
Abstract
Background/Objectives: Modelling and optimization of machining process is recognized to be an extremely challenging 
research area in current scenario. This study illustrates work suggestion, an intellectual approach in solving multi-response 
optimization problem involving Electrical Discharge Machining (EDM) of LM25 Al composite using Response Surface 
Methodology (RSM) combined with Radial Basics Function Neural Network (RBFNN) and Artificial Neural Network (ANN) 
techniques. Methods/Statistical Analysis: An experimental analysis was carried out in establishing the most significant 
machining parameters that throw in to MRR and SR. The experimental plan for these investigations was conducted 
according to the RSM. RBFNN and ANN is a computational intelligence model that consists of nodes that are interlinked.
The optimization of EDM is performed by preferring input process parameters like discharge voltage, current, pulse-on 
time, pulse-off time, oil pressure and spark gap, and also output responses as Material Removal Rate (MRR) and Surface 
Roughness (SR) using Box - Behnken method. Findings: Each node performs a simple operation in computing its output 
from its input that is transmitted through links connected to other links. This is comparatively simple computational model 
because of the analogous structure that of neural system in human brain-nodes equivalent neurons and links corresponding 
to synapses that transmit signals between neurons. Back Propagation Neural Network (BPNN) is utilized to train the 
network for optimizing the EDM parameters. By simulation the result was authenticated with the target output awaiting 
the network error has congregated to threshold minimum. Applications/Improvements: Multi-response MRR and SR 
modelling were performed in the EDM process and via the investigation on the experiment the results are confirmed. 
Different process parameters consequences have also been premeditated.
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1. Introduction
Non-traditional machining processes not only make use 
of traditional tools for metal removal but also it uses other 
forms of energy directly by using non-traditional meth-
ods some of the problems can be solved like complexity 
in shape, size, product accuracy, surface finish etc. EDM 
is an electro-thermal non-traditional machining process, 
which involves electrical energy in generating electrical 
spark and the material removal chiefly happens by the 
thermal energy of the spark. In EDM process, removal 
of the metal from the workpiece by erosion producing 

sparks between the workpiece and tool. EDM primarily 
machines hard to-machine material, intricate shapes in 
little batches or even on job-shop basis and high strength 
temperature resistant alloys. Only electrically conduc-
tive materials can be machined by EDM. In recent days, 
artificial intelligence plays, major role for modelling new 
innovations made in machining. The computational 
approaches are being preferred and applied to the physi-
cal models, for the output parameters prediction, due to 
complications and uncertainly in machining operations.

EDM is currently a notorious process predominantly 
utilized in precise machining intricate contoured work 
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pieces, as a replacement to supplementary conventional 
approaches and for details concerning the physical phe-
nomena inherent to this process. In manufacturing 
technology speedy advancement has inspired the rel-
evance of Non-Traditional Machining (NTM) processes 
not only in modern machining to cost-effectively machine 
materials which are typically complicated to be machined 
using conventional tools. EDM is investigated involv-
ing a range of researchers. They have carried out process 
parameter optimization of different types of EDM at vari-
ous point time utilizing dissimilar optimization models 
and solution techniques. A considerable number of works 
have been paying attention on approach of producing 
optimal EDM performance actions of high MRR/low SR. 
This section provides a study into each of the performance 
measures and the scheme for their enhancement. In ear-
lier period, noteworthy enhancement was performed in 
enhancing productivity, accuracy, safety and the versatil-
ity of EDM process. The main concern is to make a choice 
from the process parameters such as Ip, Vd, Ton, Toff and, 
Poil, dielectric fluid, polarity by the approach that not only 
MRR increases but also the accuracy; and at the same 
time SR should diminish.

Presented MRR partial experimental models for dif-
ferent work piece (EK2, D2 and H13) and combination 
of tool electrode (Copper, Graphite and Silver-Tungsten 
alloy)1. To achieve higher MRR in EDM, demands a steady 
machining process, where contamination influences in 
the gap between the workpiece and the tool, and eroding 
surface size also affects its specified machining command. 
Investigated MRR, TWR on AISIH13 tool steel2-4. Ip was 
found to be the major factors which influence MRR. 
Higher MRR was obtained with high Ip, medium Ton, and 
low Toff. However, smaller TWR was obtained at high Ip, 
high Ton, and lower value of Toff.

Used electrode rotation, Ton, Ip, and dielectric Flushing 
Pressure (FP) to study MRR on cobalt cemented carbide/
tungsten carbide and shown experimentally that Ip and Ton 
are the most significant factors5. Presented a mathematical 
model in deep hole drilling for MRR of Inconel7186. The 
investigation were planned to model the same using CCD 
and RSM. The duty factor and peak current influences the 
MRR to a great extent and the process parameters been 
optimized to higher MRR through the specified Ra value 
utilizing the technique on desirability function approach. 
Realized the effect of EDM parameters on electrode wear 
and MRR in the workpiece containing cobalt bonded 
tungsten carbide7. For each response a quadratic model 

has been built up for MRR, the most influential factor 
was current intensity that was followed by the Toff, Ton and 
the interaction effect between the opening two. The value 
of MRR was maximized, later then intensity of current 
and Toff were maximized and minimized by means of Ton. 
Discuss the performance (MRR and TWR) of EDM mild 
steel with the configuration of shape in the electrode8. The 
maximum MRR was found for round electrodes followed 
by square, triangular and diamond shaped electrodes. 
However, the highest EWR were found for the diamond 
shape electrodes. It is also preferred as an off line process 
planning technique. The simulation algorithm was greatly 
depending on spark gap, MRR and TWR. Nevertheless, 
the recreation of spark gap and location of discharge are 
dependents on the concentration of dispersion of impu-
rities, which was depicting to produce a high pragmatic 
illustration of sparking occurrence.

