
Abstract 

Assume that H is a graph and c(R,H) is the number of tests needed by an algorithm R in the worst case to find unknown edge 
e* of H. The aim is to set c(H) = minR c(R,H). In this paper, presented a straightforward proof of the tight lower bound on c(H) 
for a special class of graphs. This explicit new bound based on the combinatorial object might be used for key distribution 
algorithm. Moreover, presented a lower bound on c(H) and show this bound for the complexity is tight. 

Searching for an Unknown Edge in the Graph and its 
Tight Complexity Bounds

Abbas Cheraghi* 

Department of Mathematics and Statistics, Khansar, University of Isfahan, Isfahan, Iran; a.cheraghi@khn.ui.ac.ir

Keywords: Combinatorial Search, Graph Searching, Group Testing, Key Distribution, Unknown Edge

1.  Introduction 
Numerous studies have been conducted about Graph 
searching1,2,3,4,5, and it is, in fact, a subset of the bigger tax-
onomy of DNA application, blood testing, deceptive tests, 
finding patients about which a set of studies have been 
conducted (e.g., the book1). It was first mentioned by 
Parsons6 and by Petrov7 separately, and the first definition 
is what is recently called edge-searching. In the present set-
ting, a group of experimenter intends to capture a floating 
edge along the edges of a graph. This floating edge move 
on time, pursue experimenter and is aware of the all of 
the moving of the experimenter, since the experimenter 
might not find it until they catch him, i.e., when this 
special edge is caught and cannot run anywhere. On the 
other hands the floating edge float on its graph as much as 
possible. An edge determines by shifting a searcher from 
one endpoint to another, and a vertex is cleared when a 
searcher is inserted on it. For example finding an edge in a 
simple graph without any multiple edges is equal to find-
ing two endpoints of floating edge, so in a basic version 
of edge searching, we usually try to find endpoints verti-
ces instead of its edge. The problem, however, is to know 
about the minimum number of examinations that might 
ensure the capturing of the floating edge called the edge 
search number of the graph.

One of the first applications of group testing problems 
was happening in World War II when a group of soldiers 
needs blood testing for determining syphilitic patients. 
But one by one blood testing needs a lot of cost and time, 
so the best idea was mixing the types of blood of a sub-
group of soldiers and doing the test on it. If the answer 
to the test is negative it means that all the soldiers in that 
subgroup are safe and if not they must select another sub-
group of soldiers more and more to find all the patients. 
The main goal is finding a minimum of blood testing in the 
worst case. The simple case of this group testing is when 
the number of patients is two of n soldiers. We model this 
kind by graph theory and called classical group testing.

The edge searching problem on graphs is, in fact, 
a development of the classical group testing problem. 
Suppose that we have a graph H = (V, E) with vertex set V 
and edge set E. Let HS indicate the subgraph of H induced 
by the set S of vertices. What we should do is to reach 
a subset D ⊆ E of faulty edges with the smallest possi-
ble number of edge tests in which an edge test takes an 
arbitrary subset S ⊆ V and see if the subgraph HS has a 
defective edge or not. Actually, the main goal is to calcu-
late a minimum number of induced subgraphs for finding 
a special edge in edge set of the graph. 

Chang and Hwang8 first introduced the problem of 
recognizing two defective vertices in a complete bipartite 
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graph, as a subgroup of patients in syphilitic patient’s 
story. This problem might be regarded as a specific group 
testing problem of searching for a single edge on graphs. 
Aigner9 was the first who offered the edge testing problem 
for a general graph and drew attention to it. In this paper, 
we offer a simple proof of the tight lower bound on the 
number of tests in group testing problem for searching an 
edge in graphs.

In what follows, two issues are addressed: One of the 
most important subjects of cryptography protocol called 
key distribution and the second one is the general case of 
edge searching problem called non-adaptive group test-
ing algorithms.

Another interesting subject on cryptography is digital 
fingerprinting. For a combinatorial model of this subject, 
Boneh and Shaw10 defined Frame-proof codes as an exec-
utive of it preventing an alliance of a specific size c from 
framing a user, not in the alliance. Later on, Stinson and 
Wei11 offered a dual mode of the problem on the basis of 
specific kinds of set systems. Two new definitions, (i, j)-
Cover-free family and (i, j)-disjunct system are used12 to 
make (i, j)-key distribution algorithm and a non-adaptive 
group testing algorithm respectively; as they are dual 
incidence structures. Let’s first introduce the related ter-
minology about set systems.

