
Abstract
BackGround/Objectives: Anonymizing data sets through generalization satisfies certain privacy concerns such as
k- anonymity that are broadly used as privacy conserving procedures. Parallel bottom-up generalization approach is
introduced to anonymize huge datasets by map reduce structure on public cloud. A group of innovative map reduce jobs are
formulated to perform the generalization in an exceedingly scalable manner. Methods/Statistical Analysis: Map Reduce, 
a widely-adopted parallel data processing framework is introduced, to address the privacy preservation problem with
minimum information loss of the Bottom-Up Generalization (BUG) approach for large-scale data anonymization. To make
full use of parallelism feature of Map reduce on cloud the whole process are split into two phases. Firstly, unique datasets
are partitioned into a collection of lesser datasets, and these datasets are anonymized in parallel, giving  intermediary
outcome. Secondly, the intermediate results are combined and anonymized, to attain consistent k-anonymous data sets. Map 
Reduce concept is used to accomplish the computation in both phases. Findings: In this paper, investigational  evaluation,
results to gain high privacy preservation with minimum information loss in less execution time when  compared to the
existing approaches. The results demonstrate the insufficiency of the state-of-the art sub-tree anonymization  approaches
when handling large data sets. According to the tendencies of execution time and Information Loss, it is necessary and
reasonable to choose MRBUG to perform parallel generalized data anonymization for large data according to the value of
k. Applications/Improvements: Optimized, heuristic, and balanced scheduling approaches are expected to be developed
towards overall scalable privacy preservation. It is believed that the structure of bottom-up generalization is amenable to
several extensions that make it more practical. Incorporating different metrics and handling data  suppressions in partial
generalization is not necessarily require to have all child values generalized altogether. It is also possible to  generalize
numeric attributes without a pre-determined hierarchy and shall be taken up as a future work.
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1. Introduction

Cloud computing, a new development gives a  significant
influence on current IT industry and research fraternity.1-3

Cloud computing offers huge computation facilities and
storage capacity via using many computers called clus-
ters together, provide users to position applications cost
effectively without heavy infrastructure outlay. Cloud
users may decrease huge cost of investment and focus on
their own core business. However many  organizations
are still reluctant to make use of the  advantages of cloud 

computing due to privacy and  security concerns4,5. The
study on cloud privacy and security has taken its full
swing6-9. Privacy is the major issue in cloud computing1,5.
Data privacy may be exposed with less effort by hackers
because of the failures of some traditional security mea-
sures5. This may bring substantial loss economically or
social impairment to data owners. Hence, data privacy
issues need to be enhanced before data sets are  published
on public cloud. Data  anonymization has been
comprehensively  considered and broadly adopted for
privacy  preservation10,11.
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Data anonymization refers to hiding the identity 
of sensitive data. The privacy of an individual may be 
effectively preserved with certain aggregate information 
exposed to users for diverse analysis. A variety of ano-
nymization algorithms with various operations have 
been proposed12-15 Data sets have become so large that 
anonymizing such data sets are becoming a considerable 
challenge for traditional algorithms1,16. The researchers 
have begun to investigate the scalability problem of large-
scale data anonymization17,18. Large-scale data processing 
frameworks like Map reduce19 have been integrated with 
cloud to provide powerful computation capability for 
applications. So, it is promising to adopt such frame-
works to address the scalability problem of anonymizing 
large-scale data for privacy preservation. In this research, 
Map reduce, a widely-adopted parallel data processing 
framework is introduced, to address the scalability prob-
lem of the Bottom-Up Generalization (BUG) approach12 
for large-scale data anonymization. The BUG approach, 
offers a good tradeoff between data utility and data con-
sistency, is widely applied for data anonymization20-22. 
Most BUG algorithms are centralized, resulting in their 
inadequacy in handling large-scale data sets. Although 
some distributed algorithms have been proposed, each 
one mainly focuses on secure anonymization of data sets 
from multiple parties, than the scalability aspect23. 