Subsequently reported overall performance com-
parison of copper and brass electrodes and observed 
that the maximum MRR being seen while machining of 
Aluminium involving brass as electrodes9. The electrode 
material like brass having comparatively low heat con-
ductivity and almost all the heat energy was utilized in the 
elimination of material from Aluminium work piece at a 
low melting point. Estimates the effect of Ton, Ip and Vd as 
an input TWR, MRR and Sg as a output response EDM of 
Al-4Cu-6Si alloy-10wt. % SiCP composites10. The second 
order non linear mathematical model was established for 
exhibiting the association between the various parameters 
in machining. It was observed that the Sg, TWR and MRR 
are increased with raise in Ton and Ip. Established an easy 
temperature based model to calculate the MRR and state 
that the rise of Ip, Ton or Von results in greater MRR, besides, 
MRR increases with the reducing Toff

11. They reported that 
model predictions and experimental results are in good 
agreement. Reported the process parameter correlation in 
EDM of CK45 steel with Al-Cu-Si-TiC composite gener-
ated involving powder metallurgy technique and analyzed 
TWR and MRR12. It has noted that these electrodes are 
responsive to Ton and Ip than comparing to traditional elec-
trodes. In order to accomplish high MRR and low TWR 
optimized and good results were confirmed with experi-
mental verification. Had demonstrated the effect of Von, Ip, 
Ton, and Toff on the reaction of EWR and MRR13. The inves-
tigations are planned according to a Central Composite 
Design (CCD) on Al2O3+TiC work piece and the parameters 
influences and implementing ANOVA communications 
were researched. An advanced mathematical model was 
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introduced and alleged to predict and fit MRR perfectly 
showing confidence level of 95%. The most important fea-
tures that affect the reaction were Toff and Ip.

Found the performance of machining in terms of 
TWR and MRR by getting an optimal setting of Ton, Toff, Ip, 
and FP during EDM having the Metal Matrix Composite 
(MMC) of Aluminium 6063 SiCp

14. It was realized that Ip 
was predominant on MRR when comparing with param-
eters that are additional important. MRR value boosts 
up with rising of Ton and Ip to an optimal point then its 
stopped. Built up a mathematical model for optimize 
EDM characteristics like MRR, TWR and the SR on 
Aluminium SiCp composites, using Full Factorial Design 
(FFD)15. The parameters which are taken in to consider-
ation are the percentage volume fraction of SiC, Vd, Ton 
and Ip present in LM25 Aluminium MMC`s. Experiment 
the optimization and feasibility of EDM for checking the 
machinability composites such as W/Cu using the Taguchi 
Methodology utilizing L18 orthogonal table to obtain the 
polarity, Ip, Ton, Toff, rotary electrode planetorial speed, and 
Vd to explore the TWR and MRR. The tool wear is moder-
ately analogous to the MRM in EDM16. Ascertained that 
during sparking precipitation take place and it affect the 
tool wear due to the precipitation of turbo static carbon 
in the hydrocarbon dielectric on the electrode surface17. 
Also the sudden wear on the edge of the electrode was 
owing to the lacking of carbon precipitating complicat-
edly in reaching the areas of the electrode.

Used energy dispersive X-ray analysis of tool surfaces 
measuring their compositions and established18. For nor-
mal EDM conditions a wear stopper or inhibitor carbon 
layer was used on the surface of the electrode on fine-tuning 
the parameter settings. There is a noteworthy enhancement 
in TWR due to the thickness of carbon inhibitor layer; it 
has small effect on the MRR. Conversely, for applications 
requiring higher MRR, a large pulse current is encouraged 
to increase electrode wear implanting electrode material 
onto the work piece. Devised an online tool wear com-
pensation method depends upon the pulse analysis and 
controlled the tool’s lively feed movement19,20. Investigate 
the TWR ratio by spectroscopic calculation of the vapour 
density of the tool electrode21. Longer Ton is known to result 
in lower TWR and deposition of a thicker layer of carbon 
on the surface of the tool electrode. Conversely, the den-
sity of copper vapour evaporated from the tool electrode 
surface was found to be lower when the carbon layer was 
thicker, indicating that tool electrode wear was prevented 
by the protective effects of the carbon layer. Illustrates the 

improvement of a wide ranging numerical model in cor-
relating the higher order manipulation and interactive 
of different EDM process parameters are passed through 
RSM, utilizing relevant experimental value as acquired 
through conducting tests22. The mathematical models are 
developed on the basis of RSM, which employs the data val-
ues from practical observations of the EDM of work pieces. 
Exploration was performed for analysis of the control con-
ditions required for the control of the MRR, EWR, gap size 
and Ra.23,24 reported a uniform TWR machining method 
to compensate the longitudinal TWR by performing to an 
extended beyond forward and backward machining move-
ment. Presented the work is aimed in optimizing the MRR 
and SR of EDM of SiC parameters concurrently25. The out-
put parameters are conflicting hence naturally not even one 
combination of machining parameters exists, that supplies 
the excellent performance of machining. Intelligent algo-
rithm together in association was implemented to process 
the model. Non Dominating Sorting Genetic Algorithm 
II (NSGA-II) and the MOO methodology were used to 
optimize the process parameters. The three significant 
consequences of input process parameters namely Ip, Toff, 
TonEDM of SiC are taken. Experiments are conducted over 
a huge range of considered input parameters for training 
and verification of the model.

