
Abstract
Objectives: To review the Darcy’s equation and ascertain the reliability of the present experimental investigations with 
that of the past study. To present a non-dimensional form of relation between resistant to flow with fluid and particle 
parameters. To analyze the relation between Reynolds numbers with resistant coefficient (lambda) in ground water flow. 
Methodology: In order to achieve these objectives, experimental program planned, designed and carried out. Experiments 
conducted on porous medium of large spread of sizes of different materials in parallel flow permeameter for all regimes 
of flow. Findings: Experimental results compared with Darcy’s equation and the validity of this equation is verified. A 
new form of Reynolds number is derived taking hydraulic mean radius as characteristic length and seepage velocity as 
characteristic velocity absorbing void ratio, volume diameter, and kinematic viscosity. Another non-dimensional form of 
resistant co-efficient is also derived and used to get unique relation between Reynolds numbers with resistance coefficient. 
Applications: Observed experimental data applied in Darcy’s equations, and verified in its applicability. The derived 
equations can be applied in porous medium flow, such that velocity of flow can be determined, from which discharge 
through porous medium can be estimated.
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1.  Introduction
Water plays a vital part in all forms of life on the earth. 
The resources of water is plenty of which groundwater is 
important one1. In view of the significant contribution 
made by groundwater resources to water supply, any fact 
contributing to a greater understanding of the problems 
relating to groundwater flow, either directly or indirectly, 
is of prime concern2. The subject of seepage flow is, at first 
sight appears conceptually simple; however, the character 
of flow of a fluid filament through the tortuous passages 
of a granular medium is complicated which is shown in 
Figure 13. A steadily increasing interest created to study 
the laws governing the flow of fluids through beds of 
granular media. Numerous theoretical studies, modeling 
approaches, laboratory and field tests, and mathemati-
cal models developed to establish the true relationship 
between different porous medium variables.

1.1  Importance of Seepage Flow
The laws governing the flow of fluids in porous medium, 
describes the theory of seepage. At the time of design of 
hydraulic structures, the estimation of seepage through 
hydraulic structures is prime requirement4,5. The dimen-
sions of the hydraulic structures are designed using 
quantity of seepage6. Scientific treatment of irrigation 
structures, flow around the well, sub-surface drainage and 
soil erosion is prime concern in porous medium flow7. 
Thus, the seepage flow problems play an important role in 
seepage flow analysis. Darcy described the seepage flow 
analysis in 1856 by his experiments8,9. Further, examina-
tion of literature indicates that a little agreement between 
the results of different researchers are of limited use. The 
subject is further complicated as different researchers 
adopted various methods of expressing their results of 
research. In addition, majority of the results are found to 
lack describing complete range of seepage flow.
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1.2  Darcy’s law
Darcy obtained the relationship between the bulk velocities 
(Vb) and hydraulic gradient (i), and shown in Figure 210. 
A linear relationship (Vb) is obtained between bulk veloc-
ity (Vb) and hydraulic gradient (i) as well-known Darcy’s 
law, which is expressed as 

Vb = = − ∂
∂

= −Q
A

k h
x

ki

Where, Vbis the bulk velocity of flow, Q is the discharge, A 
is the bulk cross sectional area, k is the Darcy’s coefficient 

of permeability and 
∂
∂

=h
x

i = Hydraulic gradient. 

In Darcy’s graph, each diameter of the particle forms 
a separate straight line and shown in Figure 2. From the 
Figure 2, it may be observed that each size of the particle 
has different ‘k’ values and with same size with different 
porosities will have different ‘k’ values. All these equa-
tions, formed without considering seepage velocity, 
porosity, and viscosity. 

It is generally accepted that Darcy’s law is valid for low 
velocities. In many of flow situations velocity of flow is 
high. At higher Reynolds number, the linear relationship 
between Vb and ino longer holds good and exhibit non-
linear relationship11-13.

The main objectives of the present investigation are to 
verify and ascertain the reliability of the present experi-
mental investigation with that of the past study, to present 
a non-dimensional form of relation between resistant to 
flow with fluid and particle parameters, and to analyze 
the relation between Reynolds numbers with resistant 

coefficient (lambda). In order to achieve these objectives, 
experimental program planned, designed and carried out. 

2.  Materials and Methods

2.1  Porous Medium
Porous medium contains inter connected pore space, 
which allows the fluid to flow through it. A porous medium 
characterized by a variety of properties, like surface area 
of particles, volume diameter, porosity, pore diameter, 
bulk area, flow area, particle surface area of fluid contact, 
hydraulic mean radius, etc. The problem of porous medium 
flow may be complicated due to the changes in physical 
properties of the medium itself. In the present study, fifteen 
sizes of porous medium are used and it consists of five sizes 
of sand particles, seven sizes of gravel and three sizes of 
glass spheres. The present experimentation consists of nine 
hundred and two observations in three types of materials. 
Gravel and sand sieved through a set of I.S.I. sieves and it 
ensured uniform size of particle to avoid the particle gra-
dation effect. The volume mean diameter of the medium, is 
the diameter of the sphere having a volume equal to that of 
an irregular shaped particle, is used as the diameter of the 
particle dp, and its porosity ‘n’ are listed in Table 1.

