
Abstract
BackGround/Objectives: Anonymizing data sets through generalization satisfies certain privacy concerns such as
k- anonymity that are broadly used as privacy conserving procedures. Parallel bottom-up generalization approach is
introduced to anonymize huge datasets by map reduce structure on public cloud. A group of innovative map reduce jobs are
formulated to perform the generalization in an exceedingly scalable manner. Methods/Statistical Analysis: Map Reduce,
a widely-adopted parallel data processing framework is introduced, to address the privacy preservation problem with
minimum information loss of the Bottom-Up Generalization (BUG) approach for large-scale data anonymization. To make
full use of parallelism feature of Map reduce on cloud the whole process are split into two phases. Firstly, unique datasets
are partitioned into a collection of lesser datasets, and these datasets are anonymized in parallel, giving intermediary
outcome. Secondly, the intermediate results are combined and anonymized, to attain consistent k-anonymous data sets. Map
Reduce concept is used to accomplish the computation in both phases. Findings: In this paper, investigational evaluation,
results to gain high privacy preservation with minimum information loss in less execution time when compared to the
existing approaches. The results demonstrate the insufficiency of the state-of-the art sub-tree anonymization approaches
when handling large data sets. According to the tendencies of execution time and Information Loss, it is necessary and
reasonable to choose MRBUG to perform parallel generalized data anonymization for large data according to the value of
k. Applications/Improvements: Optimized, heuristic, and balanced scheduling approaches are expected to be developed
towards overall scalable privacy preservation. It is believed that the structure of bottom-up generalization is amenable to
several extensions that make it more practical. Incorporating different metrics and handling data suppressions in partial
generalization is not necessarily require to have all child values generalized altogether. It is also possible to generalize
numeric attributes without a pre-determined hierarchy and shall be taken up as a future work.

Keywords: Bottom-Up Generalization, Cloud, Data Anonymization, Map Reduce, Privacy Preservation

1. Introduction

Cloud computing, a new development gives a significant
influence on current IT industry and research fraternity.1-3

Cloud computing offers huge computation facilities and
storage capacity via using many computers called clus-
ters together, provide users to position applications cost
effectively without heavy infrastructure outlay. Cloud
users may decrease huge cost of investment and focus on
their own core business. However many organizations
are still reluctant to make use of the advantages of cloud

computing due to privacy and security concerns4,5. The
study on cloud privacy and security has taken its full
swing6-9. Privacy is the major issue in cloud computing1,5.
Data privacy may be exposed with less effort by hackers
because of the failures of some traditional security mea-
sures5. This may bring substantial loss economically or
social impairment to data owners. Hence, data privacy
issues need to be enhanced before data sets are published
on public cloud. Data anonymization has been
comprehensively considered and broadly adopted for
privacy preservation10,11.

*Author for correspondence

Indian Journal of Science and Technology, vol 8(22), DOI: 10.17485/ijst/2015/v8i22/79095, September 2015
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Parallel Bottom-up Generalization Approach for
Data Anonymization using Map Reduce for

Security of Data in Public Cloud
Amalraj Irudayasamy* and L. Arockiam

1Periyar University, Salem - 636011, Tamil Nadu, India; amalprisci@gmail.com
2Computer Science, St. Joseph’s College, Trichy - 620002, Tamil Nadu, India; larockiam@yahoo.co.in

Parallel Bottom-up Generalization Approach for Data Anonymization using Map Reduce for Security of Data in Public Cloud

Indian Journal of Science and Technology2 Vol 8 (22) | September 2015 | www.indjst.org

Data anonymization refers to hiding the identity
of sensitive data. The privacy of an individual may be
effectively preserved with certain aggregate information
exposed to users for diverse analysis. A variety of ano-
nymization algorithms with various operations have
been proposed12-15 Data sets have become so large that
anonymizing such data sets are becoming a considerable
challenge for traditional algorithms1,16. The researchers
have begun to investigate the scalability problem of large-
scale data anonymization17,18. Large-scale data processing
frameworks like Map reduce19 have been integrated with
cloud to provide powerful computation capability for
applications. So, it is promising to adopt such frame-
works to address the scalability problem of anonymizing
large-scale data for privacy preservation. In this research,
Map reduce, a widely-adopted parallel data processing
framework is introduced, to address the scalability prob-
lem of the Bottom-Up Generalization (BUG) approach12
for large-scale data anonymization. The BUG approach,
offers a good tradeoff between data utility and data con-
sistency, is widely applied for data anonymization20-22.
Most BUG algorithms are centralized, resulting in their
inadequacy in handling large-scale data sets. Although
some distributed algorithms have been proposed, each
one mainly focuses on secure anonymization of data sets
from multiple parties, than the scalability aspect23.