2. Selection of the Work Piece
The capability of machining hard material component 
like heat resistant steels, composites, heat treated tool 
steels, ceramics, carbides, super alloys etc. The larger car-
bon grades normally are utilized in applications namely 
metal cutting tools, stamping dies, etc. In this work LM25 
Al composite is taken as a work piece material shown in 
Figure 1 having 120mm x 120mm x8mm dimension.

Figure 1. Work piece specimens before machining.
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3. Experimental Set-Up 
The experiments were conducted under various machining conditions using on Electronica 
5030 Die Sinking EDM machine, which uses 3HP/2.2kW power. The input process 
parameter was determined from the setting machining and the shape of the work piece 
surfaces. The tests were done with normal above mentioned procedure. 
The levels were specified particularly for every process parameter as depicted in the Table 1 
for LM25 Al composite. The parameter levels were selected between intermission suggested 
through machining investigation and manufacturer of the tool in the current study. Six 
process parameters at three levels led to a total of 54 tests for machining operation. After 
each test, the job is measured with the surface roughness tester SJ201 to determine the 
SR.The observations are presented in the table for further analysis and studies. The 
machining operations were taken as per the conditions given by the design matrix at random 
to avoid systematic errors. 
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3. Experimental Set-Up
The experiments were conducted under various  machining 
conditions using on Electronica 5030 Die Sinking EDM 
machine, which uses 3HP/2.2kW power. The input process 
parameter was determined from the setting machining 
and the shape of the work piece surfaces. The tests were 
done with normal above mentioned  procedure.

The levels were specified particularly for every pro-
cess parameter as depicted in the Table 1 for LM25 Al 
composite. The parameter levels were selected between 
intermission suggested through machining investigation 
and manufacturer of the tool in the current study. Six pro-
cess parameters at three levels led to a total of 54 tests for 
machining operation. After each test, the job is measured 
with the surface roughness tester SJ201 to determine the 
SR.The observations are presented in the table for further 
analysis and studies. The machining operations were 
taken as per the conditions given by the design matrix at 
random to avoid systematic errors.

Table 2. Process variables and their corresponding responses

Sl.
No.

Voltage
(V) 
A

Current
(A)
B

Pulse
On

(sec)
C

Pulse
Off

(sec)
D

Gap
(mm)

E

Oil
Pressure
(Kg/cm²)

F

MRR
(Mg/sec)

G

SR
(µm)

H

1. 65 5 15 7 0.3 1.5 1.435 3.01

2. 75 10 45 7 0.2 2.0 5.803 6.09

3. 75 10 30 9 0.1 1.5 4.954 5.82

4. 65 15 45 7 0.3 1.5 8.831 6.86

5. 75 15 30 5 0.2 1.5 7.812 5.88

6. 75 5 30 5 0.2 1.5 2.083 4.43

7. 65 10 15 9 0.2 1.0 3.357 4.32

8. 75 15 30 9 0.2 1.5 7.966 5.22

9. 75 10 45 7 0.2 1.0 6.448 6.27

0. 65 5 45 7 0.3 1.5 2.655 6.16

11. 60 10 30 9 0.1 1.5 5.208 6.20

12. 60 5 30 5 0.2 1.5 1.991 4.41

13. 60 10 30 5 0.3 1.5 4.616 5.77

14. 60 10 30 9 0.3 1.5 4.514 6.47

15. 65 5 30 7 0.1 1.0 2.184 5.69

16. 65 10 30 7 0.2 1.5 4.954 5.39

17. 60 10 45 7 0.2 2.0 6.063 6.36

Table 1. Variables used in the experiment and their 
levels of LM25 Al composite

Variable Coding Level

1 2 3

Discharge Voltage (Vd) in V A 60 65 70

Discharge Current(Ip) in A B 5 10 15

Pulse on Time (Ton) in s C 15 30 45

Pulse Off Time (Toff) in s D 5 7 9

Spark Gap (Sg) in mm E 0.1 0.2 0.3

Oil Pressure(Poil) in kg/cm2 F 1 1.5 3

Next move, plans in achieving the tests is done 
 involving RSM utilizing a Box - Behnken approach with 
six variables of their levels are given in Table 1. The ave-
rage number of tests carried out in association with the 
machining process parameter and the output are given in 
Table 2 for LM25 Al composite.

(Continued)
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18. 65 5 30 7 0.3 2.0 2.138 4.35

