
Abstract
Users of today’s digital applications are increasing dramatically and there has been a rapid growth in the users of  embedded 
wireless systems that usually transfer confidential information. These systems do expect robust, real time, and accurate 
performance, which bring Quality of Service (QoS) into mind. Parallel computing is one of the solutions to such issues to 
speed up the response time. On the other hand, cryptography is an important part and the first way of keeping information 
private. As a cryptography method, asymmetric encryption process needs massive mathematical operations, especially 
when a greater key is needed. This paper present a new parallel method for RSA cryptography based on mesh topology 
named MRSA. This method is applicable in embedded devices as a coprocessor and can act as a crypto-engine. The MRSA 
method is analyzed mathematically and compared to other methods. The result shows that the proposed method has fewer 
steps as well as multiplication operations to compute the encrypted value compared to the accepted method, which is the 
binary method. 
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1. Introduction

Users of the digital world expect a certain behavior from 
applications and consumers of electronic services are sub-
ject to higher demands1 Embedded systems use a weak 
CPU due to their processing needs, and intruders attack 
utilizing strong processing resources. Using a coprocessor 
to collaborate with CPU would be a suitable idea for these 
devices. These coprocessors may gain benefits of paral-
lelism, which is an appropriate way of doing operations 
in a faster way. Cryptographic algorithms usually need 
massive operations; in result, speedup could be provided 
using a coprocessor which is benefiting from parallelism. 
RSA is an asymmetric cryptographic algorithm which 
is still being used in variety of applications, although; it 
has been used many years. Having a strong mathemati-
cal background, RSA is still secure using greater key 
lengths. Asymmetric keys solve the key distribution 

problem in symmetric cryptography. They are also used 
for  non- repudiation, which helps to prove that only the 
sender who has the key could have sent the message. 

Existing parallel approaches on cryptographic 
 algorithms are summarized in2. Focusing on the RSA, 
there has been some pieces of research on performing it 
in parallel3-17. Recently interconnection network concept 
has been employed to provide a faster way of doing RSA 
cryptography. The TRSA and its optimization are paral-
lel cryptographic approaches based on the RSA and tree 
interconnection network18,19. As far as we know, there 
is no other significant topology based cryptographic 
approach other than TRSA. Regardless of TRSA, the so 
called approaches have not discussed the time complexity 
or the order of the algorithms which are inseparable from 
parallel processing. To the best of the authors’ knowledge, 
the only existing discussion on time complexity, which is 
the number of multiplications, are the well-known CRT20, 
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Montgomery21, and the binary20 where the latter is an 
accepted method.

In this paper, we define a new parallel cryptographic 
approach based on mesh interconnection network, which 
is a combination of parallel cryptographic algorithm and 
parallel architecture that is called MRSA. The order of this 
approach is compared to the existing approaches as well as 
TRSA in terms of number of multiplication. The rest of this 
paper is organized as follows. Primitive RSA is described in 
the second section. Afterwards, MRSA parallel encryption 
algorithm is presented, formulated and analyzed. Finally, 
the results are discussed and the conclusion is given.

2. Primitive RSA
The RSA details are mentioned in almost all cryptography 
literature. As a brief explanation, the RSA assumptions 
are in the following where p and q are two large prime 
numbers: 

 n = pq (1)

 φ = (p–1)(q–1) (2)

 e <n, gcd(e, φ) = 1 (3)

 d = e–1 mod φ (4)

Considering m as plaintext, it should be divided into 
blocks smaller than n. Ci = mi

e mod n is the encryption and 
mi = Ci

d mod n is the decryption operation. The variable 
i is used to indicate the block numbers. As mentioned in 
the introduction, the greater the key is, the more secure 
the data transfer will be4,8.

3.  MRSA Parallel Encryption 
Algorithm

Whenever some processing elements come together and 
collaborate to solve massive problems in a reasonable 
time, a parallel computing environment is formed. In the 
MRSA method, mesh topology is used as parallel pro-
cessing architecture. This architecture has N  diameter 
where N is the number of processor element. Each inter-
mediate node is connected to four other nodes, each side 
node is connected to three nodes, and each corner node 
is connected to two nodes. 

We have considered 10 nodes in our design which 
nine of them form the mesh, and one is the coordinator. 

