
Abstract
Background/Objectives: In this paper, we introduced the concept of aPf,g integral contractive mappings, which is a new 
class of integral contractive mappings and using this notion we establish a new fixed point theorem. Findings: Our  paper 
represents a generalization and extension of fixed point theorems for mappings satisfying contractive conditions of  integral 
type where the contractive inequality depends on rational and irrational expression. In particular, we omitted the  condition 
of continuity (which is a very strong condition and appear in almost all papers using contractive mapping of rational type) 
from many existing results. Application/Improvements: As a direct consequence, some new results of integral type for 
rational and irrational contraction maps are presented to illustrate our obtained result.

Fixed Point Result for αPf,g–Integral Contractive 
Mappings with Applications

Mecheraoui Rachid

Department of Mathematics and Informatics, Abbes Laghrour University-Khenchela-Algeria;  
rachid.mecheraoui@yahoo.fr

Keywords: Fixed Point, Integral Type, aPf,g–Integral Contractive Mappings, Irrational Type, Rational Type

1. Introduction and Preliminaries
In 2002, Branciari1. 1 introduced the notion of contrac-
tive mappings of integral type in complete metric 
spaces. Afterwards, many researchers extended this 
result to more general contractive conditions of inte-
gral type providing sufficient assumptions which 
ensure the existence and uniqueness of fixed points 
(see for example Gupta and Saxena2, Liu et al.3, Pathak4, 
Rhoades5 and Vishal and Ashima14 Vetro).

Throughout this paper, let us consider the following sets:
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In 2014, Liu and al.6 extended a result established in 
the paper7 by proving the following theorem:

Theorem 1.1. Let (j, y) be in F1 ¥ F2, M Œ {M1, M2, M3, 
M4} and T be a mapping from a complete metric space (X, 
d) into itself satisfying

j j j
y

( ) ( ) ( ) .
( , ) ( ( , ))( , )

t dt t dt t dt
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Then T has a unique fixed point a Œ X such that 
limnÆ• Tnx = a for each x Œ X.
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In8, Dass and Gupta proved a fixed point theorem by 
considering a class of mappings where the contractive 
inequality depends on rational expressions:

d Tx Ty M x y d y Ty d x Tx
d x y

d x y( , ) ( , ) : ( , ) ( , )
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A generalization of the above contraction was sug-
gested by Gupta and Saxena9 (among others, see in 
particular10 and11) by introducing the following class of 
mappings:
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Another well-known theorem was established by 
Jaggi12 which may be considered as an extension of the 
two last results. He considered the following class of map-
pings:
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To prove the main results in9 and12, authors impose a 
very strong and unwanted condition: ”T is continuous“. 
These results have been generalized in many ways over 
the years but the condition of continuity appeared in all 
the subsequent papers using this type of contractions, as 
an essential condition.

In our paper, we introduce the concept of aPf,g inte-
gral contractive mappings, which is a new class of integral 
contractive mappings and using this notion we establish 
a new fixed point theorem. This class of contractions 
extends and generalizes more or less known results 
including all previous results6,8,9,12. In particular, we omit 
the condition of continuity of the mapping “T” from the 
main result in9,12 (see corollary 1). Moreover, by corollar-
ies 2, 3, we introduce a new class of rational and irrational 
contractive mappings and give their related theorems.

Throughout this paper, we consider the following 
notations:

Notation 1.2. Let f : *
  + +× →3  be a function. 

∏ f x y z t( , , , )  denotes the set defined by:
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Example 1.3. Let f :  +
∗

+× →3 be a function 
defined by:

f(x, y, z, t) = x + t

then x t
f x

∏ =
( ,y,z,t)

{ , }.
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∗
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Definition 1.5. Let f :  +
∗

+× →3  be a function. If 
there exist two functions g, h in ϒ such that 

g(X) ≤ f(X) ≤ h(X)

for all X ∈ ×+
∗

 

3 , function f is called ϒ– addmissible.