19. 65 10 15 5 0.2 2.0 3.385 4.86

20. 60 5 30 9 0.2 1.5 2.208 4.91

21. 75 10 30 5 0.1 1.5 5.276 5.79

22. 65 15 15 7 0.1 1.5 5.345 4.12

23. 75 5 30 9 0.2 1.5 2.282 4.87

24. 75 10 30 5 0.3 1.5 4.954 6.17

25. 75 10 15 7 0.2 2.0 3.502 5.18

26. 65 10 15 9 0.2 2.0 3.250 5.14

27. 65 5 30 7 0.1 2.0 2.149 5.09

28. 65 10 45 5 0.2 2.0 4.779 7.44

29. 65 5 30 7 0.3 1.0 1.907 4.30

30. 65 15 30 7 0.1 1.0 7.386 6.39

31. 65 15 30 7 0.3 2.0 7.523 6.33

32. 65 10 30 7 0.2 1.5 5.276 5.10

33. 65 10 45 9 0.2 1.0 6.348 5.60

34. 60 10 15 7 0.2 1.0 3.385 3.74

35. 65 10 45 9 0.2 2.0 6.348 5.60

36. 65 10 45 5 0.2 1.0 6.771 8.19

37. 65 5 15 7 0.1 1.5 1.685 4.20

38. 75 10 15 7 0.2 1.0 2.861 5.31

39. 65 15 30 7 0.1 2.0 6.659 8.12

40. 65 15 15 7 0.3 1.5 3.869 4.01

41. 65 10 30 7 0.2 1.5 4.616 6.82

42. 75 10 30 9 0.3 1.5 4.145 7.08

43. 65 10 30 7 0.2 1.5 4.514 6.49

44. 65 10 30 7 0.2 1.5 4.724 6.51

45. 65 15 45 7 0.1 1.5 9.448 7.77

46. 60 15 30 5 0.2 1.5 6.771 7.70

47. 60 10 45 7 0.2 1.0 5.489 7.98

48. 65 15 30 7 0.3 1.0 5.208 8.02

49. 60 15 30 9 0.2 1.5 6.448 7.31

50. 65 10 30 7 0.2 1.5 3.944 5.01

51. 65 10 15 5 0.2 1.0 2.745 4.91

52. 60 10 15 7 0.2 2.0 2.987 4.97

53. 65 5 45 7 0.1 1.5 2.041 5.28

54. 60 10 30 5 0.1 1.5 4.779 6.54

Table 2. Continued
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time leading to increased productivity. In the present 
study MRR in mg/sec is calculated by the formula given 
below.

 MMR mg
Initial weight Final weight

Machnining time
( / min)

( )
( )

=
-

 (1)

The parameters are performed on basis of micropro-
cessor. LCD screen displays the measurement and carry 
away the output via an optical printer or another com-
puter for auxiliary examination.

7. Modeling and Prediction

7.1 Multiple Regression Analysis
To calculate the input output relations and box-behnken 
design model of RSM is used to perform fifty four experi-
ments at different values of process parameters. The 
uncoded units are used in analysis. The linear equations (1) 
and (2) were developed for predicting the output param-
eters as shown below and their values are in Table 3.

4. Preparation of Specimens
The close up view of plate blank used for cutting the 
specimens is mounted on the EDM machine is shown in 
Figure 2 and the machined work piece is in Figure 3.

5. Surface Roughness (SR)
The portable surface roughness tester SJ201 with tip radius 
of 5μm has been utilized to measure surface texture which 
is shown in Figure 4.

6. Material Removal Rate (MRR)
For EDM, cutting rate is a desirable characteristic and it 
should be as high as possible to give least machine cycle 

Figure 3. The machined work piece specimens.
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Figure 2. Plate material blank mounted on EDM machine. 

 
Figure 3. The machined work piece specimens. 

Table 3. Results obtained in response surface 
method

Sl.
No.

MRR
(Mg/sec)

SR
(µm)

Predicted
MRR(Mg/sec)

Predicted
SR (µm)

1. 1.435 3.01 1.364099 2.882312
2. 5.803 6.09 6.024579 5.541592
3. 4.954 5.82 5.311741 5.269688
4. 8.831 6.86 8.909209 7.487512
5. 7.812 5.88 7.798879 5.851767
6. 2.083 4.43 2.008219 4.674267
7. 3.357 4.32 2.879129 4.397992
8. 7.966 5.22 7.552099 5.256367
9. 6.448 6.27 6.388629 6.200992

10. 2.655 6.16 2.667119 4.920512
11. 5.208 6.20 5.097001 6.176738
12. 1.991 4.41 2.160589 4.408617
13. 4.616 5.77 4.474274 5.909262
14. 4.514 6.47 4.461794 5.943862
15. 2.184 5.69 2.560186 4.964863
16. 4.954 5.39 4.676119 5.738617
17. 6.063 6.36 5.596149 6.944692
18. 2.138 4.35 2.259259 4.280387
19. 3.385 4.86 3.319659 4.146992

(Continued)
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SR = 4.805 – 0.1893A + 1.2479B + 0.6101C –  
0.4769D – 41.5598E – 3.2685F + 0.0021A2 –  
0.0163B2 – 0.0023C2 + 0.0165D2 + 22.4167E2 + 
1.3300F2 – 0.0116AB – 0.0043AC + 0.0060AD + 
0.4410AE – 0.0007AF + 0.0038BC – 0.0249BD + 
0.1575BE + 0.0295BF – 0.0172CD + 0.1058CE – 
0.0368CF + 1.1625DE + 0.2025DF – 6.9250E (3)

When the optimal level of the EDM machining 
parameters is recognized, the subsequent steps confirm 
the development of the concert characteristics through 
the optimal combination. Table 4 and Figure 5 show the 
assessment of the experimentation results involving the 
initial combination of the EDM machining parameters by 
means of the optimal one. As observed in Table 4 MRR 
increases form 1.411 Mg/sec to 3.677 Mg/sec and SR 
value was reduced from 5.09 µm to 2.91 µm. As per the 
above mentioned results, it is obviously exposed quality 
uniqueness is supposed to be significantly improved via 
this confirmation test.