In this paper, an efficient parallel BUG approach for
Data anonymization is proposed using Map reduce. To
evaluate this approach experiments on real-world data
sets are conducted. Experimental results demonstrate
that with this approach, the scalability and efficiency
of BUG may be improved significantly over existing
approaches. The major contributions of this research are
threefold. First, creatively applying Map reduce on cloud
to BUG for data anonymization and formulate a group
of innovative Map reduce jobs to accomplish the general-
izations in a highly scalable fashion. Second, a two-phase
BUG approach to gain high scalability via allowing gen-
eralizations to be conducted on multiple data partitions
in parallel during the first phase is proposed. Third, an
experimental results show that this approach may signifi-
cantly improve the scalability and efficiency of BUG for
data anonymization over existing approaches.

The remainder of this paper is organized as follows.
The next section reviews background work, and analyzes
the scalability problem in existing BUG algorithms. In
Section three, preliminaries for BUG are briefly presented.
Section four formulates the parallel BUG approach, and

Section five elaborates algorithmic details of Map reduce
jobs. Empirical evaluation has been made for the pro-
posed approach in Section six. Finally, the conclusion
and discussion over the future work has been delivered
in Section 6.

2. � Background and Problem
Investigation

A well-studied method for hiding sensitive information
with statistical methods is randomizing sensitive attri-
butes by totaling random error to values24. In these
mechanism, privacy was quantified by the unique val-
ues of a randomized characteristic may be assessed. This
method is dissimilar to the k-anonymity that quantifies
the individual that may be connected to an outer source.
A systematic revision is carried out in data mining for
masking data. Preferences may be carried through the
taxonomical hierarchies and the data receiver may be
articulated the change to data so that the product may
be accurately inferred. Generalization was used to attain
anonymity in Data fly and µ-Argus systems25. Their mech-
anisms did not classify or specific the use of unconfined
data. Data falsification is measured by several hierarchy
levels26 Selection of attributes did not address the quality
for classification26. Generalization approach considers the
anonymity problem for classification, and presented an
algorithm to search the best generalization of the data27.
It is more time consuming to generalize a small quan-
tity of records. The iterative bottom-up generalization
is used, and concentrates on the scalability concern. An
information privacy protocol has been used to general-
ize, whereas researches have been carried out to filter a
selected generalization28.

Many distributed procedures are projected to preserve
privacy of multiple data sets. Jiang et al.24 and Mohammed
et al.22 proposed disseminated procedures to anonymize
vertically partitioned data from diverse data sources
without disclosing privacy information from one party
to a different one. Jurczyk et al.28 and Mohammed et al.20
proposed distributed algorithms to anonymize horizon-
tally partitioned data sets retained by multiple holders.
However, the above mentioned distributed procedures
mostly intend at securely integrating and anonymiz-
ing multiple data sources. This research mainly focuses
on the privacy preservation problem achieving mini-
mum information loss in less execution time. Roy et al.29
studied the data privacy problem caused by Map Reduce

Amalraj Irudayasamy and L. Arockiam

Indian Journal of Science and Technology 3Vol 8 (22) | September 2015 | www.indjst.org

and presented “Airavat” incorporating compulsory right
to use control with discrepancy privacy. Further, Zhang et
al.30 projected Map Reduce to repeatedly partition a com-
puting job for data security levels, protecting data privacy
in hybrid cloud. This research investigates Map Reduce
to anonymize large-scale data sets, attaining maximum
privacy preservation.

3.  Preliminary

3.1  Basic Notations
Consider that the owner wants to release a person private
data R(D1,……,Dn,C) to the cloud. A record has the form
<v1,…..,vn,cls>, where vi is a domain value of the attribute
Di and cls is a class in C. Assume that R shares certain
attributes with an outside source E, represents R ∩ E. If a
value on R ∩ E is so specific, if the probability of having
this value is trivial, each link from a record in R to certain
information in E has a good chance of recognizing real
life information. The owner safeguards the data against
such linkages by using a least amount of records that is
linked over each value on R ∩ E. Let DOM represents
the set of all domain values in the Taxonomy Encoded
Anonymity (TEA).

3.1.1  Definition 1 (Anonymity)
The Virtual Identifier, Denoted VID, is the set of attri-
butes combined by R and E. a(vid) represents the number
of records in R with the value vid on VID. The anonym-
ity of VID, denoted as A (VID), is the minimum a(vid)
for several value vid on VID. If a(vid) = A(VID), vid is
known an anonymity vid.

3.1.2  Definition 2 (Generalization)
A generalization, written {c} → p replaces all child values
{c} along with the parental value p. A generalization is
efficient if all values under c are generalized to c. A vid is
generalized {c} → p if the vid contains some value in {c}.