Definition 1.1 A pair (Y, y) in which Y is a group of fac-
tors referred to as points and y is a family of subsets of 
Y whatsoever is called a set system. Every subset of Y is 
referred to as blocks.

Definition 1.2 Let i and j be positive integers and (Y, y) be 
a set system. This set system is called an (i, j)-cover-free 
family if for any two subsets C1, C2 of y, in which |C1|≤I, 
|C2|≤ j and C1 ∩ C2 = ∅, we have  

B C B C
B B

Œ Œ
À

1 2

. When  

|Y| = v and |B| = y we show an (i, j)-cover-free family (Y, y), 
with the notation (i, j)-CFF(v, y) briefly.

Symmetric cryptosystem used for large plain-text, but 
it needs a secure channel for establishing a common key 
between the sender and receiver as well. There are sev-
eral protocols for the key establishment’s problem. In the 
following definition explained the concept of establishing 
key between the participants of a private virtual meeting. 

Definition 1.3 Assume two positive integers v and y. An 
(i, j)-key distribution algorithm is a way of spreading a col-
lection of v keys to a group of y participants, in a way that 
each subgroup of i participants might plan a meeting keys 
by integrating their keys in common. Any meeting key, 

thus planned needs to be safe against a subset of an alliance 
of size at most j. We employ the notation (i, j)-KDP (y, v) 
for an (i, j)-key distribution algorithm as an abbreviation.

Actually, in an every private virtual meeting, the main 
goal is spreading a collection of keys between the partici-
pants in such away every qualified subset of participants 
recover a common key whereas no forbidden subset of 
participant wrest it. As a motivation, it is illuminated a 
method that key distribution algorithms result from cov-
er-free families.

Let (Y, y) be an (i, j)-CFF (v, y), such that i≥2. For 
every x ∈Y, assume kx be a key, picked randomly from an 
enough large finite field. Assume also that there is a group 
of y users, denoted uB (B ∈ y), and every user uB is handed 
the keys kx (x ∈ B). Suppose C is a subgroup of i users. 
Hence, for any other disjoint alliance D of size at most j, 
there is a key held by each user of C and by no user of D. 
If assume that the meeting key kC is 

k kC x
x x B for all B C

=
Œ Õ

Â
{ : }

,

Therefore, every user of C might estimate the meeting 
key kC, however, the value of kC cannot be calculated by no 
more than j user in alliance D.

Definition 1.4 Let i and j be positive integers and (Y, y) be 
a set system. This set system is called an (i,j)-disjunct sys-
tem provide if for any P, Q Õ Y in a way that |P|≤i, |Q|≤j 
and P»Q = ∆, there is a BŒy in a way that PÕ B and Q»B 
= ∆. When |Y| = v and |B| = y we show an (i, j)-disjunct 
system (Y, y), with the notation (i, j)-DS(v, y) briefly.

Cover-free families and disjunct systems are, in essence, 
dual incidence structures. One of the group testing modes 
in which all the tests are known ahead of time is called 
non-adaptive group testing algorithm. Non-adaptive 
group testing algorithms are defined here informally.

Definition 1.5 Assume that Y is a test tube rack of v blood 
test tubes that should be tested as a positive or negative 
test. Assume also that y is a family of subsets of the tubes 
on Y, where each BŒy is a group of blood test types that 
should be mixed and tested. The testing process has the 
feature that a group involves, at least, one positive sample, 
so the test result for the group is positive and otherwise 
the result is negative and concludes that all of the samples 
contain in B are safe. Let the testing procedure permits 
the identification of the positive blood test types if the 
number positive blood test types are at most d and also all 
the mixed blood test types are known ahead of time, then 
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this algorithm is referred to as a non-adaptive group test-
ing algorithm and is denoted by d-NAGTA (v, y) briefly. 

The phrase “non-adaptive’’ indicates the mixed blood 
test types implemented are fixed beforehand and do not 
hinge on the results of earlier tests. 