8.  Radial Basics Function Neural 
Networks

RBFNN contains three layers, the input layer, the out-
put layer and the RBF layer (hidden layer)is in Figure 6. 
RBFNN requires less computational time over back prop-
agation since the weights in the layer with the hidden to 
output are to be determined using the error signal values. 
The input variables considered in this model are Ip, Vd, Sg, 
Ton, Toff and Poil and MRR with SR as the output parameter. 
The hidden layer inputs are the scalar weights of linear 
combinations and the vector inputs x x x xn

T= ÈÎ ˘̊1 2, , ....
, where unity values are assigned to the scalar weights. 
Hence in the hidden layer the entire vector input emerges 
to every neuron. The vector that comes in are mapped 
towards the radial basis technique in every hidden node. 
A vector y y y yn= ÈÎ ˘̊1 2, , ....  provided by the output layer, 
for m outputs via the output’s linear combination corre-
sponding to the hidden nodes in generating output that 
is final. Figure 6 represents the construction of an ideal 
output RBFN network; output for the network is acquired 
as follows:

 y f x w xi
i

k

i= =
=
Â( ) ( )

1

f  (4)

Where f(x) denotes the final output, (ϕi) represents the 
radial basis utility of the ith hidden node, Wi represents the 

20. 2.208 4.91 2.548809 4.461217
21. 5.276 5.79 5.157821 5.847088
22. 5.345 4.12 5.162646 4.748288
23. 2.282 4.87 2.053839 5.074867
24. 4.954 6.17 4.870694 5.955612
25. 3.502 5.18 3.416199 5.092792
26. 3.250 5.14 3.591339 5.254592
27. 2.149 5.09 1.431236 5.409463
28. 4.779 7.44 5.541639 6.917792
29. 1.907 4.30 1.734209 5.220787
30. 7.386 6.39 7.453016 6.499363
31. 7.523 6.33 6.977349 6.424887
32. 5.276 5.10 4.676119 5.738617
33. 6.348 5.60 6.145709 6.208792
34. 3.385 3.74 2.887719 4.105792
35. 6.348 5.60 6.148119 5.961392
36. 6.771 8.19 6.161749 7.975192
37. 1.685 4.20 1.793816 3.636288
38. 2.861 5.31 3.070449 4.648192
39. 6.659 8.12 7.020066 7.238963
40. 3.869 4.01 3.862189 4.309312
41. 4.616 6.82 4.676119 5.738617
42. 4.145 7.08 4.515614 6.338212
43. 4.514 6.49 4.676119 5.738617
44. 4.724 6.51 4.676119 5.738617
45. 9.448 7.77 9.348186 7.291688
46. 6.771 7.70 6.692749 7.326117
47. 5.489 7.98 5.877399 7.593592
48. 5.208 8.02 5.756299 7.070287
49. 6.448 7.31 6.788569 6.382717
50. 3.944 5.01 4.676119 5.738617
51. 2.745 4.91 3.229969 4.100392
52. 2.987 4.97 3.316269 4.560892
53. 2.041 5.28 2.235356 5.039688
54. 4.779 6.54 4.600481 7.102138

Table 3. Continued

MRR = 1.6059 + 0.0852A – 0.2872B – 0.0740C – 
0.1632D – 4.1745E – 0.9694F – 0.0008A2 – 0.0071B2 
– 0.00C2 + 0.05D2 – 7.6986E2 – 0.4526F2 +  
0.0084AB + 0.0006AC – 0.0056AD – 0.0663AE 
– 0.0045AF + 0.0125BC – 0.0082BD – 0.5275BE 
+ 0.1064BF + 0.0008CD + 0.1433CE – 0.0197CF – 
0.6375DE + 0.0219DF + 10.1EF (2)
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Table 4. Optimal input and output parameters for LM25 Al composite

Response Process Parameters Output Parameters

A
(V)

Voltage

B
(A)

Current

C
(s)

Pulse
ON

Time

D
(s)

Pulse
OFF
Time

E
(mm)
Gap

F
Oil

Pressure
(Kg/cm2)

MRR (Mg/sec) SR (µm)

Initial 65 5 30 7 0.1 2.0 1.411 5.09
Optimal 60 5 30 7 0.1 1 3.677 2.91

 

51. 2.745 4.91 3.229969 4.100392 
52. 2.987 4.97 3.316269 4.560892 
53. 2.041 5.28 2.235356 5.039688 
54. 4.779 6.54 4.600481 7.102138 

 

Table 4. Optimal input and output parameters for LM25 Al composite 

Response Process Parameters Output Parameters 

A 
(V) 

Voltage 

B 
(A) 

Current 

C 
(s) 

Pulse 
ON 

Time 

D 
(s) 

Pulse 
OFF 
Time 

E 
(mm) 
Gap 

F 
Oil 

Pressure 
(Kg/cm2) 

MRR (Mg/sec) SR (µm) 
Initial 65 5 30 7 0.1 2.0 1.411 5.09 

Optimal 60 5 30 7 0.1 1 3.677 2.91 
When the optimal level of the EDM machining parameters is recognized, the subsequent 
steps confirm the development of the concert characteristics through the optimal 
combination. Table 4 and Figure 5 show the assessment of the experimentation results 
involving the initial combination of the EDM machining parameters by means of the optimal 
one. As observed in Table 4 MRR increases form 1.411Mg/sec to 3.677 Mg/sec and SR value 
was reduced from 5.09µm to 2.91µm. As per the above mentioned results, it is obviously 
exposed quality uniqueness is supposed to be significantly improved via this confirmation 
test. 

 
Figure 5. Main effect plot of input parameters for LM25 Al composite. 
 

8. Radial Basics Function Neural Networks 

RBFNN contains three layers, the input layer, the output layer and the RBF layer (hidden 
layer)is in Figure 6. RBFNN requires less computational time over back propagation since 
the weights in the layer with the hidden to output are to be determined using the error signal 
values. The input variables considered in this model are Ip, Vd, Sg, Ton, Toff and Poil and MRR 
with SR as the output parameter. The hidden layer inputs are the scalar weights of linear 

combinations and the vector inputs 1 2, ,.... T
nx x x x , where unity values are assigned to the 

scalar weights. Hence in the hidden layer the entire vector input emerges to every neuron. 
The vector that comes in are mapped towards the radial basis technique in every hidden node. 