3.2  Metrics for Generalization
A superior generalization ought to protect privacy of
the information and focus to achieve the K-anonymity.
Assume a generalization G:{c} → p. Let Rc denotes the set
of records with c, and let Rp denote the set of records with
p after applying G.|Rp| = ∑c| Rc|, where|x| is the number
of elements in a bag x. The result of G is reported by the

information loss and anonymity gain after substituting
Rc’s with Rp. There are two metrics namely Entropy
Based Information Loss (EBIL) and Information-Privacy
Metric to reduce the information loss thereby achieving
K-anonymity.

3.3  Bottom-up Generalization
A bottom-up approach is organizing smaller systems
together which results to more complex systems.
Bottom-up processing is a type of information pro-
cessing based on incoming data from the environment
to form a perception. In a bottom-up approach the
discrete components of the system are initially speci-
fied in pronounced detail. These components are then
interrelated to form greater subsystems, occasionally
in many stages, till a comprehensive top-level system
is shaped. This strategy often resembles a seed classic,
whereby the openings are small but ultimately develop
in complication and completeness.

A generalization operation is to replace a value with
its parent in a taxonomy tree, while a specialization
operation is to replace a value with its all child values.
Formally, a generalization is represented as gen: child(q)
→ q, where q is a domain value and the set Child(q) con-
sists of all child domain values of q. The domain values of
a taxonomy tree in any stage of anonymization comprise
a cut through the tree. Formally, the cut of the taxon-
omy tree of the attribute Attri denoted as Cuti1 ≤ i ≤
m , is a subset of values in DOMi. Cuti contains exactly
one value in each root-to-leaf path in the taxonomy
tree TTi. Intuitively, the cuts of all attributes deter-
mine the anonymity of an anonymous data set. Hence,
such information is leveraged to capture the degree of
anonymization during anonymization process.

Anonymization Level (AL) can intuitively represent
the anonymization degree of an anonymous data set, i.e.,
the more specific AL a data set has, less anonymity it cor-
responds to. In fact, anonymization can be achieved by
generalizing or specializing AL. After obtaining an AL,
the original data can be recoded according to the AL to
produce the final anonymous data. AL is employed to
track and manage an anonymization process.

In BUG, the Information Loss per Privacy Gain
(ILPG) is leveraged as the search metric for BUG.
Given generalization gen: child (q) → q, the ILPG of
the generalization is calculated. The term IL(gen) is the
information loss after performing gen, and PG(gen)
is the privacy gain. Both of them are computed via

Parallel Bottom-up Generalization Approach for Data Anonymization using Map Reduce for Security of Data in Public Cloud

Indian Journal of Science and Technology4 Vol 8 (22) | September 2015 | www.indjst.org

statistical information derived from data sets and IL(gen)
is calculated. Let Aq(gen) denote the anonymity after
performing gen, while Ac(gen) be that before performing
gen and the privacy gain from gen is calculated.

4.  Map Reduce BUG
Map Reduce is mainly elaborated based Bottom-Up
Generalization (MRBUG) in this section. MRBUG Driver
is described in section 4.1 to present the basic process of
BUG. To improve the competence of this approach, the
parallelization degree of BUG is boosted in section 4.2.
Section 4.3 presents the Map Reduce job for computing
IGPL in detail.

4.1  MRBUG Driver
Principally, BUG is a repeated process opening from the
lowest Anonymization Level (AL). The lowest AL has
the inner domain nodes in the lowest level of taxonomy
trees. Each round of iteration includes four steps, namely,
checking the current data set satisfies the anonymity
requirement, manipulating the Information Loss per
Privacy Gain (ILPG), finding the best generalization and
generalizing the data set according to the selected best
generalization.

Procedure 4.1 presents the Map Reduce driver for
MRBUG. ILPG values of all generalizations are initialized
in Step two. Step three is the main procedure, which is
an iterative process. It checks whether the current anony-
mized data set satisfies k-anonymity. If yes, it proceeds to
Step 4. Otherwise, a serial of actions are triggered.

4.1.1 Procedure: MRBUG Driver
•	 Input data set D , the lowest anonymization level AL0

and k-anonymity parameter k.
•	 Initialize the values of search metric ILPG for each

generalization with respect to AL0, through job ILPG
Calculation.

•	 When generalization is below the anonymity param-
eter k , then do the following :
•	 Identify the available generalization set AG Set out

of all the active generalization candidates.
•	 Set generalization as inactive for all generalization

that belongs to AG Set , to perform generalization
on the current anonymization level.

