
*Author for correspondence

Indian Journal of Science and Technology, Vol 9(28), DOI: 10.17485/ijst/2016/v9i28/98455, July 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Discovering Weighted Calendar-Based Temporal
Relationship Rules using Frequent Pattern Tree

Gupta Pankaj and B. B. Sagar

Department of Computer Science and Engineering, BIT, Mesra:Ranchi, off-Campus: Noida, A-7, Sector 1,
Noida – 201301, Uttar Pradesh, India. pgupta@bitmesra.ac.in, drbbsagar@gmail.com

Keywords: Data-Mining, Temporal Association Rule-Mining, Temporal Data-Mining, Time-Weight-Carry Mining,
Temporal-Weighted Relationship Rules, Weight-Carrying Transaction

Abstract
The advent of data mining approach has brought many fascinating situations and several challenges to database community.
The objective of data mining is to explore the unseen patterns in data, which are valid, novel, potentially subsidiary and
ultimately understandable. The authorize and real-time transactional databases often show temporal feature and time
validity life-span. Utilizing temporal relationship rule mining one may determine unusual relationship rules regarding
different time-intervals. Some relationship rules may hold, through some intervals while not others and this may lead
to subsidiary information. Using calendar mined patterns has already been projected by researchers to confine the
time-validity relationships. However, when we consider the weight factor like utility of item in transactions and if we
incorporate this weight factor in our model to mine then fascinating results of relationships come on time–variant data.
This manuscript propose a narrative procedure to find relationship rule on time-variant-weighted data utilizing frequent
pattern tree-hierarchical structures which give us a consequential benefit in expressions of time and memory-recollection
utilization though including time and weight factor.

1. Introduction
Well-organized algorithm1 for discovery recurrent pat-
terns is one of the input successes of data-mining process.
Apriori’s algorithm2,3 is predicated on support & con-
fidence skeleton. It has two stages: (1) Candidate-set
of items generated in all probable ways. (2) The record
scanned and numbering of all transactions for every item-
set. The procedure remains in loop till recurrent item set
is existing. Here may be a few issues which can be raised
in relation to data-mining of–

•	 Relationship among every pattern’s of a definite
kind during a categorical time gap.

•	 Relationship among every pattern’s of a definite
kind with a categorical periodicity.

•	 Relationship among every pattern’s of definite
kind with a concrete periodicity during a con-
crete time gap.

More over if we integrate weight i.e. utility of an item-
set during its life cycle in above process of mining then
what will happen?

All these verbalizations designate that data is not
independent of time and its utility weight4. Time and
utility shows a principal role in authentic dataset. In mis-
cellaneous business, time and utility is most principal
dimension for an itemset. In subsisting algorithms resem-
bling Apriori1 and its variant when time and weight3 aspect
is mixed up in the dataset, which gives supplementary
infor-mation for industry, although it also increments the
time and space difficulty since now it is necessary to scru-
tinize the database for each legal categorical period with
its minimum utility.

Our anticipated approach is to propose a well-
organized procedure for mining Relationship ruling in
time-weight predicated dataset by utilizing resourceful
data space device i.e. frequent pattern tree.

Indian Journal of Science and TechnologyVol 9 (28) | July 2016 | www.indjst.org 2

Discovering Weighted Calendar-Based Temporal Relationship Rules using Frequent Pattern Tree

Rest in this paper is as per the following. Cognate
work-on at relationship mining, temporal information
mining, weighted mining in databases, is given in Part 2.
The temporal-weighted mining model is in Part 3. Part 4
verbalize about how temporal-weighted patterns mined
utilizing FP tree. Part 5 discuss about performance stud-
ies and comparison of proposed algorithm lastly, in Part 6
we finish up and conclude the work.