In this paper, an efficient parallel BUG approach for 
Data anonymization is proposed using Map reduce. To 
evaluate this approach experiments on real-world data 
sets are conducted. Experimental results demonstrate 
that with this approach, the scalability and efficiency 
of BUG may be improved significantly over existing 
approaches. The major contributions of this research are 
threefold. First, creatively applying Map reduce on cloud 
to BUG for data anonymization and formulate a group 
of innovative Map reduce jobs to accomplish the general-
izations in a highly scalable fashion. Second, a two-phase 
BUG approach to gain high scalability via allowing gen-
eralizations to be conducted on multiple data partitions 
in parallel during the first phase is proposed. Third, an 
experimental results show that this approach may signifi-
cantly improve the scalability and efficiency of BUG for 
data anonymization over existing approaches. 

The remainder of this paper is organized as follows. 
The next section reviews background work, and analyzes 
the scalability problem in existing BUG algorithms. In 
Section three, preliminaries for BUG are briefly presented. 
Section four formulates the parallel BUG approach, and 

Section five elaborates algorithmic details of Map reduce 
jobs. Empirical evaluation has been made for the pro-
posed approach in Section six. Finally, the conclusion 
and discussion over the future work has been delivered 
in Section 6.

2. � Background and Problem 
Investigation

A well-studied method for hiding sensitive information 
with statistical methods is randomizing sensitive attri-
butes by totaling random error to values24. In these 
mechanism, privacy was quantified by the unique val-
ues of a randomized characteristic may be assessed. This 
method is dissimilar to the k-anonymity that quantifies 
the individual that may be connected to an outer source. 
A systematic revision is carried out in data mining for 
masking data. Preferences may be carried through the 
taxonomical hierarchies and the data receiver may be 
articulated the change to data so that the product may 
be accurately inferred. Generalization was used to attain 
anonymity in Data fly and µ-Argus systems25. Their mech-
anisms did not classify or specific the use of unconfined 
data. Data falsification is measured by several hierarchy 
levels26 Selection of attributes did not address the quality 
for classification26. Generalization approach considers the 
anonymity problem for classification, and presented an 
algorithm to search the best generalization of the data27. 
It is more time consuming to generalize a small quan-
tity of records. The iterative bottom-up generalization 
is used, and concentrates on the scalability concern. An 
information privacy protocol has been used to general-
ize, whereas researches have been carried out to filter a 
selected generalization28.

Many distributed procedures are projected to preserve 
privacy of multiple data sets. Jiang et al.24 and Mohammed 
et al.22 proposed disseminated procedures to anonymize 
vertically partitioned data from diverse data sources 
without disclosing privacy information from one party 
to a different one. Jurczyk et al.28 and Mohammed et al.20 
proposed distributed algorithms to anonymize horizon-
tally partitioned data sets retained by multiple holders. 
However, the above mentioned distributed procedures 
mostly intend at securely integrating and anonymiz-
ing multiple data sources. This research mainly focuses 
on the privacy preservation problem achieving mini-
mum information loss in less execution time. Roy et al.29 
studied the data privacy problem caused by Map Reduce 
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and presented “Airavat” incorporating compulsory right 
to use control with discrepancy privacy. Further, Zhang et 
al.30 projected Map Reduce to repeatedly partition a com-
puting job for data security levels, protecting data privacy 
in hybrid cloud. This research investigates Map Reduce 
to anonymize large-scale data sets, attaining maximum 
privacy preservation. 

3.  Preliminary 

3.1  Basic Notations 
Consider that the owner wants to release a person private 
data R(D1,……,Dn,C) to the cloud. A record has the form 
<v1,…..,vn,cls>, where vi is a domain value of the attribute 
Di and cls is a class in C. Assume that R shares certain 
attributes with an outside source E, represents R ∩ E. If a 
value on R ∩ E is so specific, if the probability of having 
this value is trivial, each link from a record in R to certain 
information in E has a good chance of recognizing real 
life information. The owner safeguards the data against 
such linkages by using a least amount of records that is 
linked over each value on R ∩ E. Let DOM represents 
the set of all domain values in the Taxonomy Encoded 
Anonymity (TEA).

3.1.1  Definition 1 (Anonymity) 
The Virtual Identifier, Denoted VID, is the set of attri-
butes combined by R and E. a(vid) represents the number 
of records in R with the value vid on VID. The anonym-
ity of VID, denoted as A (VID), is the minimum a(vid) 
for several value vid on VID. If a(vid) = A(VID), vid is 
known an anonymity vid. 