•	 If the generalization is inactive then do the
following:

•	 Insert a new generalization into NG Set.
•	 Remove all generalization in .

•	 Update ILPG values for all active generalization
candidates, through ILPG calculation.

•	 Anonymize D to D* in terms of resultant anonymiza-
tion level through data anonymization job.

•	 Anonymous data set D* is got as output.
Step 3, 1 identifies the available generalization set

AG. Initially, AGSet only contains the best generalization
gen Best with the highest ILPG value in terms of the
conventional BUG process. But it is proposed to per-
form multiple generalizations in one round of iteration
in MRBUG to improve the degree of parallelization and
efficiency, which will be elaborated in Section 3.4.2. Step
3, 2 performs the generalizations in AGSet by labelling
them as INACTIVE. If a generalization is labelled as
INACTIVE, it will not be considered any more in fol-
lowing rounds, abstractly fulfilling anonymization on
the data set. Let SGS(gen) denote the set containing
generalization gen and it’s all siblings in the domain tax-
onomy tree. When the generalizations in SGSet(gen)
are all labeled as INACTIVE, a new higher level gen-
eralization is inserted into the AL to replace these
inactive ones, as specified in Step 3, 3. Note that this is
a remarkable difference from TDS. Since multiple gen-
eralizations in AGSet are checked for this, it is probably
that more than one new generalization produced. Let
NGSet be the set of such generalizations. So, Step 3, 3,
1 adds new generalizations to NGSet. Step 3, 4 updates
the privacy gain of each active generalization as per-
forming of generalizations in AGSet probably changes
the anonymity of the data set. Also, information loss
computation is required if new generalizations have
been inserted.

As the last step, Step 4 concretely anonymizes the
data set according to the final AL. Step 2 and Step 3.4
requires ILPG calculation that involves accessing to
the original data set and computing statistic informa-
tion over the data set. Map Reduce technique has been
used to conduct the intensive computation in these
situations. Specifically, an innovative Map Reduce job
ILPG Calculation is designed to accomplish the com-
putation required in Step 2 and Step 3.4. The job is
elaborated in Section 3.4.3. In the following section,
we discuss how to boost parallelization of perform-
ing generalization in a round of iteration to improve
scalability and efficiency of BUG.

Amalraj Irudayasamy and L. Arockiam

Indian Journal of Science and Technology 5Vol 8 (22) | September 2015 | www.indjst.org

4.2 � Parallelization of Performing
Generalization

Several observations probably help to design efficient
Map Reduce jobs for the ILPG calculation. One is that,
unlike TDS that inserts several new specialization candi-
dates into the current anonymization level in each round,
BUG only inserts a new generalization candidate after
several rounds of generalization. Another is that conduct-
ing a generalization will not affect the information loss of
another generalization candidate. Based on such obser-
vations, multiple generalization candidates can be taken
into account in one round, thereby improving the degree
of parallelization and the efficiency of proposed approach.
However, performing a generalization possibly changes
the anonymity of the data set and privacy gain of each
candidate will be affected. The following definitions iden-
tify which candidates can be considered simultaneously
in a round of iteration.

If a generalization gen ∈ CGSet, performing gen
can probably change the anonymity of the data set, i.e.,
Ap (gen) – Ac (gen) be probably greater than 0. On the
contrary, if gen ∈ NCGSet, Ap (gen) – Ac (gen)= 0.,
PG(gen) = 0. Assume all the generalization candidates
are sorted ascending according to the ILPG values. It is
possible to conduct all the candidates before the first crit-
ical generalization simultaneously, without affecting the
anonymization result.

The first critical generalization can be performed in
the same round definitely while others in RGSet possi-
bly do this. Note that conducting critical generalizations
potentially affects the ILPG values of candidates, thereby
updating ILPG values is mandatory. To identify the avail-
able critical generalizations in one round from RGSet, a
subroutine is presented in procedure 3.2. Let ACG denote
the resultant available critical generalization set, i.e.,
the generalizations in ACGSet can be performed in one
round of iteration together with the generalization before
the first critical generalization. In the procedure, a prior-
ity queue is leveraged to keep the generalizations sorted
ascendingly with respect to ILPG.

4.2.1  Procedure Indentifying available
Generalizations
•	 Input Racing Generalization Set (RGSet), and

Anonymity Quasi Identifier Set (AQI Set).
•	 Sort all the active generalization.

•	 Identify critical generalization.
•	 ACGset is got as the output.

Input parameter RGSet can be obtained readily
after sorting all the active generalization candidates and
identifying critical generalizations. Identifying CGSet
relies on the other input parameter i.e., AQISet. Hence,
identifying AQISet is a key to Procedure 4.2. In the fol-
lowing section, it is shown how to identify AQISet in the
Map Reduce job ILPG Calculation. Once ACGSet is iden-
tified, it is possible to construct available generalization
set AGSet, i.e., Set = ACGSet ∪ {gen}, where gen locates
before the first critical generalization.