2. Correlated Work
The perception of involvement & relationship ruling
was given as Apriori’s algorithm1. Later on it trailed by
upgrades2-5. Algorithm performance was amended by
deploy recurrent pattern magnification approach6. In
manuscript4 the oversight of the time dimension in
relationship ruling was mention. A temporal feature of
relationship-ruling was proposed by12. As per this trans-
actions which belong to records be time imprinted and
time gap is designated by the utilizer toward split the data
into disjoint fragments, similar to years, months and days.
More-over repeated relationship-ruling was given via
Ozden19 by means of given least support and most con-
fidence factors.

An excellent bibliography of temporal data-mining
can be originated in the Roddick text21. As per Roddick21
sense, the system foremost looks for the relationship than
it is utilized to add in temporal feature. It can be utilized
in position predicated & gap predicated replica of time
concurrently. Recurrent pattern move toward for taking
out the time responsive data be given in20 where the pat-
tern occurrence past below a time window structure is
utilized to reply time responsive query. A group of item
patterns along by means of their occurrence pasts are
compacted & stored utilizing a tree-hierarchical arrange-
ment identical to Frequent Pattern tree are rationalized
incrementally with arriving transactions13. Li deal with
the calendar predicated relationship ruling situation17,
the outcome prove that temporal Apriori is 4 to 21 times
more quick than straight Apriori’s, and the finishing time
prodigiously reduces with reverence to exact match.

Then the objective of utility mining is to find out all
the item-sets whose utility values are beyond a user par-
ticular threshold in a transaction database.

Our methodology is consideration items’ time of sub-
stantial life or lifespan and this may be the period between
the earliest run through appearance and the final time the
item appearance in related transactions in the database.
We calculate the support of an item set characterized by

temporal support and then create FP tree to mine frequent
patters and their relationship. The new input of weight is
that it can efficiently make out the temporal high useful-
ness item-sets with less candidate-item-sets such that the
finishing time can be minimized competently.

3. Temporal-Weighted
Relationship Model

3.1 Temporal Relationship Ruling4

Description: The occurrence of an item-set in excess of a
time-period ‘T’ is the total figure of transactions in which
it arise separated by whole figure of transaction in excess
of that time-period. Within the identical manner, confi-
dence of an item’s set with other item’s set is operation
of together these objects over the time-era separated by
initial item-set of that time-era.

Support (X) = Occurrence of X in particular time-gap
/ Total nos. of transactions in that particular time-gap.

Confidence (X => Y[T_start,T_end]) = Support_
count(X U Y) over Time gap / occurrence of X in gap.

Where, T_start points out the legal begin time and T_
end

point out legal end time according to temporal-data.

3.2 Simple Schedule Mined Patterns17

While temporal sequence is pertained in provisions
of years, months & days then they structure the phrase
schedule representation. It can be bringing in tempo-
ral-data-mining.

A schedule representation is relational representa-
tion (in context of relational-databases) R = (F

n
: D

n
, F

n-1
:

D
n-1

,………F
1
:D

1
) together with a valid restriction. Each

attribute F
i
 is a calendar unit name like year, month & day

etc. Each domain D
i
 is a finite subset of the positive inte-

gers.
Within schedule model, a schedule pattern <d

n
, d

n-1
,

d
n-2

……..d
1
> covers another pattern <d’

n
, d’

n-1;
, d’

n-2
……..

d
1
> if and only if for each I, 1 <= I <= n either d

i
=* or d

i = d’
i
. Now it is our job is to extract recurrent pattern over

arbitrary time-gap in provisions of schedule pattern rep-
resentation.

3.3 Weight or Utility Factor
The importance of an item in itemset and a transaction
in set of transactions give their utility factor. The objec-
tive of usefulness mining is to find out every the item-sets

Indian Journal of Science and Technology 3Vol 9 (28) | July 2016 | www.indjst.org

Gupta Pankaj and B. B. Sagar

whose usefulness values are ahead of a user specific
threshold in a transactional database. In23, the objective
of usefulness mining is defined as discovery of all high
usefulness itemsets. An item-set I is a high utility item-
set if u(I)>=thresh-hold, where I is subset of the Itemsets
and this minimum utility threshold; otherwise, it is a low
utility itemset.

