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Abstract
In this paper, a computational technique is presented for solving a Backward Stochastic Differential Equations (BSDEs) 
driven by a standard Brownian motion. The proposed method is stated via a stochastic operational matrix based on the 
Block Pulse Functions (BPFs) in combination with the collocation method. With using this approach, the BSDEs are reduced 
to a stochastic nonlinear system of 2m equations and 2m unknowns. Then, the error analysis is proved by using some 
definitions, theorems and assumptions on the BSDEs. Efficiency of this method and good reasonable degree of accuracy is 
confirmed by some numerical examples.
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1.  Introduction
The BSDEs was first introduced by Pardoux and Peng8. 
In the last years these equations have been intensively 
investigated, the main reason for this investigations due 
to many application in mathematical finance, biology, 
medical, social, etc.1 

In this paper we consider 
dX s b s X s z s X s ds z s X s dB s

s T
X T

( ) = ( , ( ), ( , ( ))) ( , ( )) ( ),
0, ),

( ) = ,

+
∈(

x







 (1)

or, 

X t b s X s z s X s ds z s X s dB s

t s T
t

T

t

T
( ) = ( , ( ), ( , ( ))) ( , ( )) ( ),

, 0,

x+ +

∈
∫ ∫

( )), � (2)

where, X t b s X s z s X s( ), ( , ( ), ( , ( ))) and z s X s( , ( )) are the 
stochastic processes on the probability space ( , )Ω P  with 
the natural filtration Ƒ of B and unknown. Also, let B(s) be 
the standard Brownian motion and b T R R R: 0,( ) × × → , 
z T R R: 0,( ) × → . 

 Note that, in many fields of science there are number of 
problems that are dependent of the Eq. (2) and have many 
applications in physics, economics and biology1. Also, 
there are some numerical methods for Eq. (2) that can be 
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classified into main groups: solving BSDEs by using the 
cubature method, carlo method, euler method2, 3, 7, but we 
use from stochastic operational matrix based on proper-
ties of the BPFs and collocation method, because Eq. (2) 
is reduced to a stochastic nonlinear system of 2m equa-
tions and 2m unknowns with good approximate. Also, 
the method is easier than other methods.

The result of this paper is organized as follows: In 
Section 2, some definitions and theorems and assump-
tions on the coefficient of Eq. (2) is stateed. Also, the 
essential properties of the Block Pulse Functions (BPFs) 
are reviewed. In Section 3, Eq. (2) is reduced to a stochas-
tic nonlinear system by using the stochastic operational 
matrix based on properties of the BPFs and collocation 
method. Error analysis is worked out in Section 4. In 
Section 5, the some numerical examples demonstrate 
applicability and accuracy of this method. Finally, in 
Section 6, is given a brief conclusion. 

2.  Preliminaries
Firstly, we state the following assumptions on the coef-
ficient of Eq. (2) and definitions and theorems that are 
essential for this paper, then we introduce necessary prop-
erties the BPFs.  
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Let the functions b t X t z t X t( , ( ), ( , ( ))) and z(t, X(t))
have Lipschitz conditions, i.e. there are constants L1 and  
L2 such that:

H1. | ( , , ) ( , , ) |< (| | | |)1 1 2 2 1 1 2 1 2b t x y b t x y L x x y y− − + − .
H2. | ( , ) ( , ) |< | |2z t x z t y L x y− − .
For all t T∈( )0, , T <1 .

Definition 2.1: Let n n= ( , )s T  be the class of functions 
f t Rn( , ) :[0, ]w ∞ × →Ω  such that:  

The function ( , ) ( , )t f tw w→  is β × Ƒ measurable and 
1.  The function f is adapted to Ƒt.
2.  b  is the Borel algebra.

3.  E f t dts
T( )∫ ∞( , ) < .2w   

Theorem 2.2: Let f s T∈n( , )  then 

E f t dB t E f s dsa
b

a
b( ( ) ( )) = ( )2 2∫ ∫ ( ) .

Proof: To see the proof, refer1.
Theorem 2.3: If B t( )  be a Brownian motion on [0, ]T  and 
f x( )  be twice continuously differentiable function on R, 

then for any t T≤

	 df B t f B t dB t f B t dt’ ’’( ( )) = ( ( )) ( ) 1
2

( ( )) .+

Proof: To see the proof, refer1.