4.3 � Information Loss per Privacy Gain
Calculation Job

The Information Loss per Privacy Gain (ILPG) Calculation
job is responsible for ILPG initialization in Step 2 and
ILPG update in Step 3, 4 of procedure 4.1. The computa-
tion required in ILPG initialization is quite similar to that
of ILPG update. The Map function of the ILPG Calculation
is depicted in procedure 4.3, while the Reduce function is
presented in procedure 4.4. In procedure 4.3 and proce-
dure 4.4, the symbol ‘#’ is used to identify whether a key is
emitted to compute information gain or anonymity loss,
and ‘$’ is to differentiate the cases whether a key is for
computing Ap (spec) or Ac (spec).

4.3.1  Procedure ILPG Calculation Map
1.		 Input data record (IDr , r ∈ D; anonymization level

AL, NGSet.
2.	 For each attribute value vi in r, find its generalization

in current AL.
3.	 If the generalization in current AL belongs to the

NGSet , then it emits the key-value pair to the reduce
function for information loss computation if this pair
is a new generalization candidate.

4.	 Find the anonymity of the data set.
5.	 Gives the key-value pairs to obtain the anonymity after

performing a generalization as output.

Procedure 4.3 shows the IGPL calculation of map and
procedure 4.4 shows the IGPL calculation of reduce.
The Reduce function described in Procedure 4.4 mainly
aggregates the statistical information to calculate infor-
mation loss and privacy gain. Step 1 and Step 2 calculate
information loss. Due to that the key-value pairs are

Parallel Bottom-up Generalization Approach for Data Anonymization using Map Reduce for Security of Data in Public Cloud

Indian Journal of Science and Technology6 Vol 8 (22) | September 2015 | www.indjst.org

sorted by Map Reduce built-in mechanism before being
fed to Reducer workers, the Reduce function can compute
information loss for generalizations in order, without
requiring a large amount of memory to retaining statisti-
cal information. Therefore, the Reduce function is highly
scalable for calculating information loss.

4.3.2  Procedure ILPG Calculation Reduce
•	 Input Intermediate key-pair ,key, list,count.
•	 For each key , initialize the sum of all counts to a

variable sum.
•	 For each key update statistical count.

•	 If all sensitive values for child c have arrived, com-
pute I(Rc).

•	 If all children c of parent p have arrived, compute
I(Rp) and IL(gen) ; Emit (gen, IL(gen));

•	 For each key update anonymity.
•	 Update current anonymity
•	 Update anonymity of generation.

•	 Information gain (gen, Ap(gen) and anonymity (gen,
Ac (gen) , AQISet , (gen), Ap (gen) for generalizations
are got as outputs.

The main step of computing anonymity of a data set is
to find out the minimum QI-group size. Step 4 and Step
5 aims at calculating privacy gain as well as identify-
ing AQISet. The Reducer workers find out the locally
minimum QI-group size before and after performing a
generalization in parallel. Then, it is possible to obtain
the globally minimum QI-group size in the driver
program through comparing the outputs of Reducer
workers. The quasi-identifiers of the QI-groups with
the minimum group size are recorded during the pro-
cess and constitute AQISet. Note that AQISet plays an
important role in identifying available generalizations
in the next round of iteration. Above all, the ILPG
Calculation Reduce function is highly scalable for both
information loss and privacy gain computation. After
obtaining information loss and privacy gain, ILPG val-
ues are calculated.

5.  Evaluation

5.1  Overall Comparison
In this section, the effectiveness and efficiency of the
proposed approach are empirically evaluated and
compared with the existing state-of-the-art methods.

Concretely, four groups of experiments are conducted
for a comprehensive evaluation. In the first one,
MRBUG is compared with traditional BUG, in terms of
scalability and time-efficiency, to demonstrate the need
for scalable methods for BUG when data sets are huge.
Serial BUG method has been implemented according
to procedural description in the above literature. In the
second group of experiments, the scalability impacts
of the k-anonymity parameter k on MRBUG is imple-
mented, and quantitatively show the demand for the
MRBUG approach that chooses a component according
to the value of k . In the third group, the scalability and
time-efficiency of the MRBUG approach with respect to
the number data records is implemented, as the num-
ber of records dominates the time and space complexity
of BUG. The effects of computation nodes on the scal-
ability and time efficiency are reported in the fourth
group.