For instance, u(A,) =3, u{A, C) = u(A) + u(C) =3 + 1
= 4, which include utility(u) of both item.

4. Proposed Algorithm
In this part, the projected algorithm will be described

in details. The main purpose of the projected algorithm is
to keep temporal frequent item-sets utilizing FP tree20 and
then mine the patterns as per utilizer thresh hold utility
factor.

The algorithm employs the skeleton for design the
Temporal FP-Tree for frequent temporal itemsets predi-
cated on calendar schema and then mines the novel and
valid patters with reference to utilizer utility thresh-hold
factor.
Step I:	 // Collect the transaction either in ascending

or descending order as per calendar schema.
Follow the calendar schema pattern to sort out
these set of transactions

Say, T=Number of sorted (on basis of calendar
schema) Transaction
Step II: 	 // Construction of Temporal FP-tree for frequent

itemsets which satisfy minimum support factor
within calendar schema pattern.

Let the sorted frequent –item list in the transaction
be n [N] where, n is the veryfirst element and N is the left
behind list.

Call to_Insert_Tree (n [N], Tree).
Method to_Insert_Tree (n [N], Tree).

{
1: If Tree has a child C such that
2: If (C.time = N.time) then // for checking inter-

val phase I
3: If (C.itemname = N.itemname) then
4: C.count = C.count ++ // Increase counter by 1
5: Else generate a new node // Node shaped on the

same-branch
6: Connect to its parent N. Counts=1 // Initialize

the counter by1
7: Else generate a new division link from the root.

Call to_insert_tree (n, N) recursively
} // End of Method

Step III: 	// Mine the temporal frequent patterns from
FP-tree.

Call Temporal Frequent Pattern growth (TFP-tree,
null).

Method Temporal Frequent Pattern growth (Tree, α)
{
1: if Tree has a only prefix path
2: next {
3: let R is the only prefix-path part of Tree;
4: let S be the multi-path path that contain all tem-

poral relations of R tree
5: for each combination (denoted as β) of the

nodes in the path R do
6: generate pattern β ∪ α with support = mini-

mum support of nodes in β;
7: let freq pattern set(R) be the set of patterns so

generated; }
8: else let S be Tree;
9: for each item ‘ai’ in S do {		 //

Mining multipath FP-tree
10: generate pattern β = ai ∪ α with support = ai

.support;
 11: construct β’s conditional pattern-base and

then β’s conditional FP-tree Treeβ ;
12: if Treeβ = ∅
13: then call TFP-growth(Treeβ , β);
14: let freq pattern set(S) be the set of patterns so

generated; }
 15: return(freq pattern set(R) ∪ freq pattern set(S)

∪ (freq pattern set(R) × freq pattern set(S)))
} // End of Method

Step IV: 	// Calculate utility factor for frequent mined
temporal patterns and check them with user
thresh-hold.

Let ‘FP’ is the list of temporal frequent patterns mined
in above step,

Do (FP < > Null)
{
If FP>=u(X) then
Novel Pattern, say NP= NP ∪ FP	 //valid pat-

tern as per user requirement
 Else
Truncate FP & Next(FP)
End
}

Indian Journal of Science and TechnologyVol 9 (28) | July 2016 | www.indjst.org 4

Discovering Weighted Calendar-Based Temporal Relationship Rules using Frequent Pattern Tree

Example 1: Table 1 illustrates a transactional-data-
base enclose the transaction data from March 2011 to
June 2011. The quantity of transactions documented in
calendar year is arrange in ascending order and then
item are arranged in descending order of their frequency
which support a minimum support of 2 occurrence (i.e
min_support=2).