For making a group testing algorithms we can employ 
disjunct systems as follows. Assume that (Y, y) is a (1, 
d)-DS (v, y), in which Y is the test tube rack of v blood 
test types and y is the family of y groups. It is; then, obvi-
ous that the blood test types take place in no group that 
test positive are in fact the negative blood test types. Thus, 
the positive blood test types are recognized by this testing 
process, a d-NAGTA (v, y) result.

2.  Tight Lower Bound on c(H)
In this section, we study a kind of group testing problem 
for two damaged elements by graph-theoretic proper-
ties. Let a collection V of n distinct elements has exactly 
two damaged elements. We want to interpret the search 
domain V as the vertex set of the graph H and search for 
two damaged elements adjacent each other, i.e., an unfa-
miliar edge e* in the edge set E of H. The main goal is to 
find the unfamiliar damaged edge by continually selecting 
subgroups U of V and querying questions “is somewhat of 
the elements of U an element of e*?’’. We called “test’’ to 
this kind of query and “test set” to subgroup U, as well. 

Assume that H is a graph and c(R,H) is the number 
of tests needed by an algorithm R in the worst case to 
find unknown edge e* of H. The main goal is to compute 
c(H) = minR c(R,H). Determining c(H) in general is very 
hard and is an open problem yet. There are various stud-
ies about the lower and upper bound for this term. The 
absorbed researcher will find more specifics around group 
testing problems in13-17. We begin with a simple but useful 
result. The next simple lemma is useful in future results. 

Theorem 2.1 Let H be a graph and F is its subgraph, then 
we have, c(F) ≤ c(H).

Proof. All of the tests and tests set in F are also in the H 
and so the minimal tests set on F is less or equal than the 
minimum tests set in H. 

Let us make the first observation on this problem. 
Suppose in the course of our algorithm we have arrived 
at a graph H(V, E) in which the unknown edge e* lies. 
The next test A Õ V splits H into two parts H1 and H0 
(Figure 1). If the answer is “yes”, then e* lies in HA or in 
HA, V-A, whereas if the answer is “no”, e* lies in HV-A Thus 

H1 = HA ∩ HA, V-A, H0 = HV-A, in fact, H0 is an induced sub-
graph of graph H. So any test corresponds to a partition 
of H literally is an induced subgraph of H. It is convenient 
to interchange the roles of “yes” and “no” which obviously 
has no influence on c(H). That is, after any test A Õ V 
we obtain as feedback e* ∈H1 = HA or e* ∈ H0 = HA,V-A 
∩ HV-A. From now on, we will always consider this lat-
ter version of our problem. There is a famous information 
theoretic bound9 on c(H).

Theorem 2.2 Assume that H = (V, E) is a graph. The lower 
bound on c(H) is c H E( ) log | |≥ ÈÍ ˘̇2 .

In this paper, we present a straightforward proof of the 
tight lower bound on the c(H) in group testing problem 
for searching an edge in graphs that is sharpened than the 
famous information theoretic bound on c(H). 

Let us first discuss some necessary results that we need 
for the proof of this new bound. 

Theorem 2.3 Assume that H is a graph with vertex set V 
and edge set E such that |E| + |V|>2k for k ≥ 4, then c(H) 
≥ k+1. 

Proof. We prove c(H) ≥ k+1 holds by induction on k. For 
k = 4, the only interesting case is |V| = 6. M. Aigner9 prove 
that c(K6) = 5, thus c(H)≥k+1. Let A be the first test set, so 
H splits into two parts induced subgraph H1 = HA and the 
remainder H0= HA,V-A ∩ HV-A. 

If |E(H1)|+|V(H1)|>2k-1, so according to the induction 
c(H1)≥ k. Because of the first question we have c(H)≥k+1. 
Otherwise, if |E(H1)|+|V(H1)|≤2k-1 by the definition of H1 
and H0 we have |E(H0)|+|V(H0)|>2k-1 and again follows by 
induction applied to H0 we have c(H0)≥ k. Then because 
of the first question “A”, we have c(H) ≥ k+1. 

A complete graph with n nodes is a simple graph 
such that every pair of distinct n nodes is adjacent with a 
unique edge and show by the notation Kn.

Theorem 2.4 Assume that Kn is a complete graph. Then 

for every k greater than 3 such that 
n k+Ê

ËÁ
ˆ
¯̃

>
1

2
2  we have 

the lower bound c(Kn) ≥ k+1.