3.1.2  Definition 2 (Generalization)
A generalization, written {c} → p replaces all child values 
{c} along with the parental value p. A generalization is 
efficient if all values under c are generalized to c. A vid is 
generalized {c} → p if the vid contains some value in {c}.

3.2  Metrics for Generalization
A superior generalization ought to protect privacy of 
the information and focus to achieve the K-anonymity. 
Assume a generalization G:{c} → p. Let Rc denotes the set 
of records with c, and let Rp denote the set of records with 
p after applying G.|Rp| = ∑c| Rc|, where|x| is the number 
of elements in a bag x. The result of G is reported by the 

information loss and anonymity gain after substituting 
Rc’s with Rp. There are two metrics namely Entropy 
Based Information Loss (EBIL) and Information-Privacy 
Metric to reduce the information loss thereby achieving 
K-anonymity. 

3.3  Bottom-up Generalization 
A  bottom-up  approach is organizing smaller systems 
together which results to more complex systems. 
Bottom-up processing is a type of  information pro-
cessing based on incoming data from the environment 
to form a  perception. In a bottom-up approach the 
discrete components of the system are initially speci-
fied in pronounced detail. These components are then 
interrelated to form greater subsystems, occasionally 
in many stages, till a comprehensive top-level system 
is shaped. This strategy often resembles a seed classic, 
whereby the openings are small but ultimately develop 
in complication and completeness. 

A generalization operation is to replace a value with 
its parent in a taxonomy tree, while a specialization 
operation is to replace a value with its all child values. 
Formally, a generalization is represented as gen: child(q) 
→ q, where q is a domain value and the set Child(q) con-
sists of all child domain values of q. The domain values of 
a taxonomy tree in any stage of anonymization comprise 
a cut through the tree. Formally, the cut of the taxon-
omy tree of the attribute Attri denoted as Cuti1 ≤ i ≤ 
m , is a subset of values in DOMi. Cuti contains exactly 
one value in each root-to-leaf path in the taxonomy 
tree TTi. Intuitively, the cuts of all attributes deter-
mine the anonymity of an anonymous data set. Hence, 
such information is leveraged to capture the degree of 
anonymization during anonymization process. 

Anonymization Level (AL) can intuitively represent 
the anonymization degree of an anonymous data set, i.e., 
the more specific AL a data set has, less anonymity it cor-
responds to. In fact, anonymization can be achieved by 
generalizing or specializing AL. After obtaining an AL, 
the original data can be recoded according to the AL to 
produce the final anonymous data. AL is employed to 
track and manage an anonymization process. 

In BUG, the Information Loss per Privacy Gain 
(ILPG) is leveraged as the search metric for BUG. 
Given generalization gen: child (q) → q, the ILPG of 
the generalization is calculated. The term IL(gen) is the 
information loss after performing gen, and PG(gen) 
is the privacy gain. Both of them are computed via 
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statistical information derived from data sets and IL(gen) 
is calculated. Let Aq(gen) denote the anonymity after 
performing gen, while Ac(gen) be that before performing 
gen and the privacy gain from gen is calculated.

4.  Map Reduce BUG
Map Reduce is mainly elaborated based Bottom-Up 
Generalization (MRBUG) in this section. MRBUG Driver 
is described in section 4.1 to present the basic process of 
BUG. To improve the competence of this approach, the 
parallelization degree of BUG is boosted in section 4.2. 
Section 4.3 presents the Map Reduce job for computing 
IGPL in detail. 

4.1  MRBUG Driver
Principally, BUG is a repeated process opening from the 
lowest Anonymization Level (AL). The lowest AL has 
the inner domain nodes in the lowest level of taxonomy 
trees. Each round of iteration includes four steps, namely, 
checking the current data set satisfies the anonymity 
requirement, manipulating the Information Loss per 
Privacy Gain (ILPG), finding the best generalization and 
generalizing the data set according to the selected best 
generalization. 

Procedure 4.1 presents the Map Reduce driver for 
MRBUG. ILPG values of all generalizations are initialized 
in Step two. Step three is the main procedure, which is 
an iterative process. It checks whether the current anony-
mized data set satisfies k-anonymity. If yes, it proceeds to 
Step 4. Otherwise, a serial of actions are triggered.