A vector 1 2, ,.... ny y y y provided by the output layer, for m outputs via the output’s linear 
combination corresponding to the hidden nodes in generating output that is final. Figure 6 

Figure 5. Main effect plot of input parameters for LM25 
Al composite.

Figure 6. Structure of RBFNN.

 

represents the construction of an ideal output RBFN network; output for the network is 
acquired as follows: 

1
( ) ( )

k

i i
i

y f x w x
    (4) 

Where f(x) denotes the final output, (ϕ i) represents the radial basis utility of the ith hidden 
node, Wi represents the hidden to output weight respective to the ith hidden node, and hidden 
nodes in total number is represented as k. 

 
Figure 6. Structure of RBFNN. 
A RBF is a multidimensional function which explains the remoteness among a pre-defined 
center vector and a given input vector. Various types of function in radial basis exist. The 
normalized Gaussian function normally used as the RBF, i.e; 

2

2( ) exp
2

i
i

i

x
x

   (5) 
Where σi and µi denote the spread width and center of the ith node, respectively. Usually, the 
RBFNN training is classified into two stages: 
 Calculate the parameters of RBFs, i.e., spread width and Gaussian center. In usual, k-

means clustering methodology was normally used here. 
 Estimate the output weight w by overseen learning methodology. Normally Recursive 

Least Square (RLS) and Least Mean Square (LMS) were used. 
The initial phase is extremely complex, because the location and number of centers in the 

hidden layer force fully affect the performance of the RBFNN 
 

Table 5. Results obtained in RBFNN 

Sl. 
No 

LM25 Aluminum Composite 
Experiment 

MRR (Mg/sec) 
RBFNN 

MRR (µm) 
Experiment 

SR (µm) 
RBFNN 
SR (µm) 

1. 1.435 1.335 3.01 3.23 
2. 5.8 5.303 6.09 6.1 
3. 4.952 4.754 5.82 5.83 
4. 8.823 8.831 6.86 6.87 
5. 7.88 7.812 5.88 5.89 
6. 2.083 2.283 4.43 4.45 
7. 3.355 3.357 4.32 4.45 
8. 7.96 7.966 5.22 5.67 
9. 6.444 6.448 6.27 6.56 

hidden to output weight respective to the ith hidden node, 
and hidden nodes in total number is represented as k.

A RBF is a multidimensional function which explains 
the remoteness among a pre-defined center vector and 
a given input vector. Various types of function in radial 
basis exist. The normalized Gaussian function normally 
used as the RBF, i.e;

 f
m

si
i

i

x
x

( ) exp= -
-Ê

Ë
Á
Á

ˆ

¯
˜
˜

2

22
 (5)

Where σi and µi denote the spread width and center of the 
ith node, respectively. Usually, the RBFNN training is clas-
sified into two stages:

Calculate the parameters of RBFs, i.e., spread width •	
and Gaussian center. In usual, k-means clustering 
methodology was normally used here.
Estimate the output weight w by overseen learning •	
methodology. Normally Recursive Least Square (RLS) 
and Least Mean Square (LMS) were used.

The initial phase is extremely complex, because the loca-
tion and number of centers in the hidden layer force fully 
affect the performance of the RBFNN

The predicted values obtained through RBFFNN are 
not satisfied,value of MRR and SR are more than the 
experimental Value is in Table 5 and error are also high. 
So ANN are implemented to find the predicted values.

9.  Back Propagation Neural 
Networks

A operation architecture of ANN is made up of input 
layer, single or excess of hidden layers and output layer. 
Not only the output but also the hidden layers have pro-
cessing elements and interconnections called synapses 
and neurons correspondingly. Every interconnection has 
an associated connection weight or strength. The numer-
ous of hidden layers and that of the nodes in every layer 
are decided very carefully, because the system cannot 
model the given information if it has too few hidden layer 
units. However, too many hidden units limit the net-
work’s ability to generalize the results, so that the resulting 
model would not work well for new incoming data. Every 
processing element initially performs a weighted accumu-
lation of the corresponding input values and then passes 
result through an activation function. Exceptionally for 
the input layer node, where there is no calculation was 
done the total input to every node is the average of the 
weighted output of the nodes in the first layer.
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9.1 Proposed ANN Model
The feed forward having multi layer network with the 
algorithm of back propagation learning is designed with 
architecture (6-20-2) for drilling in EDM and is shown in 
Figures 7 and 8. The training of NN includes two passes. 
In the forward pass, the input signals propagate to the 
output from the network input. In the reverse pass, the 
determined error signals propagate back through the net-
work where they are used to adjust the values of weights. 
The optimized output values are in the in Table 5 for 
LM25 Al composite.

In this work, the input parameters areIp, Vd, Ton, Toff, 
Sg and Poil and MRR, SR are the output machining para-
meters. Different levels of input conditions are derived 
from response surface DOE; two models viz., the RSM 
and ANN are constructed and evaluated. The final con-
clusions based on these two prediction models, the ANN 
back propagation method with a kind of empirical model 
gives good result when compared with RSM model and 
the predicted values are near by the experimental value is 
given in Table 6.