 
For making a group testing algorithms we can employ 
disjunct systems as follows. Assume that (Y, y) is a (1, 
d)-DS (v, y), in which Y is the test tube rack of v blood 
test types and y is the family of y groups. It is; then, 
obvious that the blood test types take place in no group 
that test positive are in fact the negative blood test types. 
Thus, the positive blood test types are recognized by this 
testing process, a d-NAGTA (v, y) result. 
2. Tight Lower Bound on c(H) 
In this section, we study a kind of group testing problem 
for two damaged elements by graph-theoretic properties. 
Let a collection V of n distinct elements has exactly two 
damaged elements. We want to interpret the search 
domain V as the vertex set of the graph H and search for 
two damaged elements adjacent each other, i.e., an 
unfamiliar edge e* in the edge set E of H. The main goal 
is to find the unfamiliar damaged edge by continually 
selecting subgroups U of V and querying questions “is 
somewhat of the elements of U an element of e*?’’. We 
called “test’’ to this kind of query and “test set” to 
subgroup U, as well.  

Assume that H is a graph and c(R,H) is the number of 
tests needed by an algorithm R in the worst case to find 
unknown edge e* of H. The main goal is to compute c(H) 
= minR c(R,H). Determining c(H) in general is very hard 
and is an open problem yet. There are various studies 
about the lower and upper bound for this term. The 
absorbed researcher will find more specifics around 
group testing problems in13-17. We begin with a simple 
but useful result. The next simple lemma is useful in 
future results.  

Theorem 2.1 Let H be a graph and F is its subgraph, then 
we have, c(F) ≤ c(H). 
Proof. All of the tests and tests set in F are also in the H 
and so the minimal tests set on F is less or equal than the 
minimum tests set in H.  

Let us make the first observation on this problem. 
Suppose in the course of our algorithm we have arrived at 
a graph H(V, E) in which the unknown edge e* lies. The 
next test A  V splits H into two parts H1 and H0 (Figure 
1). If the answer is “yes”, then e* lies in HA or in HA, V-A, 

whereas if the answer is “no”, e* lies in HV-A Thus 
H1=HA HA, V-A, H0=HV-A, in fact, H0 is an induced 
subgraph of graph H. So any test corresponds to a 
partition of H literally is an induced subgraph of H. It is 
convenient to interchange the roles of “yes” and “no” 
which obviously has no influence on c(H). That is, after 
any test A  V we obtain as feedback e* H1 = HA or e* 

 H0 = HA,V-A  HV-A. From now on, we will always 
consider this latter version of our problem. There is a 
famous information theoretic bound9 on c(H). 
Theorem 2.2 Assume that H= (V, E) is a graph. The 
lower bound on c(H) is ||log)( 2 EHc . 

In this paper, we present a straightforward proof of the 
tight lower bound on the c(H) in group testing problem 
for searching an edge in graphs that is sharpened than the 
famous information theoretic bound on c(H).  
Let us first discuss some necessary results that we need 
for the proof of this new bound.  

Theorem 2.3 Assume that H is a graph with vertex set V 
and edge set E such that |E|+|V|>2k for k ≥ 4, then c(H) ≥ 
k+1.  

Proof. We prove c(H) ≥ k+1 holds by induction on k. For 
k = 4, the only interesting case is |V| = 6. M. Aigner9 
prove that c(K6) = 5, thus c(H)≥k+1. Let A be the first 
test set, so H splits into two parts induced subgraph H1 = 
HA and the remainder H0= HA,V-A  HV-A.  

If |E(H1)|+|V(H1)|>2k-1, so according to the induction 
c(H1)≥ k. Because of the first question we have 
c(H)≥k+1. Otherwise, if |E(H1)|+|V(H1)|≤2k-1 by the 
definition of H1 and H0 we have |E(H0)|+|V(H0)|>2k-1 and 
again follows by induction applied to H0 we have c(H0)
≥ k. Then because of the first question “A”, we have 
c(H) ≥ k+1.  

A complete graph with n nodes is a simple graph such 
that every pair of distinct n nodes is adjacent with a 
unique edge and show by the notation Kn. 

Theorem 2.4 Assume that Kn is a complete graph. Then 

for every k greater than 3 such that kn
2

2
1

 we 

have the lower bound c(Kn) ≥ k+1. 
 