4.1.1 Procedure: MRBUG Driver
•	 Input data set D , the lowest anonymization level AL0 

and k-anonymity parameter k. 
•	 Initialize the values of search metric ILPG for each 

generalization with respect to AL0, through job ILPG 
Calculation. 

•	 When generalization is below the anonymity param-
eter k , then do the following : 
•	 Identify the available generalization set AG Set out 

of all the active generalization candidates. 
•	 Set generalization as inactive for all generalization 

that belongs to AG Set , to perform generalization 
on the current anonymization level. 

•	 If the generalization is inactive then do the 
following: 

•	 Insert a new generalization into NG Set. 
•	 Remove all generalization in .

•	 Update ILPG values for all active generalization 
candidates, through ILPG calculation. 

•	 Anonymize D to D* in terms of resultant anonymiza-
tion level through data anonymization job. 

•	 Anonymous data set D* is got as output. 
Step 3, 1 identifies the available generalization set 

AG. Initially, AGSet only contains the best generalization 
gen Best with the highest ILPG value in terms of the 
conventional BUG process. But it is proposed to per-
form multiple generalizations in one round of iteration 
in MRBUG to improve the degree of parallelization and 
efficiency, which will be elaborated in Section 3.4.2. Step 
3, 2 performs the generalizations in AGSet by labelling 
them as INACTIVE. If a generalization is labelled as 
INACTIVE, it will not be considered any more in fol-
lowing rounds, abstractly fulfilling anonymization on 
the data set. Let SGS(gen) denote the set containing 
generalization gen and it’s all siblings in the domain tax-
onomy tree. When the generalizations in SGSet(gen) 
are all labeled as INACTIVE, a new higher level gen-
eralization is inserted into the AL to replace these 
inactive ones, as specified in Step 3, 3. Note that this is 
a remarkable difference from TDS. Since multiple gen-
eralizations in AGSet are checked for this, it is probably 
that more than one new generalization produced. Let 
NGSet be the set of such generalizations. So, Step 3, 3, 
1 adds new generalizations to NGSet. Step 3, 4 updates 
the privacy gain of each active generalization as per-
forming of generalizations in AGSet probably changes 
the anonymity of the data set. Also, information loss 
computation is required if new generalizations have 
been inserted.

As the last step, Step 4 concretely anonymizes the 
data set according to the final AL. Step 2 and Step 3.4 
requires ILPG calculation that involves accessing to 
the original data set and computing statistic informa-
tion over the data set. Map Reduce technique has been 
used to conduct the intensive computation in these 
situations. Specifically, an innovative Map Reduce job 
ILPG Calculation is designed to accomplish the com-
putation required in Step 2 and Step 3.4. The job is 
elaborated in Section 3.4.3. In the following section, 
we discuss how to boost parallelization of perform-
ing generalization in a round of iteration to improve 
scalability and efficiency of BUG.
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4.2 � Parallelization of Performing 
Generalization

Several observations probably help to design efficient 
Map Reduce jobs for the ILPG calculation. One is that, 
unlike TDS that inserts several new specialization candi-
dates into the current anonymization level in each round, 
BUG only inserts a new generalization candidate after 
several rounds of generalization. Another is that conduct-
ing a generalization will not affect the information loss of 
another generalization candidate. Based on such obser-
vations, multiple generalization candidates can be taken 
into account in one round, thereby improving the degree 
of parallelization and the efficiency of proposed approach. 
However, performing a generalization possibly changes 
the anonymity of the data set and privacy gain of each 
candidate will be affected. The following definitions iden-
tify which candidates can be considered simultaneously 
in a round of iteration. 

If a generalization gen ∈ CGSet, performing gen 
can probably change the anonymity of the data set, i.e., 
Ap (gen) – Ac (gen) be probably greater than 0. On the 
contrary, if gen ∈ NCGSet, Ap (gen) – Ac (gen)= 0., 
PG(gen) = 0. Assume all the generalization candidates 
are sorted ascending according to the ILPG values. It is 
possible to conduct all the candidates before the first crit-
ical generalization simultaneously, without affecting the 
anonymization result. 