Notation 1.6. For all f : ,  +
∗

+× →3  we denote

 P x y f d x y d x Tx d y Ty d x Ty d Tx yf ( , ) : ( ( , ), ( , ), ( , ), [ ( , ) ( , )]).= +1
2  (1.1)

Remark 1.7. Let us observethat the following mappings 
gi : : + +→4

g x y z t x y z t g x y z t y z
g x y z t
1 2

3

( , , , ) , , , , ( , , , ) , ,
( , , , )

= { } = = { }max max
== { } = { }
=

+
+

+

max max

x, y,z,t

x y z g x y z t y z t

g
y
x

, , , ( , , , ) , , ,

( ) z

4

5
1
1

a bxx g x y z t y z, ( , , , ) [ ],6 = +a

satisfy assumptions (H1)–(H2) and for all i = 1, …, 6, we 
have

P x y g d x y d x Tx d y Ty d x Ty Tx y

M

g i

i

i
( , ) ( ( , ), ( , ), ( , ), [ ( , ) d( , )])= +

=

1
2

(( , ).x y



Mecheraoui Rachid

Indian Journal of Science and Technology 3Vol 9 (7) | February 2016 | www.indjst.org

Notation 1.8. We denote by q : + +→  a function 
satisfying the following conditions
A1 – q is non-decreasing and the sequence { ( )}qn nt  defined 
by q qn

nt t( ) : ( )=  (nth iterate of q) is bounded for all t ∈ +
∗
 .

A2 – There exists ( , ) [ , ] [ , ], for all ( , ) [ , ] [; ( t) (t).∈ ∈ × +∞ ∈ × + ∈ ≤+
∗r t r0 1 1 0 1h q h h q  

( , ) [ , ] [ , ], for all ( , ) [ , ] [; ( t) (t).∈ ∈ × +∞ ∈ × + ∈ ≤+
∗r t r0 1 1 0 1h q h h q

Remark 1.9. As we can easily verify, condition (A2) imply 
that

for all •	 a ∈ + we have limt a t a→ ≤q q( ) ( ).
•	 q(0) = 0.

In particular, •	 q is continuous from the right at the 
point 0.

Remark 1.10. All (c)-comparison function satisfies con-
ditions A1 and A2.

Notation 1.11. Let T be a mapping from a complete met-
ric space (X, d) into itself, we denote by G(T) the set of all 
functions a: X × X Æ + satisfying the following condi-
tions
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lim3. nÆ•d(xn, yn) = 0 ⇒ liminfnÆ•a(xn, yn) ≥ 1,
for all x, y, z Œ X and {xn}, {yn} nonnegative sequences.

The following lemmas play an important role to obtain 
our result.

Lemma 1.12.13 Let j Œ Φ1 and {rn}n be a non-negative 
sequence with limnÆ•rn = a. Then
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Lemma 1.14. Let j Œ Φ1 and {un}n, {vn}n be two nonnega-
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This, with lemma 1.12, clearly drives to the result.

Lemma 1.15. Let j Œ Φ1 and {rn}n be a nonnegative 
bounded sequence and a b, ∈ +

∗
  such that
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Without loss of generality, we can suppose that
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Continuing in this way, we obtain
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From the fact that the sequence {qn(t)}n is bounded for 
all t, ϑ1 < 1 and r ≥ 1, we deduce that the right hand side 
of the last inequality tends to − ∫a dt

b
j(t)

0
 while n Æ •, 

which is a clear contradiction with the fact that a b, ∈
+

∗
  

and j Œ Φ1 .
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We next define the concept of aPf,g–integral contrac-
tive mappings:
Definition 1.16. Let (j, y) be in Φ Φ1 2

4
× → × →

+ + +
, , : , :f g X X  a

Φ Φ1 2
4

× → × →
+ + +

, , : , :f g X X  a  be a functions and T a mapping from a 
complete metric space (X, d) into itself satisfying the inte-
gral inequality: 

 a j q j j
y

( , ) (t) (t) ( ) ,
( , )( , ) (

x y dt dt t dt
P x yd Tx Ty Pgf

≤ 





−∫∫ 00 0

(( , ))x y

∫   (1.2)

for all x, y in X. Then T is called aPf,g–integral contractive 
mapping. 

2. Main Result
Theorem 2.1. Let T be an aPf f1 2,  integral contrac-
tive mapping from a complete metric space (X, d) into 
itself, where a is in G(T) and f1, f2 are two ϒ–admissible 
functions. If a(x0, Tx0) ≥ 1 for some x0 Œ X then, T has a 
fixed point a Œ X and the sequence {Tnx0}n converges to 
a. Moreover, if for all fixed points x and y of the mapping 
T, we have a(x, y) ≥ 1, the mapping T has a unique fixed 
point.