Proof. Suppose |E(Kn)| and |V(Kn)| are the size of the 
edge set and vertex set of Kn with n vertices, respectively. 
Then  

Figure 1.  Splits G into two parts G1 and G0. 

 

e* 

V\A A 

e* e* 

Figure 1.  Splits G into two parts G1 and G0.
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Proof. Suppose |E(Kn)| and |V(Kn)| are the size of the edge 
set and vertex set of Kn with n vertices, respectively. Then 

| ( ) | | ( ) |E K V Kn n+ =
Ê
ËÁ

ˆ
¯̃

+ =
+Ê

ËÁ
ˆ
¯̃

n
n

n
2

1
2

Therefore by assumption, the assertion is trivial. 

It is obvious there exists an integer k with 
n nk

2
2

1
2

Ê
ËÁ

ˆ
¯̃

£ <
+Ê

ËÁ
ˆ
¯̃n nk

2
2

1
2

Ê
ËÁ

ˆ
¯̃

£ <
+Ê

ËÁ
ˆ
¯̃

. The preceding proposition shows the next 

result that is a special case of theorem 2.2 for a large n.

Theorem 2.5 Let Kn is a complete graph. Then we have

c K
n

n( ) log≥
Ê
ËÁ

ˆ
¯̃

È

Í
Í
Í

˘

˙
˙
˙

2 2
.

As mentioned before the group testing problem is 
dual of key distribution pattern and the exact value of 
c(H) actually is the minimum number of keys must be 
established between the users, so this explicit new bound 
based on a combinatorial object can be used for key dis-
tribution algorithm.

Theorem 2.6 Assume that H is a graph with vertex set V 
and edge set E. Then c H E V( ) log | |≥ +ÈÍ ˘̇2 . 

Proof. It is obvious there exists an integer k with 2k+1≥ 
|E|+|V|>2k so log | |2 1E V k+ÈÍ ˘̇ = + , then the assertion is 
trivial by Theorem 2.3. 

The next example indicates that the lower bound 
presented in Theorem 2.6. is sharp.

Example 2.7 Assume that H is a complete graph with n 

= 2l, in which l≥3. With this assumption, we conclude 

that 
n l l

l l l

2
2 2 1

2
2 2 22 1 1 2 1Ê

ËÁ
ˆ
¯̃

= - = - <- - -( )
 and 

n l l
l l l+Ê

ËÁ
ˆ
¯̃

= + = + >- - -1
2

2 2 1
2

2 2 22 1 1 2 1( )
 

n l l
l l l+Ê

ËÁ
ˆ
¯̃

= + = + >- - -1
2

2 2 1
2

2 2 22 1 1 2 1( )
, hence 

2
2

2
2 1

2
2 1

l
l

lÊ

Ë
Á

ˆ

¯
˜ < <

+Ê

Ë
Á

ˆ

¯
˜

- ,

l≥3. Our result implies c(K )n ≥
+Ê

Ë
Á

ˆ

¯
˜

È

Í
Í
Í

˘

˙
˙
˙

≥log .
2 1

2
2

l

lc(K )n ≥
+Ê

Ë
Á

ˆ

¯
˜

È

Í
Í
Í

˘

˙
˙
˙

≥log .
2 1

2
2

l

l

On the other hands by induction on l, we prove that 
c(Kn) ≤ 2 l for n = 2l and all l≥1. For l = 1 this is obvi-
ous. We split the vertex set of Kn into two equal sized 
parts A and B with | A | = | B | = 2l-1. As first test set we 
take A and as the second set, we take B. After these two 
tests, we know that the unknown edge e* lies in HA = 
Kn/2 or in HB = Kn/2 or in HA,B = Kn/2,n/2. For the first two 

possibilities by induction, we have c(HA) <2l-2, c(HB) < 
2l-2, and thus c(Kn) ≤ 2l. If e* is in HA,B, then we know 
that one end vertex u is in A while the other end vertex 
v is in B. By the usual halving method, we can identify 
u with l-1 tests on A, and similarly for v. Thus we again 
obtain c(HA,B) ≤2l-2, i.e. c(Kn) < 2l. We have thus proved  
c(Kn) = 2l for l≥3.
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