The first critical generalization can be performed in 
the same round definitely while others in RGSet possi-
bly do this. Note that conducting critical generalizations 
potentially affects the ILPG values of candidates, thereby 
updating ILPG values is mandatory. To identify the avail-
able critical generalizations in one round from RGSet, a 
subroutine is presented in procedure 3.2. Let ACG denote 
the resultant available critical generalization set, i.e., 
the generalizations in ACGSet can be performed in one 
round of iteration together with the generalization before 
the first critical generalization. In the procedure, a prior-
ity queue is leveraged to keep the generalizations sorted 
ascendingly with respect to ILPG. 

4.2.1  Procedure Indentifying available 
Generalizations
•	 Input Racing Generalization Set (RGSet), and 

Anonymity Quasi Identifier Set (AQI Set). 
•	 Sort all the active generalization.

•	 Identify critical generalization.
•	 ACGset is got as the output.

Input parameter RGSet can be obtained readily 
after sorting all the active generalization candidates and 
identifying critical generalizations. Identifying CGSet 
relies on the other input parameter i.e., AQISet. Hence, 
identifying AQISet is a key to Procedure 4.2. In the fol-
lowing section, it is shown how to identify AQISet in the 
Map Reduce job ILPG Calculation. Once ACGSet is iden-
tified, it is possible to construct available generalization 
set AGSet, i.e., Set = ACGSet ∪ {gen}, where gen locates 
before the first critical generalization. 

4.3 � Information Loss per Privacy Gain 
Calculation Job

The Information Loss per Privacy Gain (ILPG) Calculation 
job is responsible for ILPG initialization in Step 2 and 
ILPG update in Step 3, 4 of procedure 4.1. The computa-
tion required in ILPG initialization is quite similar to that 
of ILPG update. The Map function of the ILPG Calculation 
is depicted in procedure 4.3, while the Reduce function is 
presented in procedure 4.4. In procedure 4.3 and proce-
dure 4.4, the symbol ‘#’ is used to identify whether a key is 
emitted to compute information gain or anonymity loss, 
and ‘$’ is to differentiate the cases whether a key is for 
computing Ap (spec) or Ac (spec). 

4.3.1  Procedure ILPG Calculation Map
1.		 Input data record (IDr , r ∈ D; anonymization level 

AL, NGSet. 
2.	 For each attribute value vi in r, find its generalization 

in current AL. 
3.	 If the generalization in current AL belongs to the 

NGSet , then it emits the key-value pair to the reduce 
function for information loss computation if this pair 
is a new generalization candidate. 

4.	 Find the anonymity of the data set. 
5.	 Gives the key-value pairs to obtain the anonymity after 

performing a generalization as output. 

Procedure 4.3 shows the IGPL calculation of map and 
procedure 4.4 shows the IGPL calculation of reduce. 
The Reduce function described in Procedure 4.4 mainly 
aggregates the statistical information to calculate infor-
mation loss and privacy gain. Step 1 and Step 2 calculate 
information loss. Due to that the key-value pairs are 
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sorted by Map Reduce built-in mechanism before being 
fed to Reducer workers, the Reduce function can compute 
information loss for generalizations in order, without 
requiring a large amount of memory to retaining statisti-
cal information. Therefore, the Reduce function is highly 
scalable for calculating information loss.

4.3.2  Procedure ILPG Calculation Reduce
•	 Input Intermediate key-pair ,key, list,count. 
•	 For each key , initialize the sum of all counts to a 

variable sum. 
•	 For each key update statistical count.

•	 If all sensitive values for child c have arrived, com-
pute I(Rc).

•	 If all children c of parent p have arrived, compute 
I(Rp) and IL(gen) ; Emit (gen, IL(gen));

•	 For each key update anonymity. 
•	 Update current anonymity 
•	 Update anonymity of generation.

•	 Information gain (gen, Ap(gen) and anonymity (gen, 
Ac (gen) , AQISet , (gen), Ap (gen) for generalizations 
are got as outputs. 

The main step of computing anonymity of a data set is 
to find out the minimum QI-group size. Step 4 and Step 
5 aims at calculating privacy gain as well as identify-
ing AQISet. The Reducer workers find out the locally 
minimum QI-group size before and after performing a 
generalization in parallel. Then, it is possible to obtain 
the globally minimum QI-group size in the driver 
program through comparing the outputs of Reducer 
workers. The quasi-identifiers of the QI-groups with 
the minimum group size are recorded during the pro-
cess and constitute AQISet. Note that AQISet plays an 
important role in identifying available generalizations 
in the next round of iteration. Above all, the ILPG 
Calculation Reduce function is highly scalable for both 
information loss and privacy gain computation. After 
obtaining information loss and privacy gain, ILPG val-
ues are calculated. 