The experiments are conducted on the amazon EC2
- Cloud platform. Adult data set and its enlarged ver-
sions have been used. All procedures are implemented
in Java, and the Map Reduce implementation is based
on Hadoop 1.0.0 Map Reduce APIs. The execution time
of methods is measured for the scalability and time-
efficiency. The data distortion is captured by ILoss.
The value of ILoss is normalized to facilitate compari-
sons. Each round of experiment is repeated ten times.
The mean and standard errors of measured results are
reported for a comprehensive evaluation.

5.2  Comparison with Serial BUG
To show the need for scalable procedures, MRBUG is
compared with their traditional counterparts, i.e., serial
BUG. The number of records ranges from 500,000 to
5,000,000. Thus, the data sets in these experiments are
big enough to evaluate the effectiveness of this approach
in terms of the number of data records. The k - anonym-
ity parameter is set as fifty. The value of k is selected
randomly and does not affect the analysis in this group
of experiments, as what is to be observed is the scalabil-
ity changes of serial and Map Reduce based procedures
with respect to the number of records. Interesting read-
ers can try other values. The conclusions will be the same.
As the Map Reduce methods incur the same amount of
data distortion as its serial counterparts, only the results
of execution time is presented. To make a fair com-
parison, the serial procedures are executed on a virtual
machine of m1.large type that has four virtual CPUs and

Amalraj Irudayasamy and L. Arockiam

Indian Journal of Science and Technology 7Vol 8 (22) | September 2015 | www.indjst.org

8 GB memory, while Map Reduce based procedures are
executed on a cluster that consists of 10 virtual machines
of m1.medium type having two virtual CPUs and four
GB memory. Figure 1 shows the change of execution
time with respect to number of records in serial BUG
and MRBUG.
The execution time of serial BUG grows gradually at
former stages, but goes up severely at later stages. It runs
out of memory when the number of records researches to
5,000,000, since the indexing data structure consumes too
much memory. The execution time of MRBUG increases
relatively slowly and smoothly. Its scalability will be
further evaluated subsequently. The above experimental
results demonstrate the insufficiency of the state-of-the
art subtree anonymization approaches when handling
large data sets. Hence, it is necessary to propose scalable
BUG procedures for large data.

5.3  Scalability of MRTDS Vs. MRBUG
In this group of experiments, the impacts of the anonymity
parameter k on the scalability of MRTDS and MRBUG is
examined. The number of data records is set as 1,000,000.
In fact, k can be valued from 1 to 1,000,000, where k= 1
and k= 1,000,000 are two extreme cases. In terms of the
generalization process, the anonymity of a data set var-
ies in an exponential manner. To comply with this fact,
the values of k in the form of 10x are selected for com-
prehensive evaluation, where k is a non-negative integer.
Specifically, k ranges from one to five. The number of
Reducers is set as ten. The experiment results are reported
in Figure 1. To present the results in a manageable and
intuitive way, the horizontal axis is logarithmically scaled
with base ten.

Figure 2(a) shows the change of execution time with
respect to k for MRTDS and MRBUG. The execution

time of MRTDS decreases stably linearly when the orders
of magnitude of k grows. On the contrary, the execution
time increases approximately linearly when k is getting
large. The two curves intersect at the middle point of
k’s orders of magnitude. MRBUG takes less execution
time before this point, and the smaller k is, the less it
takes than MRTDS. After this point, MRTDS consumes
less time, and the larger k is, the less time it consumes.
Figure 2(b) demonstrates the change of ILoss% with
respect to k for MRTDS and MRBUG. The ILoss% of
both methods increase with the growing of k, which
reflects the fact that larger k implies more data distor-
tion. Because, the resultant anonymization levels may
be different for small k. The data distortions caused by
MRTDS and MRBUG are different. But the differences
are minor according to the results in Figure 2(b). This
trend ensures that MRBUG can be utilized freely with-
out considering the data distortion aspect. According to
the tendencies of execution time and ILoss, it is nec-
essary and reasonable to choose MRBUG to perform
parallel generalized data anonymization for large data
according to the value of k. This empirically validates

Figure 1.  Change of execution time w.r.t. number of
records. (Serial BUG Vs. MRBUG). (a)

(b)

Figure 2.  Changes of execution time and ILoss % w.r.t.
anonymity parameter k (MRTDS Vs. MRBUG).

Parallel Bottom-up Generalization Approach for Data Anonymization using Map Reduce for Security of Data in Public Cloud

Indian Journal of Science and Technology8 Vol 8 (22) | September 2015 | www.indjst.org

the motivation of the MRBUG approach. The scalability
of the hybrid approach is evaluated next.