From another point of view, the proposed architecture 
can work as a cryptographic coprocessor, which collabo-
rates with the CPU. In this case, the coordinator can be 
the CPU itself. Digital embedded systems do have a CPU, 
and this coprocessor is used to perform the cryptographic 
operations faster and with higher throughput. However, 
the number of nodes can be more or less but not less than 
five. Number of nodes should follow a mesh rule which 
is S2 where S is the length of mesh; in addition, a proces-
sor element is added as the coordinator of first operation. 
Using more nodes, the more parallelization is gained but 
employment of more processor elements for smaller data 
and key lengths should be avoided. A tradeoff between 
the number of processor elements, the data size and the 
key length exists. We have chosen a mesh with nine nodes 
to describe our solution.

3.1 Mesh Topology Concept
Mesh is a two-dimensional network, which is obtained 
by arranging N processor elements into an S × S array, 
where S = N . A simple mesh is shown in Figure 1 for 
S = 4. Every mesh has S2 nodes that are connected to their 
immediate neighbors. The processor in row j and column 
k is denoted by P(j, k), where 0 ≤ j ≤ S – 1 and 0 ≤ k ≤ S –  
1. Four communication lines link P(j, k) to its neighbors 
P(j + 1, k), P(j – 1, k), P(j, k + 1), and P(j, k – 1)22. Processor 
elements on the boundary rows and columns have less 
than four neighbors and hence less connections. 

Mesh is a fixed-degree network23. The degrees of the 
interior processor elements, the four corner processor 
elements, and the remaining edge processor elements of a 
mesh are 4, 2 and 3 respectively. A mesh has S rows and S 
columns. Therefore, transporting a piece of data from the 
northwest processor to the southeast processor requires 
traversing S – 1 rows and S – 1 columns. A message origi-
nating from one corner of the mesh and traveling to the 
opposite corner of the mesh(diameter) requires travers-
ing a minimum of 2S – 2 communication links23,24, which 
has the order of O N( )25

.

3.2 The MRSA Method
The MRSA method is employing mesh topology to 
carry out RSA encryption in a faster way. The following 
 definitions are used for the algorithm.

 e S
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eo: The exponentiation for quotient of dividing e into ed

er: The exponentiation for reminder of dividing e into ed

pi: i
th processor element
The values er and eo are computed using the following 

formulas:
 eo= e div ed (5)

 er= e mod ed (6)

The scheme of the MRSA using mesh topology is 
demonstrated in Figure 2(a). It should be considered that 
there is no need for these processor elements to be full-
function processors. They just need to be able to perform 
multiplication and division operations. They don’t need to 
be able to perform other operations. Receiving the data, 
doing the operation and sending the result are the only 
tasks of these processor elements. There is no need for 
router, routing algorithm and complex hardware devices.  

PEs (Processor Elements) are simple digital circuits as 
shown in Figure 2(b). The modulo operation will be done 
based on n. The value of n will be in place, which means n 
will be fed into the PEs as the initial step.

In the first step, a processor element p, calculates meo   
mod n and sends it as the input of processor element p0 to 
send it as two inputs of processor elements p3. Then the 
result of equation mer   mod n, which is calculated in p, 
is sent to processor element p0 to send it as input of pro-
cessor elements p1. In this scheme, Some PEs even don’t 
perform multiplication and modulo and just send the 
input values to the next PE. The outputs of p are A and B 
which are computed as following.

 A= meo   mod n (7)

 B= mer   mod n (8)

The processor element p0 receives A, and sends it to 
p3. Afterwards, p0 sends B to p1. The processor element p3 

uses A as two inputs and calculates A2 mod n and sends 
the results to p4 and p6 as its inputs. The processor ele-
ment p1 doesn’t perform any calculation and sends the 
received value which is B to p2. The processor elements p4 
and p6 compute A4 mod n as their inputs is A2 mod n. the 
processor element p6 sends its results to p7 but p4 sends it 
to p7 and p5. It means that one input of p7 is from p6 and 
the other one is from p4. Just like p1, p2 doesn’t perform 
any calculation and sends the received value which is B 
to p5. The processor element p7 perform the computation 
of A8 mod n with its inputs (A4 mod n) and p5 computes 
A4 ×B mod n. The processor elements p7 and p5 send their 
values to the p8. The output of p8 is the encryption of m. 
The pseudo code of MRSA algorithm is illustrated in 
Figure 3.