Table 5. Results obtained in RBFNN

Sl.
No

LM25 Aluminum Composite

Experiment
MRR (Mg/

sec)

RBFNN
MRR (µm)

Experiment
SR (µm)

RBFNN
SR (µm)

1. 1.435 1.335 3.01 3.23

2. 5.8 5.303 6.09 6.1

3. 4.952 4.754 5.82 5.83

4. 8.823 8.831 6.86 6.87

5. 7.88 7.812 5.88 5.89

6. 2.083 2.283 4.43 4.45

7. 3.355 3.357 4.32 4.45

8. 7.96 7.966 5.22 5.67

9. 6.444 6.448 6.27 6.56

10. 2.653 2.655 6.16 6.67

11. 5.205 5.208 6.20 6.23

12. 1.99 1.794 4.41 4.44

13. 4.613 4.416 5.77 5.79

14. 4.511 4.514 6.47 6.47

15. 2.182 2.184 5.69 5.7

16. 4.951 4.671 5.39 5.8867

17. 6.059 6.063 6.36 6.46

18. 2.136 2.138 4.35 4.65

19. 3.383 3.685 4.86 4.96

20. 2.206 2.424 4.91 4.99

21. 5.272 5.276 5.79 5.89

22. 5.342 5.345 4.12 4.22

23. 2.28 2.282 4.87 4.97

24. 4.951 4.954 6.17 6.27

25. 3.5 3.302 5.18 5.23

26. 3.248 3.050 5.14 5.45

27. 1.411 1.415 5.09 5.56

28. 5.544 5.779 7.44 7.45

29. 1.906 2.067 4.30 4.31

30. 7.381 7.386 6.39 6.4

31. 7.518 7.523 6.33 6.35

32. 5.272 4.871 5.10 5.5867

33. 6.643 6.348 5.60 5.62

34. 3.383 3.385 3.74 3.75

35. 6.343 6.348 5.60 5.62

36. 6.766 6.771 8.19 8.3

37. 1.684 1.685 4.20 4.22

38. 2.859 2.861 5.31 5.33

39. 6.655 6.659 8.12 8.23

40. 3.866 3.869 4.01 4.23

41. 4.613 4.671 6.82 6.43867

42. 4.142 4.145 7.08 7.38

43. 4.511 4.671 6.49 5.8867

44. 4.72 4.671 6.51 5.8867

45. 9.441 9.524 7.77 7.62

46. 6.766 6.771 7.70 7.74

47. 5.486 5.489 7.98 7.99

48. 5.205 5.208 8.02 8.34

49. 6.444 6.448 7.31 7.35

50. 3.941 4.271 5.01 5.3867

51. 2.743 2.745 4.91 4.98

52. 2.985 2.987 4.97 4.99

53. 2.04 2.041 5.28 5.36

54. 4.776 4.779 6.54 6.55

(Continued)

Table 5. Continued
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9. Back Propagation Neural Networks 

A operation architecture of ANN is made up of input layer, single or excess of hidden layers 
and output layer. Not only the output but also the hidden layers have processing elements and 
interconnections called synapses and neurons correspondingly. Every interconnection has an 
associated connection weight or strength. The numerous of hidden layers and that of the 
nodes in every layer are decided very carefully, because the system cannot model the given 
information if it has too few hidden layer units. However, too many hidden units limit the 
network’s ability to generalize the results, so that the resulting model would not work well for 
new incoming data. Every processing element initially performs a weighted accumulation of 
the corresponding input values and then passes result through an activation function. 
Exceptionally for the input layer node, where there is no calculation was done the total input 
to every node is the average of the weighted output of the nodes in the first layer. 

9.1 Proposed ANN Model 
The feed forward having multi layer network with the algorithm of back propagation learning 
is designed with architecture (6-20-2) for drilling in EDM and is shown in Figures 7 and 8. 
The training of NN includes two passes. In the forward pass, the input signals propagate to 
the output from the network input. In the reverse pass, the determined error signals propagate 
back through the network where they are used to adjust the values of weights. The optimized 
output values are in the in Table 5 for LM25 Al composite. 
 

 
Figure  7. Neural network model. 
 

 
Figure  8.  Proposed NN Architecture for EDM Drilling (MRR and SR). 
In this work, the input parameters areIp, Vd, Ton, Toff, Sg and Poil and MRR, SR are the output 
machining parameters. Different levels of input conditions are derived from response surface 
DOE; two models viz., the RSM and ANN are constructed and evaluated. The final 
conclusions based on these two prediction models, the ANN back propagation method with a 
kind of empirical model gives good result when compared with RSM model and the predicted 
values are near by the experimental value is given in Table 6. 
 

Figure 7. Neural network model.

Table 6. Results obtained in neural network
Sl.

No.
MRR

(Mg/sec)
SR

(µm)
Predicted 

MRR
(Mg/sec)

Predicted SR
(µm)

1. 1.435 3.01 1.4858 3.0719
2. 5.803 6.09 5.4663 5.9731
3. 4.954 5.82 5.0993 5.8544
4. 8.831 6.86 8.5973 6.8130
5. 7.812 5.88 7.3316 5.9012
6. 2.083 4.43 1.9040 4.5280
7. 3.357 4.32 3.3797 4.3540
8. 7.966 5.22 8.8289 5.5796
9. 6.448 6.27 6.1935 6.3011

10. 2.655 6.16 2.8076 6.2233
11. 5.208 6.20 5.3444 6.1156
12. 1.991 4.41 1.9812 4.4073
13. 4.616 5.77 4.7590 6.2409
14. 4.514 6.47 4.2197 6.3552
15. 2.184 5.69 2.1858 5.7563
16. 4.954 5.39 4.5019 5.8898
17. 6.063 6.36 6.7075 8.2987