5.4 � Scalability of MRBUG over
Computation Nodes

Another aspect of scalability evaluation is to explore
whether the approach is scalable over computation nodes.
The number of Reducers ranges from five to twenty. Each
computation node is of the m1.medium type. The num-
ber of data records in this group of experiments is set
as 1,000,000. Similar to the last group of experiments,
the k-anonymity parameter is set as 100 and 1000 for
MRBUG. Figure 3 demonstrates the execution time and
ILoss of the worst case of the MRBUG approach. It can be
seen from Figure 3(a) that the execution time of MRTDS
drops off in a nearly linear fashion when the number of
Reducers is getting larger. This illustrates that the MRBUG
approach is linearly scalable with respect to the number of
Reducers. As a result, the proposed approach can handle
large data sets with ease by just employing more com-
putation nodes. Figure 3(b) demos that the ILoss keeps
constant with the increase of Reducers. This is reasonable
as the ILoss is affected by anonymity parameter k and the
data set, but the number of Reducers. The above four sets
of experiments reveals that the parallel BUG approach

can significantly improve the privacy preservation with
minimum information loss over large data set compared
with the existing serial BUG approaches.

6.  Conclusions and Future Work
In this paper, the scalability problem of large-scale data
anonymization by Bottom-Up Generalization (BUG), and
proposed a highly scalable parallel BUG approach using
Map reduce on cloud has been investigated. Datasets are
partitioned and anonymized in parallel in the first phase,
producing intermediate results. Then, the intermediate
results are merged and anonymized to produce consistent
k-anonymous data sets in the second phase.

Map reduce technique has been creatively applied on
cloud to data anonymization and formulated a group of
innovative Map reduce jobs to achieve Generalization
computations in a highly scalable way. Experimental
results on real-world datasets have revealed that with this
approach, BUG is scalable and efficient than any other
approach. In cloud environment, the privacy preserva-
tion for data analysis, sharing and mining is a challenging
research issue because gradually larger volumes of datasets
are used, thereby demanding severe research. A thorough
investigation is done with the bottom-up generalization
algorithms for data anonymization. Based on the contri-
butions herein, it is intended to explore the subsequent
phase on scalable privacy preservation aware analysis and
scheduling on large-scale datasets. Optimized, heuristic,
and balanced scheduling approaches are expected to be
developed towards overall scalable privacy preservation. It
is believed that the structure of bottom-up generalization is
amenable to several extensions that make it more practical.
Incorporating different metrics and handling data suppres-
sions in partial generalization is not necessarily require to
have all child values generalized altogether. It is also possible
to generalize numeric attributes without a pre-determined
hierarchy and shall be taken up as a future work.

7.  References
1.	 Chaudhuri S. What next? A half-dozen data management

research goals for big data and the cloud.Proceedings of
the 31st Symposium on Principles of Database Systems
(PODS’12); 2012. p. 1–4.

2.	 Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Konwinski
A, et al. A view of cloud computing. Communication of
ACM. 2010; 53(4):50–8.

(a)

(b)

Figure 3.  Change of execution time and ILoss w.r.t number
of reducers.

Amalraj Irudayasamy and L. Arockiam

Indian Journal of Science and Technology 9Vol 8 (22) | September 2015 | www.indjst.org

  3.	 Wang L, Zhan J, Shi W, Liang Y. In cloud, may scientific
communities benefit from the economies of scale? IEEE
Trans Parallel Distrib Syst. 2012; 23(2):296–303.

  4.	 Takabi H, Joshi JBD, Ahn G. Security and privacy challenges
in cloud computing environments. IEEE Security and
Privacy. 2010; 8(6):24 – 31.

  5.	 Zissis D, Lekkas D. Addressing cloud computing security
issues. Future General Computer Systems. 2011; 28(3):
583 –92.

  6.	 Zhang X, Liu C, Nepal S, Pandey S, Chen J. A privacy leakage
upper-bound constraint based approach for cost-effective
privacy preserving of intermediate datasets in cloud. IEEE
Transactions Parallel Distributed Systems. 2012 Aug 08;
24(6):1192–202.

  7.	 Hsiao-Ying L, Tzeng WG. A Secure erasure code-based
cloud storage system with secure data forwarding.
IEEE Transactions Parallel Distributed Systems. 2012;
23(6):995–1003.

  8.	 Cao N, Wang C, Li M, Ren K, Lou W. Privacy-preserving
multi-keyword ranked search over encrypted cloud data.
Proceedings 31st Annual IEEE International Conference
on Computer Communications (INFOCOM’11); 2011 Apr
10-15. p. 829–37.