Proof. First suppose -without loss of generality- that

 x x and x xn n n m≠ ≥
+1 1a( , ) ,  (2.1)

for any positive integers n,m, where xn :=Tnx0. On the 
other hand, by the facts that f1, f2 are two °–admissible 
functions, they can be regarded as two elements of T 
without anyloss of generality.

Now, denoting by dn:= d(xn, xn+1), let’s show that the 
sequence {dn}n is decreasing to 0 after some rank. For this, 
assume that for all n0 Œ , there exists n >n0 such that dn ≤ 
dn+1. The case {dn}n is an unbounded sequence leads to an 
obvious contradiction. In fact, considera non-decreasing 
subsequence dn kk{ }  with the following properties:

d•	 n tends to +•.
d dn nk k

>
−1

•	  for all k Œ .

Invoking assumptions (H1a,1b,2b) and relation (1.1) we 
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which with the fact that yŒΦ2 means 
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Moreover, due to assumptions (H1a,2c) and the first 
property of the sequence { }dn kk
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The last two results, with the integral inequality (1.2), 
relation (2.1) and condition A1, imply that
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which is in contradiction with Lemma 1.15. Now, return-
ing to identity 1.1 and assumptions (H1a,2c) we easily 
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where x1 : .=
→∞

liminfn nd  Consequently

 d x2 1 1 1 1min maxd d P x x d dn n f n n n ni
, , ( , ) , ,

+

∗

+ +{ }∩( ) ≤ ≤ { }  (2.2)

for all n Œ  and i = 1, 2. Doing the recap of the fore-
going, we can assert that there exists a sub-sequence 
d d M cn k n nk{ } ⊂ { } ≥and , 0 such that

d d d M d dn n k k n n
k

k k k k
≤ ≤ = ≤









+

→∞
+
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1 1, , liminf ,lim

and

d d2 2 1 12
c d c P x x Mn f n n nk i k k k
≤ { } ≤ ≤ ≤

+ +
min , ( , ) d ,

for sufficiently large values of k and i = 1,2.. Using this last 
result and having in mind relations (1.2), (2.1) and condi-
tion A1, we can write
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j q j j
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which is a contradiction with lemma (1.15). Thus the 
sequence {dn}n is decreasing and it’s bounded below by 0, 
hence {dn}n converges to some c ≥ 0, we write for suffi-
ciently large values of n

 d d and d cn n n n> =
+

→∞
1, .lim  (2.3)

Taking into account (2.3) and the double inequal-
ity (2.2), we obtain for sufficiently large values of n that 
d2 1 2c P x x cf n ni

≤ ( ) ≤+
, ,  then there exists a d2 2 2∈[ c, c] 

such that y a yd2 22
( ) = ( )

∈ 

in ,fx c c x . Now, supposing that 
c > 0. By virtue of (1.2) and (2.2) it follows that

j j j
y a

t dt t dt t dt
d dn n( ) ≤ ( )





− ( )+∫ ∫ ∫Θ
0 0 0

1 2
,
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from which with relations (2.1), (2.3) and lemma (1.15) 
we deduce that y(a2) = 0 and consequently c = 0, which 
means

 lim .
n nd
→∞

= 0  (2.4)

Now, we need to assert that the sequence {xn}n has the 
Cauchy property. Assume the contrary. Then, by virtue of 
the last limit, we can extract two subsequences xn kk{ } and 

xm kk{ } from the sequence {xn}n such that
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e e e
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e e
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Now, thanks to relations (1.1), (2.4), (2.8), (2.9), 
remark 2.2, assumptions (H1a,2c) and studying the two 
cases: x f x y z ti
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for all k Nw≥
e
. Let’s suppose that x t f x y z ti

, ,, , ,{ } ∏ = ∅∩ ( )  
hence going back to relations (1.2), (2.1), (2.3), condition 
A1 we obtain for n < m

j j j
y

t dt t dt t dt
P x x P x xd x f n m f n mn
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∫

invoking assumption (H2c) we derive

j jt dt t dt
dd x x nn m

( ) ≤ ( )
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+ +( )

Θ
00

1 1
.