18. 2.138 4.35 2.0841 4.3225
19. 3.385 4.86 2.5840 4.4816
20. 2.208 4.91 2.3718 4.8909
21. 5.276 5.79 4.3126 4.2098
22. 5.345 4.12 5.3787 4.1474
23. 2.282 4.87 2.3858 4.8817
24. 4.954 6.17 4.4201 6.2080
25. 3.502 5.18 3.4443 6.7262
26. 3.250 5.14 3.2069 5.0350
27. 2.149 5.09 1.9378 5.1867
28. 4.779 7.44 4.7674 7.4478
29. 1.907 4.30 2.7331 4.5979
30. 7.386 6.39 7.2170 6.3981
31. 7.523 6.33 7.3221 6.2828
32. 5.276 5.10 4.5019 5.8898
33. 6.348 5.60 6.1561 5.6787
34. 3.385 3.74 3.5879 3.7848
35. 6.348 5.60 5.6844 5.4920
36. 6.771 8.19 7.0508 7.8513
37. 1.685 4.20 1.6738 4.2665
38. 2.861 5.31 2.9681 5.5490
39. 6.659 8.12 6.7936 8.1369
40. 3.869 4.01 3.8871 3.9519
41. 4.616 6.82 4.5019 5.8898
42. 4.145 7.08 4.2029 7.0470
43. 4.514 6.49 4.5019 5.8898
44. 4.724 6.51 4.5019 5.8898
45. 9.448 7.77 10.5551 7.5369
46. 6.771 7.70 6.2085 7.6717
47. 5.489 7.98 5.4252 7.9993
48. 5.208 8.02 5.1139 8.0653
49. 6.448 7.31 6.1185 7.0378
50. 3.944 5.01 4.5019 5.8898
51. 2.745 4.91 2.7473 4.9123
52. 2.987 4.97 3.0569 4.8975
53. 2.041 5.28 1.8476 4.7364
54. 4.779 6.54 4.7792 6.5319

(Continued)

Table 6. Continued

Figure 8. Proposed NN Architecture for EDM Drilling 
(MRR and SR).

 

9. Back Propagation Neural Networks 

A operation architecture of ANN is made up of input layer, single or excess of hidden layers 
and output layer. Not only the output but also the hidden layers have processing elements and 
interconnections called synapses and neurons correspondingly. Every interconnection has an 
associated connection weight or strength. The numerous of hidden layers and that of the 
nodes in every layer are decided very carefully, because the system cannot model the given 
information if it has too few hidden layer units. However, too many hidden units limit the 
network’s ability to generalize the results, so that the resulting model would not work well for 
new incoming data. Every processing element initially performs a weighted accumulation of 
the corresponding input values and then passes result through an activation function. 
Exceptionally for the input layer node, where there is no calculation was done the total input 
to every node is the average of the weighted output of the nodes in the first layer. 

9.1 Proposed ANN Model 
The feed forward having multi layer network with the algorithm of back propagation learning 
is designed with architecture (6-20-2) for drilling in EDM and is shown in Figures 7 and 8. 
The training of NN includes two passes. In the forward pass, the input signals propagate to 
the output from the network input. In the reverse pass, the determined error signals propagate 
back through the network where they are used to adjust the values of weights. The optimized 
output values are in the in Table 5 for LM25 Al composite. 
 

 
Figure  7. Neural network model. 
 

 
Figure  8.  Proposed NN Architecture for EDM Drilling (MRR and SR). 
In this work, the input parameters areIp, Vd, Ton, Toff, Sg and Poil and MRR, SR are the output 
machining parameters. Different levels of input conditions are derived from response surface 
DOE; two models viz., the RSM and ANN are constructed and evaluated. The final 
conclusions based on these two prediction models, the ANN back propagation method with a 
kind of empirical model gives good result when compared with RSM model and the predicted 
values are near by the experimental value is given in Table 6. 
 

10. Result and Discussion
The bar chart for SR and MRR are shown in Figures 9 
and 10 along with the various parameters using RSM and 
ANN. The validation for the MRR and SR values using 
ANN has been listed in Table 5. The percentage of error 
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is weighed against the investigational and envisaged 
 values and is observed so as to be the minimum of 0.005 
and maximum of 0.7636. MRR correlates with the pulse 
 process parameters on time and pulse current.

It gives an observation as neural network is the best 
tool for predicting the optimal parameters for LM25 Al 
composite machining by EDM machine. Here MRR leads 
to rise, appreciably showing rise in peak current for any 
specified value of pulse on perfect instance. Thus, maxi-
mum MRR is received at high pulse instantly and high 
peak current. For the reason of their prevailing condition 
compared to the input energy i.e. with the rise in pulse 
current on work piece produces powerful spark that gen-
erate the high temperature that grounds many material to 
erode and melt. SR value decreases with the increase of 
spark gap and pulse off time.

11. Conclusions
In this work, the prediction of EDM output  parameters are 
made by conducting experiments on LM25 Aluminum 

composite material using RSM,RBFNN and ANN. 
Different levels of input conditions are derived from 
responsive surface design of experiments EDM machine 
is uses to conduct the experiments. The RSM, RBFNN 
and ANN models has been constructed with the help of 
experimental results to predict the target. It is concluded 
based on above three prediction models that the error 
obtained in RSM model is 1.34655%, RBFNN is 1.5236% 
and the NN model is 0.7878%. Ultimately it is proved that 
generate network’s model has been constructed using 
NN’s fitting tool gives optimal result when compared to 
RSM and RBFNN model.
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