2.2  Permeameter
In general, cylindrical permeameters are used for the 
experimentation on seepage flow14,15. The dimensional 

Figure 1.  Porous Medium Flow.
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Figure 2.  Darcy’s observation between bulk velocity and 
hydraulic gradient (i).
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details of the permeameter used in the present study 
shown in Figure 3. It consists of a vertical circular G.I. 
column of 6.2 m high and 0.15 m diameter. The earlier 
investigators computed the hydraulic gradient for a single 
length of travel with one set of head loss readings between 
two piezometers. In the present study, three different 
lengths of travel with three sets of piezometric points 
used to compute the hydraulic gradients. This avoids the 
error due to non-uniformity in packing, if any. 

In this investigation, water used as a fluid medium. 
Water pumped from sump to the balancing tank, located at 
the entrance to the permeameter. A perforated horizontal 
pipe fixed at the end of the inlet pipe to ensure the water 
does not fall in the form of a thick jet. Further, an alumi-
num screen with 85% perforations placed at the entrance 
of permeameter to facilitate relatively turbulent-free 
entry of water into the permeameter. Constant water level 
in the permeameter is maintained in the header tank to 
establish steady state flow. Wide range of discharges used 
with both low and high rates of flow. At regular intervals, 
the temperatures of the outflow is noted, during every run 
from which viscosity is determined. From the observed 
experimental values the bulk velocity (Vb), seepage veloc-
ity (Vs), kinematic viscosity (υ), void ratio (e), porosity 
(n), hydraulic mean radius (m), hydraulic gradient (i) are 
calculated. Laminar range of bulk velocities (v1) (0.00025 

to 0.004 m/sec) and corresponding hydraulic gradients 
are selected from present experimental data for gravel 
and the results are between bulk velocities and hydraulic 
gradients and are shown in Figure 4. 

The results plotted (Figure 4) between hydraulic gradi-
ent and bulk velocity of laminar range of flow, follows the 
trends of the Darcy’s pattern (Figure 2), which conforms 
and proves that certain range of present data follows 
the Darcy’s law and the linear relationship between Vb 
and ‘i’ is found to be valid12-14. It may be observed from 
Figure 4 that each diameter of porous medium forms an 
individual straight line irrespective of its particle and 
fluid properties9. It is also observed from Figure 4 that 
when the size of medium increases, the fluid conveying 

Table 1.  Porous Medium Properties

Sl. No. Description 
of the media

Volume 
Diameter ‘dp’ 

(mm)

Porosity 
‘n’ (%)

k
m/sec

1 Gravel 5.8 49.0 0.300
2 Gravel 7.8 51.0 0.380
3 Gravel 9.0 46.0 0.430
4 Gravel 12.3 46.5 0.650
5 Gravel 14.6 44.0 0.850
6 Gravel 17.5 42.0 1.200
7 Gravel 20.0 43.0 1.400
8 River sand 1.7 34.0 0.050
9 River sand 2.4 36.9 0.080

10 River sand 3.3 35.6 0.097
11 River sand 4.2 35.6 0.150
12 River sand 6.7 34.0 0.250
13 Glass spheres 16.7 59.0 2.500
14 Glass spheres 20.0 56.0 3.200
15 Glass spheres 35 54.0 5.750

Figure 3.  Experimental Set Up.
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Figure 4.  Variation of Bulk velocity with hydraulic 
Gradient (i) for gravel.
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capacity (hydraulic conductivity) of medium increases. 
The coefficient of permeability (k) is conforming to the 
earlier findings that given in Table 1. The coefficient of 
permeability (k) values given in Table 1 are coinciding 
with others data, however, it is not coinciding with the 
Darcy’s value, since Darcy’s calculation for hydraulic 
gradient is questionable.

The co-efficient of permeability (k) can be get from 
experimentation. In porous medium flow many number 
of particle, sizes are available to analyze and estimate co-
efficient of permeability. Therefore, it is laborious to get 
co-efficient for each size. Darcy type of graphs are also not 
included the porosity and viscosity effect. Hence, a non-
dimensional form of relationship between the hydraulic 
gradient and other parameters proposed to overcome 
above problem. Therefore, dimensionless parameters like 
Reynolds number and lambda7 is proposed absorbing 
bulk area, seepage velocity, void ratio, porosity, volume 
diameter, and kinematic viscosity. Co-efficient of resis-
tance (lambda) related with another non-dimensional 
parameter like Reynolds number to get unique relation 
between them.