,

Which –in view of relation (2.4) and remark 1.9 - means 
that the sequence {xn}n has the Cauchy property. Assume 
now that x t f x y z t, , , ,{ } ∩ ≠ ∅( )Π . By (2.4), (2.8), (2.9), 
remark 2.2 and assumption (H2b), we estimate

P x x f d x x d d
d x x
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e3 8

, k Nw  (2.11)

From estimates (2.10)–(2.11) andand invoking the 
fact that y is a lower semi-continuous function, we 

deduce that there exists a3 3 8
2∈ +





d e e e, w  such that, 

y a y
d e e e

3
8

23

( ) = ( )
∈ +










inf
x w

x
,

this together with relations 

(1.2), (2.5), (2.10) and condition A1 yields

j j j
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Which with condition A2 gives 
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Continuing in this way, we obtain
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e e y a

t dt t dt t dt
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i
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Having in mind conditions A1 and A2 we get for suf-
ficiently small values of e and we
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The right hand side of the previous inequality tends to 

− ( )
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∫ j
y a

t dt
0

3
 while m Æ •, or

j j
e y a

t dt t dt( ) ≤ − ( )∫ ∫
( )

0 0

3
,

which is a contradiction with the fact that e > 0 and (j, y) 
Œ Φ1 × Φ2. This contradiction, with the fact that X is com-
plete - leads to the result ({xn}n is a convergent sequence). 
Consider

 a x
n n: lim .=
→∞

 (2.12)

Remark 2.3. With this last result we can assert that there 
exists a subsequence { }xm kk

 from {xn}n satisfying the fol-
lowing property:

 d x a d x xm m mk k k
, ,( ) ≥ ( )+

1
2 1  (2.13)

for all k Œ .
Let us show that a is a fixed point of T. Assume the 

contrary. Using relations (1.1), (2.4), (2.12), (2.13) and 
assumptions (H1b,2c), we obtain for sufficiently large val-
ues of k
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d x Ta d x a
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On the other hand, thanks to limits (2.4), (2.12) and 
assumptions (H1b,2c) we obtain
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The two estimates (2.14) and (2.15) mean that 
P x a d a Ta d a Taf mi k

, , , ,( )∈ ( ) ( )





d4 , then there exists 

a d4 4∈ ( ) ( )





d a Ta d a Ta, , ,  such that 
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y a y
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This result with (1.2), (2.14) and condition A1 imply 
that
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for sufficiently large values of k. Observing that
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The previous inequality gives
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taking into account thelimit (2.12) and lemma 1.14, this 
last inequality become
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for sufficiently large values of k. Using again the fact that 
limk mx a

k→∞
=  and that a Œ G(T), we obtain
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This is a contradiction with lemma 1.15. Then a is a 
fixed point of T. To conclude the proof, we need to show 
that under assumption: “for all fixed points x and y of the 
mapping T, we have a(x, y) ≥ 1”, a is the unique fixed point 
of T. Assume the contrary, i.e.

∃ ≠ ∈ = = ( ) ≥b a X Ta a Tb b and a b; , , .  a 1

Going back to 1.2 we can write

a j a j
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Noting first that if x t f x y z t, , , ,{ } = ∅∩ ( )
Π , by (1.2) and 

(H1a,2c), relation (2.16) become
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Having in mind that liminfnÆ• a(xn, b) ≥ 1 we get

∃ ∈ ∀ ≥ ≥N n N xn, ; ( ,a)a 1

From which, with the fact that a(a, b) ≥ 1 we deduce 
that

 a(xn, b) ≥ 1 (2.17)

for sufficiently large values of n. Using this result, lemma 
1.12, remark 1.9 and passing to the limit as n tends to 
infinity in the last inequality, we get

j t dt
d a b

( ) ≤

( )

∫ 0
0

,
,

which is a contradiction with the fact that a π b. Then we 
can suppose that

 x t f x y z t, ., , ,{ } ∩ ≠ ∅( )Π  (2.18)

Relations (1.1), (2.4) together with assumptions (H1a,2c)  
allow us to write
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Therefore

 

P x b d x b d x b

d a b

f n n ni
, max , , ,

, ,

( ) ≤ ( ) ( ){ }

≤ ( )

+1

2  (2.19)

for sufficiently large values of n and i = 1, 2, which means 
that the sequence P x bf n n2

,( ){ }  is bounded. On the other 
hand, thanks to relations (1.1)(2.19) and assumption (H2b) 
we deduce that
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from which

P x b d a bf n2
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x . Now, recalling rela-

tions (2.15), (2.16), (2.18) and examining the two cases 
d x b d x bn n+( ) ≥ ( )1, ,  and d x b d x bn n, ,( ) ≥ ( )+1 , we get 
either
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,

for sufficiently large values of n. From where, we get a 
contradiction with Lemma 1.3. This finishes the proof. 

