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Abstract
Presence of dead-band in engineering process decreases the system performance. Modeling of systems with such nonlin-
ear properties is a key factor in model-based control and in fact a challenging task by conventional mathematic methods. 
In this paper, application of radial basis neural networks in such systems is investigated. The nonlinear static part of the 
system can be decoupled first from linear dynamic part and then modeled using Radial Basis Function (RBF) network; the 
dynamic linear part of the system can be identified using linear models. Results show that RBF can capture well, the key 
model of the systems with dead band.
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1. Introduction

For many manufacturers, high quality of products is 
a very important factor as it increases efficiency and 
profitability of the products. In many factories, the 
plant includes hundreds or thousands of control loops. 
Maintaining the process at proper operating conditions 
is the aim of control systems in such factories as any fail-
ure of its will spread undesirable impact of one loop to 
the other part of the plant.

Different kinds of observed fluctuations in the signals 
of a control system are considered as a result of unsat-
isfactory performance. These deviations from desired 
values may have different root causes. Presence of dead-
band in control loops is one of the major factors which are 
investigated here.

Model-based control is a key factor of preventing 
systems from oscillations.  In this regard, good model 
of nonlinear behaviour of the system is a key factor to 
designing a good controller and therefore to eliminate 
undesirable performance of the system.

Recently, artificial neural networks have attracted 
attention of many researches. It has been shown that 

because of their capability in learning, adaptation, and 
classification, neural networks can approximate any 
nonlinear continuous function arbitrarily well on a 
compact set [1]. They are also very effective for model-
ing the complex nonlinear systems [2–3]. In this paper, 
we take advantages of special case of neural networks 
named Radial Basis Function (RBF) neural networks in 
modelling processes with dead-band.

The rest of this paper is organised as follows: In sec-
tion II, explanation on problem statement is given. Section 
III describes radial basis function network. Section IV 
describes the application of radial base function network 
to nonlinear static part of a process for modelling and 
finally some concluding remarks useful for future works 
are given in last section of this paper.

2.  Problem Statement
Nonlinearity problems always occur in the components 
used to implement the control or dynamics of the plant to 
be controlled. For an example, a valve actuator may have 
a dead-band due to friction effect. In most closed-loop 
applications, dead-band has undesirable effects on the 
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feedback loop dynamics and control system performance. 
It represents a “loss of information” when the signal falls 
into the dead band and can cause limit cycles, tracking 
errors, and so forth. Identification of precise form of this 
nonlinearity is a challenge.

We start with well-known model of this nonlinear-
ity, according to [4] simple one parameter e.g. dead-band 
model can be mathematically expressed by the following 
equation:
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x(t) and x(t-1) are the valve output (stem position) at 
time ‘t’ and ‘t-1’ respectively, u(t) is the controller output 
at time ‘t’ and ‘d’ is the valve Dead-band. The block dia-
gram representation of this model is given in Figure 1. In 
this model, when control Output Signal (OP) increases 
the valve position remains unchanged. The valve will 
start to move only after the controller output overcomes 
the dead-band (d) of the valve, the valve jumps to a new 
position. Instead of having a fixed signal at the output 
of the process, the output is oscillating. The goal is to 
keep the process variable (PV) in fixed point or desired 
point (SP). 

The presence of the dead band decreases the perfor-
mance of the control loop as described above. Modeling 
of the behavior of the system is a crucial factor in model-
based control of this process. In practice valve position 
(MV) is not available and is not usually measured in most 
real processes. Therefore, modeling of nonlinear part of 
the process is a hard task. Instead of using valve position, 
the corresponding flow rate can be used as an alternative 
as the flow rate is almost proportional to the valve posi-
tion [5]. Without losing generality, we consider the flow 
rate to have positive response to the valve input, otherwise 
we assume it is available or can be obtained by some tech-
niques such as dividing the system in two parts including 
nonlinear static and linear dynamic e.g. Hammerstein 
model [6, 7] and decoupling this two parts by using spe-
cial test signal [8].

3.  Radial Basis Function Neural 
Networks
This three layers network first proposed by [9] has been 
used to apply successfully on many applications such as 
pat-tern recognition and classification [10, 11], function  

approximation [12], modeling [13] and control [14]. 
Comparing with the other neural networks such as feed 
forward and multi-layer perceptron neural networks, RBF 
neural networks has some better approximation proper-
ties [15].

A three-layer RBF neural network has an input layer, 
a nonlinear hidden layer (RBF) and a linear output layer 
as shown in Figure 2. The nodes within each layer are 
fully connected to the previous layer nodes. The inputs 
of hidden layer are the linear combinations of scalar 
weights, where the scalar weights are usually assigned 
unity values and the input vector X x x xN

T
=  1 1, , ,  

therefore the whole input vector appears to each neu-
ron in the hidden layer. The hidden layer nodes are 
RBF units. The nodes calculate the Euclidean distances 
between the centers and the network input vector, and 
pass the results through a nonlinear function [16]. 
The output layer yields a vector y y y yM

T
=  1 1, , ,  to 

produce the final output. The network output can be 
obtained by
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where, fi X( ) denotes the radial basis function of the i-th 
hidden node, Wi denotes the hidden-to-output weight 
corresponding to the i-th hidden node, and k is the total 
number of hidden nodes. There are different types of 
radial basis function. A normalized Gaussian function 
usually used as the radial basis function, that is:
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where, mi and s i denote the center and spread width of the 
i-th node, respectively.

As we can see because of simple structure of these 
networks the training time is reduced, and this has led to 
the application of such networks to many practical prob-
lems.