3. � Derivation of Non-Dimensional 
Form of Equation (Reynolds 
Number) in Porous Medium 
Flow

Consider a cross sectional area of porous medium flow is 
shown in Figure 5. Let its bulk area is An, Porosity is, flow 
area is ‘Ann’, discharge is ‘Q’, volume diameter of particle 
and ‘dn’ kinematic velocity ‘v’.

seepage velocity = =V Q
A ns

b

Cross sectional area of solid particles = Bulk area (Ab) 
flow area

Solid area Ab = Abn = Ab(1 – n)
Cross sectional area of each particle = 

pdp
2

4
Number of particles in cross sectional area = 

solid area
c s area of each particle

A n

d
b

p

 
    .

=
−( )4 1
2p
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Let Hydraulic mean radius of each pore is m1
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Let hydraulic mean radius for all pores is ‘m’ which is 
taken as characteristic length 
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Figure 5.  Cross Sectional Area of Porous Medium.
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Let m1 is characteristic length, and Reynold’s number 
is Re, therefore 

R
seepage velocity V x charateristiclength m

kinematice
s=

( ) ( )  
 

1

vviscosity v( )

Reynolds number
V d e

v
s p = =Re

4

Coefficient resistance (lambda) was discussed many 

investigators 6, as lambda
igd

V
p

b

= 2  taking particle diameter 

as characteristic length. Intrinsic permeability as char-
acteristic length, which includes only particle property7. 
However, in this study hydraulic mean radius taken as 
characteristic length. Therefore coefficient of resistance is

lambda
igm
V

ig A e n

V db

b

b p

= =
−( )

2 2

1 

p

Where,

dp =diameter of the particle
Ab = Bulk area
Vb = Bulk velocity
e = Void ratio 
n = Porosity
i = Hydraulic gradient
g = Acceleration due to gravity

Substituting present experimental data in the derived 
equation of Re and lambda and the results are plotted 
between non-dimensional parameter lambda in y-axis 
and Reynolds number (Re) in x-axis and are shown in 
Figure 6, Figure 7 and Figure 8 for gravel, sand and glass 
balls respectively. A logarithmic plot of friction factor 
verses Reynolds number for various values of roughness 
depicted by Nikuradse and Moody for pipe flow. Similar 
type of curves obtained in the present study for porous 
medium flow. All seven sizes of gravel, five sizes of sand, 
and three sizes of glass balls aliened as single curve. An 
equation fitted between lambda and Reynolds numbers 
for gravel, sand, and glass balls. The equation obtained is 

Figure 7.  Variation of lambda with Reynolds number for 
sand.

Figure 6.  Variation of lambda with Reynolds number for 
gravel.
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lambda a
R

b
R

c
R

d
Re e e e

= + + +2 1 0 5 0.

Where,

Re – Reynolds number
a – Turbulent coefficient
b – Laminar coefficient
c – Pre laminar coefficient
d – constant

The coefficients are given in Table 2. Using this unique 
equation with dimensionless coefficients and substitut-
ing measured hydraulic gradient, bulk area, porosity, 
void ratio, volume diameter of particle, viscosity, the 
value of bulk velocity can be calculated by trial and error. 
Multiplying this bulk velocity with bulk area the discharge 
from any porous medium can be estimated irrespective of 
regimes of flow for any fluids and particles. 

4.  Conclusions
In order to achieve the objectives, a lengthy permeameter 
designed to get wide range of data. Present experimen-
tal data, verified with that of the past study. Experiments 
conducted in wide range of velocity and low hydrau-
lic gradients to analyze all regimes of flow. Validity of 
Darcy’s equation is discussed. The Darcy’s coefficients (k) 
is obtained for gravel. Various regimes of flow that occur 
in a seepage flow reviewed. The concepts such as charac-
teristic length, resistance coefficients (lambda) discussed. 
A non-dimensional form of relation between resistant 
to flow with fluid and particle parameters is derived and 
presented in the form of equation. Using the coefficients 
given in Table 2, and substituting measured hydraulic 
gradient, bulk area, porosity, void ratio, volume diameter 
of particle, and viscosity, the value of bulk velocity can be 
calculated by trial and error. Multiplying this bulk veloc-
ity with bulk area the discharge from any porous medium 
can be estimated irrespective of its regimes of flow for any 
fluid and any particle. 
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Figure 8.  Variation of lambda with Reynolds number for 
glass balls.

Table 2.  Lambda coefficients of turbulent regime (a), 
laminar (b), pre laminar (c), and constant (d)

gravel
Dp(mm) a b c d

5.8 70000 1000 20000 700
7.8 70000 1000 9000 520
9.0 70000 1000 7000 430

12.3 70000 1000 3200 240
14.6 70000 1000 1400 220
17.5 70000 1000 1200 160
20.0 70000 1000 900 130

sand
Dp(mm) a b c d

1.7 50000 40000 35000 4000
2.4 50000 40000 30000 3500
3.3 50000 40000 20000 3000
4.2 50000 40000 15000 2000
6.7 50000 40000 2000 1000

Glass balls
Dp(mm) a b c d

16.7 50000 1000 900 85
20.0 50000 1000 400 70
35 50000 1000 100 18
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