3. Application
From the main theorem, we can easily get the following 
corollaries (we omit its proof for simplicity):

Corollary 3.1. Let (j, y) be in Φ1 × Φ2  and T be a mapping 
from a complete metric space (X, d) into itself satisfying 
the integral inequality:

j j j
y

t dt t dt t dt
N x y M x yd Tx Ty

( ) ≤ ( ) − ( )
( ) ( )( )( )

∫ ∫∫ 0 00

, ,,
,

for all x, y in X. Where

N x y d y Ty
d x Tx
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, ,
,
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( ) ( )
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+a a a1 2

1
1 33d x y, ,( )

if x π y and N x y d x y d y Ty, , ,( ) = ( )+ ( )  if x y= ( ) ∈ × ( )+ +
∗, , ,a a a1 2 3

2
 

x y= ( ) ∈ × ( )+ +
∗, , ,a a a1 2 3

2
   are constants with a a a1 2 32 1+ + <  

and 

M Œ {M1, M2. M3, M4, M5, M6}.

Then T has a unique fixed point a Œ X. Moreover, for 
all x Œ X, the sequence {T nx}n  converges to a.

Remark 3.2. This corollary extend both main results in3,9 
at the case where mapping T is not continuous.

Corollary 3.3. Let (j, y) be in Φ1 × Φ2 and T be a mapping 
from a complete metric space (X, d) into itself satisfying 
the integral inequality

j j j
y

t dt t dt t dt
d Tx Ty N x y M x y

( ) ≤ ( ) − ( )
( ) ( ) ( )( )

∫ ∫ ∫0 0 0

, , ,
,

for all x, y in X. Where
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if x π y and N(x, y) = d(x, y) + d(y, Ty) if x = y and 

M Œ {M1, M2. M3, M4, M5, M6}.

Then T has a unique fixed point a Œ X. Moreover, for 
all x Œ X, the sequence {T nx}n converges to a.

Corollary 3.4. L et (j, y) be in Φ1 × Φ2 and T be a map-
ping from a complete metric space (X, d)  into itself 
satisfying the integral inequality

j j j
y

t dt t dt t dt
d Tx Ty N x y M x y

( ) ≤ ( ) − ( )
( ) ( ) ( )( )

∫ ∫ ∫0 0 0

, , ,
,

for all x, y in X. Where
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, ,
,
,
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,
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a

a

1

2

1
1

yy Ty
d x y d y Ty

d x y
,

, ,
, ,

( )
( ) + ( ) + ( )a3

if x π y and N(x, y) = d(x, y) + d(y, Ty) if x y= ( )∈ × ( )+ +
, , , *a a a1 2 3

2
  

x y= ( )∈ × ( )+ +
, , , *a a a1 2 3

2
   are constants with a1 + a2 + a3 

< 1 and 

M Œ {M1, M2. M3, M4, M5, M6}.

Then T has a unique fixed point a Œ X. Moreover, for 
all x Œ X, the sequence {T nx}n converges to a.

Corollary 3.5. Let (j, y) be in Φ1 × Φ2 and T be a mapping 
from a complete metric space (X, d) into itself satisfying 
the integral inequality

j j j
y

t dt t dt t dt
N x y M x yd Tx Ty

( ) ≤ ( ) − ( )
( ) ( )( )( )

∫ ∫∫ 0 00

, ,,
,
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for all x, y in X. Where

N x y d x Tx
d x Tx d x y

d x Ty d Tx y
d y Ty, ,

, ,

, ,
,( ) = ( )

( ) − ( )

( )+ ( )
+ ( )+2 1 2a a a33d x y, ,( )

if x π y and N(x, y) = d(x, y) + d(y, Ty) if x y= ( )∈ × ( )+ +
, , , *a a a1 2 3

2
 

x y= ( )∈ × ( )+ +
, , , *a a a1 2 3

2
   are constants with a1 + a2 + a3 < 

1 and 

M Œ {M1, M2. M3, M4, M5, M6}.

Then T has a unique fixed point a Œ X. Moreover, for 
all x Œ X, the sequence {T nx}n converges to a.
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