M.E degree in Com-

puter Science and Engineering from Sathyabama University,
Chennai, India in 2006, where he is currently working towards
the Ph.D. degree in Computer Science and Engineering at
Sathyabama University, Chennai, India. He is an Assistant
Professor of Computer Science and Engineering in Sathyabama
University and he has more than 7 Years of Teaching
Experience. He has participated and presented many Research
Papers in International and National Conferences. His area of
interests includes Software Engineering, Data mining and
Data warehouse.

Dr. T. Ravi, Principal of Srinivasa college of
Engineering & Technology, Chennai. He has gradu-
ated in computer science and Engineering from
Madurai Kamaraj University, Masters and Ph.D in

computer Science and Engineering from Jadavpur University,
Kolkata. He has more than 20 years of teaching experience in
various engineering institutions in Tamil Nadu. More than 25
research papers are published in International & National Journals
and conferences and also 5 text books are published through var-
ious publications. He is the Recognised Research Supervisor in
Anna University and Sathyabama University Chennai and MS
university, Tirunelveli.