3.3 MRSA Generalization
Apart from this simple example of a 3×3 mesh, the mesh 
can be of any size. The steps of the algorithm and the way 
processor elements should behave to do the necessary 
computations is formulated as following:

 ∀i, i Œ {i ≥ 0 and i ≤ S –1}; pi sends its input to output (9)

Figure 1. Mesh interconnection network.
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 ∀j ∀l, j Œ {j ≥ 1 and j < S}, l Œ {l ≥ 0 and l < S}; p(j×s)+l 
computes MulMod (10)

p(j×s)+l computes one multiplication and one  modulo 
using the two inputs which we call them together a 
MulMod operation in brief. If p(j×s)+l has one input, the 
other input value will be assumed to be the same as the 
received value. 

Based on the Equation (9) , the processor elements p1 
and p2 only send their results to their successor node and 
don’t perform any computation. Therefore, we can have 
the following formulas for a 3×3 mesh.

 p1: p2 :B (11)

 p3: A
2 mod n (12)

 p4: p6 :A
4 mod n (13)

 p5: A
4 ×B mod n (14)

 p7: A
8 mod n (15)

 p8: A
12 ×B mod n (16)

In this example, S=3, therefore:

 e S
d

i
i

S
= = + =+

= −

−∑ 2
1

3 2 32 2 12  (17)

A known fact in number theory is:

 (a× b) mod n= ((a mod n) × (b mod n))mod n (18)

Based on this fact, the following computations are used 
to prove that the output of the p8 is the encrypted message. 
Output of p8 is the result of A12 ×B mod n. Therefore:

 C = (A12 ×B) mod n = ((A12) mod n × B mod n) mod n

= ((A) 12 mod n × B mod n) mod n

It is derived from Equations (7) and (8) that:

= (( meo  mod n)12 mod n × ( mer   mod n) mod n) mod n

Utilizing Equation (17): 

 = ( m ne e
o

dmod( )  × ( mer   mod n)) mod n

 = m m ne e eo
d

r( ) ×



mod

 = m ne e eo
d

r( )





+� mod  

And using Equations (5) and (6):

 = me mod n

The ciphertext resulting from MRSA is the same as 
original RSA.

4. Performance and Analysis
The MRSA method has improved the  modular exponentia-
tion process as following to do faster  computations:

 r=e mod ed

 me = me/ed ×…× me/ed +r

 m = me r me e
i

e
dd /

=∏ 1
 (19)

In the MRSA algorithm only p should be enough 
 powerful to compute modular exponentiation, and the 
other ones should do at most one MulMod operation. 
Some processor elements are even simpler and just pass 
the received value. There is no need to raise m to the 
power of e, and p just needs to raise m to the power of e/ed 
(in this example e/12) and this reduction makes the com-
putation faster. Using binary exponentiation in p, we can 
achieve a more appropriate execution time. The perfor-
mance of the algorithm is explained briefly as following. 

The MRSA is a new method to calculate RSA, which its 
results are highly depending on the number of MulMod 
operations. The more blocks of MulMod are used, the 
more speedup will be gained, and fewer steps will be 
applied to calculate the total value.

As described in the literature from8,26-28, the number 
of multiplications in binary method for the worst case 
is 2(k-1) and for the best case is (k-1) where k is the bit 
length of the exponent, which is e. The MRSA method is 
mainly divided into two parts. The first part of MRSA is 
based on the binary method. Let x be the mesh diameter, 

Figure 3. Pseudo code of MRSA.

MRSA Algorithm for S = 3
eo= e div ed

er= e mod ed

A= meo  mod n (using binary method)
B= mer   mod n (using binary method)
in par; p3: A × A (mod n), p1:B 
in par; p6, p4: A

2 mod n × A2 mod n(mod n), p2:B 
in par; p7: A

4 mod n × A4 mod n(mod n), p5:B × A4 mod n
p8: A

12 mod n × B (mod n)
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A and B in Equations (7) and (8), as the powers, will be 

divided to the number of PEs, which is 2
1

3
x i

i

x
+

= −

−

∑ . Hence, 
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∑log  multiplications in the worst 

case will be applied to compute A and B consequently. 
Thus, the number of multiplications of the first part in the 
worst case in the coordinator is: 
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The total number of multiplications for the mesh as 
the second part is x2-x since x PEs do not carry out multi-
plication, thus the total number of multiplications for the 

best case will be 2 1 2
1

3
2k xx i
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∑log x.