Figure 1.  Process control loop in the presence of dead-
band.
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4.  Modeling of Nonlinear Static 
Part of the Process using RBF 
Network
We want to use radial basis function network to model 
nonlinear part of the process. The system includes two 
parts, nonlinear static and linear dynamic. The first 
task in this identification is to decouple the two parts.  
MV-OP is the nonlinear static part, while MV-PV is 
the linear dynamic part. In most real system, MV can-
not be measured except for smart valves. As stated in 
previous section, instead using the valve position the 
corresponding flow rate can be used as an alternative 
because the flow rate is almost proportional to the valve 
position [5].

First we assume the valve position is not available. 
Therefore, we have to identify linear part before identifi-
cation of other part.

The linear dynamic part is represented by ARMAX 
model [17]

	 A q y k B q u k C q e k( ) ( ) ( ) ( ) ( ) ( )− − −= +1 1 1
� (4)

where, q−1 is the backward shift operator q i− = −u k u k i( ) ( ),  
and ε the unmeasured disturbance. A q B q( ), ( )− −1 1  and 
C q( )−1  are polynomials in q−1 of specified order n, m and 
p, respectively:
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where, 
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Now identification can be restricted to finding optimal 
values for equation (6).

Identification of this linear dynamic part of the process 
is not the aim of this research and readers are suggested to 
refer [17] for further details.

For identification of nonlinear static part, a set of 181 
pairs generated based on equation (1) with ramp input is 
used. Among these pairs, 54 were used for testing and 127 
were used for training the network. Since most systems 
working in real atmosphere have unknown noise, perfor-
mance of the network has to be tested with noisy data. 
White noise with variance 0.02 was added to the data. 
RBF network with different number of neurons in hid-
den layer was used for approximation of this part. During 
the training procedure, the adjustable parameters such 
as centers and spreads can be estimated. There are three 
performance indexes for evaluating the model: First, the 
Mean Squared Error (MSE) of an estimator quantifies the 
difference between values implied by an estimator and 
the true values of the quantity being estimated. It is usu-
ally used for function approximation, modeling and so 
on. Taking the square root of MSE yields the Root Mean 
Square Error (RMSE) which is another similar perfor-
mance index. Second, Regression (R) which is used to 
validate the network performance displays the network 
outputs with respect to targets for training, validation, 
and test sets. For a perfect fit, the data fitting a function 
should fall along a 45 degree line, where the network out-
puts are equal to the targets. Third, the error histogram 
for obtaining additional verification of network perfor-
mance shows distribution of error. Smooth distribution 
is a result of good model while non-smooth distribution 
shows that modeling process in some part is not so good. 
Three performance indexes of the network on testing data 
are given in Figure 3 along with the model. In this figure it 
is obvious that the shape of outputs and targets are approx-
imately the same and without other three mentioned 
indexes, it is difficult to find out how good the model is. 
The regression is much closed to one and the MSE and 
RMSE show accuracy of the model; finally, the error his-
togram shows distribution of error which is smooth and 
in uniform shape. Performance of RBF neural network 
based model on sets of training data is given in Figure 4. 
The amount of RMSE and SME on sets of training data is 
smaller than testing data, which is normal as the amount 
of data in training section is more than the testing section.  
Distribution of error in training section and testing sec-
tion is approximately same and the regression is closed to 
one as it should be. Performance of the model on all data 
is given in Figure 5 which reveals the good performance 

Figure 2.  Structure of a radial basis function (RBF) neural 
network.
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of the model. Number of neuron is very important factor 
as it has a nonlinear function which increases complex-
ity of the model. The above performance of the model is 
obtained by at most 10 numbers of neurons (Figure 6). 
However, with only 6 neurons it can reach good amount 
of MSE and it is up to user and application to define how 
much the model should be accurate and therefore how 
many neurons have to be used. 

This approach is a data-driven supervised learning 
approach since the radial basis function network attempts 
to mimic and existing process from being exposed to the 
process data.

At the implementation stage, this model must be 
incorporated with a model-based control scheme. It is 
usually employed in a nonlinear model predictive control 
scheme in the most process industry as shown in Figure 7 
[18]. In this case the model predictive control is an opti-
mization problem. The optimizer uses the model that we 
have obtained using RBF and ARMAX. For further details 
readers are suggested to refer [18].

5.  Conclusion and Future Work
Due to undesirable impact of dead-band on perfor-
mance of control loops, modeling of such nonlinearity 
is an interesting subject which impact can be mitigated 
in model-based control. While mathematical approach 
is not effective tools, application of radial basis function 
neural network in modeling static nonlinear part of pro-
cesses with dead-band were investigated. It can be seen 
that neural network can successfully model system with 
dead-band. For processes with the presence of dead-band 
and jump which have non smooth function, these net-
works have to be modified.

Our method is applicable for smart valve and also 
for valves in which position can be replaced with the  

Figure 3.  Performance of RBF neural network based  
model on sets of testing data.
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Figure 4.  Performance of RBF neural network based  
model on sets of training data.
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Figure 5.  Performance of RBF neural network based 
model on sets of all data.
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Figure 6.  Performance of RBF neural network based  
model on number of neurons in hidden layer.
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Figure 7.  A RBF neural network model can be 
incorporated into linear model predictive control scheme.
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corresponding flow as an alternative. However for cases 
that do not match the above conditions, we suggest using 
dynamic neural network instead of static radial basis 
since for many processes decoupling of the two parts is a 
huge challenge. However, in implementation stage, these 
dynamic neural networks have to be modified to model 
the system.
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