5.  Evaluation 

5.1  Overall Comparison
In this section, the effectiveness and efficiency of the 
proposed approach are empirically evaluated and 
compared with the existing state-of-the-art methods. 

Concretely, four groups of experiments are conducted 
for a comprehensive evaluation. In the first one, 
MRBUG is compared with traditional BUG, in terms of 
scalability and time-efficiency, to demonstrate the need 
for scalable methods for BUG when data sets are huge. 
Serial BUG method has been implemented according 
to procedural description in the above literature. In the 
second group of experiments, the scalability impacts 
of the k-anonymity parameter k on MRBUG is imple-
mented, and quantitatively show the demand for the 
MRBUG approach that chooses a component according 
to the value of k . In the third group, the scalability and 
time-efficiency of the MRBUG approach with respect to 
the number data records is implemented, as the num-
ber of records dominates the time and space complexity 
of BUG. The effects of computation nodes on the scal-
ability and time efficiency are reported in the fourth 
group.

The experiments are conducted on the amazon EC2 
- Cloud platform. Adult data set and its enlarged ver-
sions have been used. All procedures are implemented 
in Java, and the Map Reduce implementation is based 
on Hadoop 1.0.0 Map Reduce APIs. The execution time 
of methods is measured for the scalability and time-
efficiency. The data distortion is captured by ILoss. 
The value of ILoss is normalized to facilitate compari-
sons. Each round of experiment is repeated ten times. 
The mean and standard errors of measured results are 
reported for a comprehensive evaluation.

5.2  Comparison with Serial BUG
To show the need for scalable procedures, MRBUG is 
compared with their traditional counterparts, i.e., serial 
BUG. The number of records ranges from 500,000 to 
5,000,000. Thus, the data sets in these experiments are 
big enough to evaluate the effectiveness of this approach 
in terms of the number of data records. The k - anonym-
ity parameter is set as fifty. The value of k is selected 
randomly and does not affect the analysis in this group 
of experiments, as what is to be observed is the scalabil-
ity changes of serial and Map Reduce based procedures 
with respect to the number of records. Interesting read-
ers can try other values. The conclusions will be the same. 
As the Map Reduce methods incur the same amount of 
data distortion as its serial counterparts, only the results 
of execution time is presented. To make a fair com-
parison, the serial procedures are executed on a virtual 
machine of m1.large type that has four virtual CPUs and 
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8 GB memory, while Map Reduce based procedures are 
executed on a cluster that consists of 10 virtual machines 
of m1.medium type having two virtual CPUs and four 
GB memory. Figure 1 shows the change of execution 
time with respect to number of records in serial BUG 
and MRBUG. 
The execution time of serial BUG grows gradually at 
former stages, but goes up severely at later stages. It runs 
out of memory when the number of records researches to 
5,000,000, since the indexing data structure consumes too 
much memory. The execution time of MRBUG increases 
relatively slowly and smoothly. Its scalability will be 
further evaluated subsequently. The above experimental 
results demonstrate the insufficiency of the state-of-the 
art subtree anonymization approaches when handling 
large data sets. Hence, it is necessary to propose scalable 
BUG procedures for large data.

5.3  Scalability of MRTDS Vs. MRBUG 
In this group of experiments, the impacts of the anonymity 
parameter k on the scalability of MRTDS and MRBUG is 
examined. The number of data records is set as 1,000,000. 
In fact, k can be valued from 1 to 1,000,000, where k= 1 
and k= 1,000,000 are two extreme cases. In terms of the 
generalization process, the anonymity of a data set var-
ies in an exponential manner. To comply with this fact, 
the values of k in the form of 10x are selected for com-
prehensive evaluation, where k is a non-negative integer. 
Specifically, k ranges from one to five. The number of 
Reducers is set as ten. The experiment results are reported 
in Figure 1. To present the results in a manageable and 
intuitive way, the horizontal axis is logarithmically scaled 
with base ten.