  9.	 Mohan P, Thakurta A, Shi E, Song D, Culler D. Gupt:
Privacy preserving data analysis made easy. Proceedings of
ACMSIGMOD International Conference on Management
of Data (SIGMOD’12); 2012. p. 349–60. Available from:
http://www.microsoft.com/health/ww/products/Pages/
healthvault.aspx

10.	 Fung BCM, Wang K, Chen R, Yu PS. Privacy-preserving
data publishing: A survey of recent developments. ACM
Comput Survey. 2010; 42(4):1 –53.

11.	 Fung BCM, Wang K, Yu PS. Anonymizing classification
data for privacy preservation. IEEE Transaction Knowledge
Data Engineer. 2007 Mar 26; 19(5):711 –25.

12.	 Xiao X, Tao Y. Anatomy: Simple and effective privacy
preservation. Proceedings of 32 International Conference
on Very Large Data Bases (VLDB’06); 2006. p. 139–50.

13.	 LeFevre K, DeWitt DJ, Ramakrishnan R. Incognito:
Efficient full-domain K-anonymity. Proceedings of 2005
ACM SIGMOD International Conference on Management
of Data (SIGMOD’05); 2005. p. 49–60.

14.	 LeFevre K, DeWitt DJ, Ramakrishnan R. Mondrian multi-
dimensional K-anonymity. Proceedings 22nd International
Conference on Data Engineering (ICDE‘06); 2006.

15.	 Borkar V, Carey MJ, Li C. Inside big data management:
Ogres, Onions, or Parfaits? Proceedings 15th International
Conference Extending Database Technology (EDBT’12);
2012. p. 3-14.

16.	 LeFevre K, DeWitt DJ, Ramakrishna R. Workload-aware
anonymization techniques for large-scale datasets. ACM
Transcations Database System. 2008 Aug 17; 33(3):1–47.

17.	 Iwuchukwu T, Naughton JF. K-anonymization as spatial
indexing: Toward scalable and incremental anonymization.
Proceedings 33rd International Conference on Very Large
Data Bases (VLDB’07); 2007. p. 746–57.

18.	 Dean J, Ghemawat S. Map Reduce: Simplified data
processing on large clusters. Communications ACM. 2008;
51(1):107–13.

19.	 Mohammed N, Fung B, Hung PCK, Lee CK. Centralized
and distributed anonymization for high-dimensional
healthcare data. ACM Transcations Knowledge Discover
Data. 2010 Oct; 4(4): 1–33.

20.	 Fung B,Wang K,Wang L,Hung PCK. Privacy-
Preserving Data Publishing for Cluster Analysis: Data
Knowledge Engineering. 2009; 68(6): 552–75. doi:10.1016/j.
datak.2008.12.001.

21.	 Mohammed N, Fung BC, Debbabi M. Anonymity meets
game theory: secure data integration with malicious
participants. VLDB J. 2011 Aug; 20(4):567–88.

22.	 Agrawal R, Srikant R. Privacy preserving data mining.
Proceedings of Special Interest Group on Management of
Data (SIGMOD); 2000 Jun. p. 439–50.

23.	 Hundepool, Willenborg L. µ- and -argus: Software for sta-
tistical disclosure control. Proceedings 3rd International
Seminar on Statistical Confidentiality; Bled; 1996.

24.	 Sweeney L. Achieving K-anonymity privacy protection using
generalization and suppression. Proceedings International
Journal on Uncertainty, Fuzziness and Knowledge-based
Systems. 2002; 10(5):571–88.

25.	 Sweeney L. K-anonymity: A model for projecting privacy.
Proceedings International Journal on Uncertainty, Fuzziness
and Knowledge-based Systems. 2002 Oct; 10(5):557–70.

26.	 Jiang W, Clifton C. A secure distributed framework for
achieving K-anonymity. VLDB J. 2006; 15(4):316–33.

27.	 Jurczyk P, Xiong L. Distributed anonymization: Achieving
privacy for both data subjects and data providers. Data and
Applications Security XXIII Database Section (DBSec’09);
2009. p. 191–207.

28.	 Roy STVS, Kilzer A, Shmatikov V, Witchel E. Airavat:
Security and privacy for Map Reduce. Proceedings
7USENIX Conference Networked Systems Design and
Implementation (NSDI’10); p. 297–312.

29.	 Zhang K, Zhou X, Chen Y, Wang X, Ruan Y. Sedic:
Privacy-Aware data intensive computing on hybrid clouds.
Proceedings of 18th ACM Conference on Computer and
Communications Security (CCS’11); 2011. p. 515–26.

30.	 Xiao X, Tao Y. Personalized privacy preservation.
Proceedings 2006 ACM SIGMOD International Conference
Management of Data (SIGMOD’06); 2006. p. 229–40.

USER
Note
AU: Pls cite the reference 29 in text

USER
Note
AU: Please cite the reference 30 intext