The other subject that should be discussed is the con-
currency of the multiplications. Not only the number of 
multiplications is decreased in this approach, but also 
there are some multiplications performing at the same 
time in different PEs, which decreases the time complexity. 
Although, the total number of PEs carrying out multiplica-
tion mesh is x2-x, where x is the diameter of mesh, the total 
time for performing the multiplications is 2x-1, due to the 
concurrency of PEs. In result, the number of multiplica-

tions for the MRSA is 2 1 2
1

3

k xx i

i

x
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∑log 2 1.

Having the convenient formula for geometric series:
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The reduction of the number of multiplications is 
 reasonable. Using the calculation method from(5), the 
number of multiplication is illustrated by η(k,x). Eventually, 
the total number of multiplications in the worst case is:
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The above Table 1 shows that the number of 
 multiplication operations of primitive RSA will be 
reduced using the MRSA method compared to the other 
methods as well as the TRSA. This improvement depends 
on the number of MulMod blocks in the mesh topology 
and the length of RSA cryptographic key. 

The speedup of MRSA to the binary method in the 
worst case is calculated using the following formula:

 Speedup = −

− − −

=
−

− − −
− −

2 1
2 2 1 1

1
2 1 0 51 1

( )
( log( ))

( )
( log( ) . )

k
k

k
kx x

 (24)

Figure 4(a) shows the MRSA method using multiple 
bit key lengths and mesh diameters based on the formula 
of the worst case. Figure 4(b) presents the same figure 
from another point of view to figure out the speedup for 
each configuration. 

Table 1. compares the number of multiplications in the average, and worst case for binary, CRT, Montgomery, 
TRSA(19), and MRSA

Method Average Case Worst Case
Binary General form Criteria General form Criteria

1.5(k–1) 1535 2(k–1) 2046
TRSA 1.5(k–1)–0.5l 1505 2(k–1)–l 1986
MRSA 1.5(k–log(2x-1–1))+0.5x–1 1495 2(k–log(2x–1–1))–1 1967
CRT                                    3k2/4+k 787456

Montgomery                                     2k2+k 2098176



A Parallel Method for RSA Cryptosystem Utilizing Topological Architecture

Indian Journal of Science and Technology6 Vol 8 (30) | November 2015 | www.indjst.org

Figure 4 (a) shows that exploiting more PEs in MRSA 
will result in better performance for greater key lengths. 
The increase of speedup in Figure 4 (b) is depicted with 
a red arrow. 

Selecting the number of processor elements for a 
mesh is dependent to the area and the speed, which is 
desired for the security needs of the target system. There 
is a tradeoff between speed and number of PEs. It must be 
considered that the number of PEs must be increased to a 
place that the overhead of multiple PEs does not increase 
the multiplications which leads to reduction in speed.

5. Conclusion
The MRSA is carrying out RSA cryptography employing 
parallel mesh topology. Using more secure bit key lengths 
such as 1024, 2048, and 4096 the MRSA has more suitable 
speed than the well-known methods. This method uses 
a coprocessor, which is made up of MulMod blocks that 
collaborates with CPU. Considering p as the main CPU of 
an embedded device, the MulMod blocks in mesh topol-
ogy represent the coprocessor. 

The speedup of MRSA method to the previous 
 methods depends on the number of MulMod blocks. As 
it is seen from the Table  1 and Figure 4, MRSA method 
is better in terms of the number of multiplications. This 
improvement is increased using more MulMod blocks. 
As the number of MulMod operations decreases, the 
steps as well as the execution time of the MRSA will be 
decreased.

The architecture of this method is designed to be scal-
able and can be resized to suit the needed performance. 

Figure 4. Comparison of speedup for multiple key lengths and mesh diameters.

(b)(a)

A hardware solution outperforms a software solution as 
it is almost the case29,30. It’s a cheap way of achieving high 
performance.
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