Figure 2(a) shows the change of execution time with 
respect to k for MRTDS and MRBUG. The execution 

time of MRTDS decreases stably linearly when the orders 
of magnitude of k grows. On the contrary, the execution 
time increases approximately linearly when k is getting 
large. The two curves intersect at the middle point of 
k’s orders of magnitude. MRBUG takes less execution 
time before this point, and the smaller k is, the less it 
takes than MRTDS. After this point, MRTDS consumes 
less time, and the larger k is, the less time it consumes. 
Figure 2(b) demonstrates the change of ILoss% with 
respect to k for MRTDS and MRBUG. The ILoss% of 
both methods increase with the growing of k, which 
reflects the fact that larger k implies more data distor-
tion. Because, the resultant anonymization levels may 
be different for small k. The data distortions caused by 
MRTDS and MRBUG are different. But the differences 
are minor according to the results in Figure 2(b). This 
trend ensures that MRBUG can be utilized freely with-
out considering the data distortion aspect. According to 
the tendencies of execution time and ILoss, it is nec-
essary and reasonable to choose MRBUG to perform 
parallel generalized data anonymization for large data 
according to the value of k. This empirically validates 

Figure 1.  Change of execution time w.r.t. number of 
records. (Serial BUG Vs. MRBUG). (a)

(b)

Figure 2.  Changes of execution time and ILoss % w.r.t. 
anonymity parameter k (MRTDS Vs. MRBUG).
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the motivation of the MRBUG approach. The scalability 
of the hybrid approach is evaluated next.

5.4 � Scalability of MRBUG over 
Computation Nodes 

Another aspect of scalability evaluation is to explore 
whether the approach is scalable over computation nodes. 
The number of Reducers ranges from five to twenty. Each 
computation node is of the m1.medium type. The num-
ber of data records in this group of experiments is set 
as 1,000,000. Similar to the last group of experiments, 
the k-anonymity parameter is set as 100 and 1000 for 
MRBUG. Figure 3 demonstrates the execution time and 
ILoss of the worst case of the MRBUG approach. It can be 
seen from Figure 3(a) that the execution time of MRTDS 
drops off in a nearly linear fashion when the number of 
Reducers is getting larger. This illustrates that the MRBUG 
approach is linearly scalable with respect to the number of 
Reducers. As a result, the proposed approach can handle 
large data sets with ease by just employing more com-
putation nodes. Figure 3(b) demos that the ILoss keeps 
constant with the increase of Reducers. This is reasonable 
as the ILoss is affected by anonymity parameter k and the 
data set, but the number of Reducers. The above four sets 
of experiments reveals that the parallel BUG approach 

can significantly improve the privacy preservation with 
minimum information loss over large data set compared 
with the existing serial BUG approaches.

6.  Conclusions and Future Work
In this paper, the scalability problem of large-scale data 
anonymization by Bottom-Up Generalization (BUG), and 
proposed a highly scalable parallel BUG approach using 
Map reduce on cloud has been investigated. Datasets are 
partitioned and anonymized in parallel in the first phase, 
producing intermediate results. Then, the intermediate 
results are merged and anonymized to produce consistent 
k-anonymous data sets in the second phase. 

Map reduce technique has been creatively applied on 
cloud to data anonymization and formulated a group of 
innovative Map reduce jobs to achieve Generalization 
computations in a highly scalable way. Experimental 
results on real-world datasets have revealed that with this 
approach, BUG is scalable and efficient than any other 
approach. In cloud environment, the privacy preserva-
tion for data analysis, sharing and mining is a challenging 
research issue because gradually larger volumes of datasets 
are used, thereby demanding severe research. A thorough 
investigation is done with the bottom-up generalization 
algorithms for data anonymization. Based on the contri-
butions herein, it is intended to explore the subsequent 
phase on scalable privacy preservation aware analysis and 
scheduling on large-scale datasets. Optimized, heuristic, 
and balanced scheduling approaches are expected to be 
developed towards overall scalable privacy preservation. It 
is believed that the structure of bottom-up generalization is 
amenable to several extensions that make it more practical. 
Incorporating different metrics and handling data suppres-
sions in partial generalization is not necessarily require to 
have all child values generalized altogether. It is also possible 
to generalize numeric attributes without a pre-determined 
hierarchy and shall be taken up as a future work.
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