Finally, we state the main properties of the BPFs which 
are necessary for this paper. For more details, see4–6.
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3. � Solving Backward Stochastic 
Differential Equations
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Proof: By using defined Φi t i m( ), =1,2, , , we get
B1. If t i h∈ −[0,( 1) ), then 

t i s dB s
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Let 
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by using the relation (4), we get 

	

t i s dB s B i h B i h

B ih B i h

0
( ) ( ) (0, ,0, (( 0.5) ) (( 1) ),

( ) (( 1)
∫ ≈ − − − −

− −

Φ 

)), , ( )
(( 1) )) ( ).

 B ih
B i h t

−
− Φ � (5)

Now, by using the relation (5), we get 

t ss dB s P t
0

( ) ( ) ( ),∫ ≈ −Φ Φ

where 

P

B h B h B h B h

B h B h B h B h B h B h

Bs =

(
2

) ( ) ( ) ( )

0 (3
2

) ( ) (2 ) ( ) (2 ) ( )

0 0 (



− − −

55
2

) (2 ) (3 ) (2 )

0 0 0 ((2 1)
2

) (( 1) )

h B h B h B h

B m h B m h

− −

− − −











    






































×m m

Let 

	

b s X s z s X s f s
z s X s g s
( , ( ), ( , ( ))) = ( ),
( , ( )) = ( ),



 � (6)

by substituting the relation (6) in Eq. (2), we obtain
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After solving Eq. (14) where, the stochastic nonlinear 
system of 2m equations and 2m unknowns, we can write  
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4.  Error Analysis
Theorem 4.1: Let )(tf  be an arbitrary real bounded func-
tion on interval [0,1) , and e t f t f tm( ) = ( ) ( )−

∧
, [0,1),∈t  

that f tm

∧
( ),  is the block pulse approximation of )(tf . Then 
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Proof: To see the proof, refer6.
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of the BPFs. Also, we define e t X t X tm m( ) = ( ) ( )−  that 
X tm ( )  is defined in Eq. (15) and X t( )  be solution of  
Eq. (2). Now, we can write 
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By using Lipschitz conditions, we obtain 
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 Now, by substituting the relations (19) and (21) in the 
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5.  Numerical Examples
Example 1: Let us consider the BSDE 
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cal results have been shown in Table (1), where x–E and  
sE are error mean and standard deviation of error, 
respectively.

Example 2: Let us consider the BSDE 
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The numerical results have been shown in Table (2), 
where x–E and sE are error mean and standard deviation of 
error, respectively.

6.  Conclusion
In this paper, a numerical method to solve the BSDEs 
driven by the Brownian motion is presented. The pro-
posed method is introduced via the stochastic operational 
matrix based on the properties of the BPFs and collocation  
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Table 1.  Mean, Standard deviation and Confidence interval for error mean 
(m=8 and T=1)

t x–E SE
%95 confidence interval for mean of E

Lower Upper
0.2
0.4
0.6
0.8

7.98820 × 10–1

5.99573 × 10–1

3.99935 × 10–1

2.00222 × 10–1

4.66082 × 10–3

4.84417 × 10–3

4.68170 × 10–3

4.58602 × 10–3

7.95931 × 10–1

5.96571 × 10–1

3.97033 × 10–1

1.97380 × 10–1

8.01709 × 10–1

6.02575 × 10–1

4.02837 × 10–1

2.03064 × 10–1

Table 2.  Mean, Standard deviation and Confidence interval for error mean (m=8 and T=0.25)

t x–E SE
%95 confidence interval for mean of E

Lower Upper
0.05
0.1
0.15
0.2

4.42961 × 10–1

3.932480 × 10–1

3.4351100 × 10–1

2.9371900 × 10–1

1.5400898 × 10–2

1.4719858 × 10–2

1.40863312 × 10–2

1.3537731 × 10–2

4.3341542 × 10–1

3.84124537 × 10–1

3.3478020 × 10–1

2.8532822 × 10–1

4.5250657 × 10–1

4.02371462 × 10–1

3.5224179 × 10–1

3.0210977 × 10–1

method. Also, In this method Eq. (2) is reduced to the 
stochastic nonlinear system with good approximate that 
is easier than other numerical methods. Note that the 
important purpose of this paper is to compare between 
the numerical solution and the exact solution of BSDEs, 
because there are a few the exact solution for Eq. (2). Also, 
the proposed method is evaluated by using some numeri-
cal examples. 
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