Table 1
T-id Items

Brought
Date Schedule

pattern
Items arrange
in Descending
Frequency

1001 f, a, c, d,
g, i, m, p

14/03/2011 (14,03,11) f, c, a, m, p

2001 a, b, c, f,
l, m, o

15/03/2011 (15,03,11) f, c, a, b, m

3001 b, f, h, j,
o, w

15/03/2011 (15,03,11) f, b

4001 b,c,k,s,p 04/06/2011 (04,06,11) c, b, p
5001 a, f, c, e,

l, p, m ,n
05/06/2011 (05,06,11) f, c, a, m, p

6001 f, a, c,
d, e

06/06/2011 (06,06,11) f, c, a

Step 2:	 Construction of Temporal FP-tree

 Root

f:3
f:2

c:2

a:2

m:1

a:2

p:1

c:2

m:1

b:1

p:1
p:1

b:1

c:2

m:1

b:1

Step 3:	 Mine the temporal frequent patterns
from FP-tree.

Now consider, Table 3 which shows a utility-table22
for items for the above specified period, be the value
connected with item ‘ip’ in the usefulness Table. This
value is a sign of the magnitude of an item-set, which is
independent of transactions.

Step 4:	 Calculation utility factor for frequent
mined temporal patterns and check them with user
thresh-hold.

For Calendar schema <*, 3, 11>
Utility Factor, for u(fb)=u(f)+u(b)=7+10=17, which

shows as importance of this frequent temporal pattern
(fb).

Similarly, For u(fm)=u(f)+u(m)=7+9=16,
u(cm)=u(c)+u(m)=1+9=10, u(am)=u(a)+u(m)=3+9=12,
u (f c m) = u (f) + u (c) + u (m) = 7 + 1 + 9 = 1 6 ,
u (f a m) = u (f) + u (a) + u (m) = 7 + 3 + 9 = 1 9 ,
u(cam)=u(c)+u(a)+u(m)=1+3+9=13, u(fcam)=u(f)+u(c
)+u(a)+u(m)=7+1+3+9=20

Similarly, For u(fa)=u(f)+u(a)=7+3=10,
u (c a) = u (c) + u (a) = 1 + 3 = 4 ,
u (f c a) = u (f) + u (c) + u (a) = 7 + 1 + 3 = 1 1 ,
u(fc)=u(f)+u(c)=7+1=10,	

For Calendar schema <*, 6, 11>
Utility Factor, for u(cp)=u(c)+u(p)=1+7=8, which

shows as importance of this frequent temporal pattern
(cp).

Similarly, For u(fa)=u(f)+u(a)=7+3=10,
u (c a) = u (c) + u (a) = 1 + 3 = 4 ,
u (f c a) = u (f) + u (c) + u (a) = 7 + 1 + 3 = 1 1 ,
u(fc)=u(f)+u(c)=7+1=10,	

Now the list of Frequent pattern in different interval if
user threshold of an item is more than 10.
 <*, 3, 11> <*, 6, 11> Calendar Year

{fb}, {fm},
{am}, fcm}
{fam},{cam}
{fca}, {fcam}

 {fca}

Figure 2.

5. Relative Performance Studies
Our testing was carrying out on a personal desktop
Pentium 5, 3.6 MHz with 2GB RAM and we apply the
projected algorithm using java’s programming language.

To assess the projected algorithm we carry out a num-
ber of trials by means of artificial data produce same in
a way to figure 2. This data enclose 10,339 transactions
acquired in a time period of one year.

We as well evaluate the amount of recurrent patterns
produced by our algorithm against TFP-Apriori, as can be

Indian Journal of Science and Technology 5Vol 9 (28) | July 2016 | www.indjst.org

Gupta Pankaj and B. B. Sagar

seen in Figure 3 which shows less no. pattern generated
as compare to existing and thus reduces the of memory-
intake for execution.

For our last test, we estimate the increase performance
of the projected algorithm. In this test we used a diverse
transactional datasets, where ‘Dx’ indicate the volume
of the data-set considered; we also altered the support
threshold value from 5% to 20%. While seeing in Figure 4
& Figure 5, the finishing time somewhat increases as the
volume of the data increase, however our proposed algo-
rithm shows good scalability over TFP-Apriori.

6. Conclusions and Future Work
In this manuscript, we have projected an incipient mix
approach for data mining procedure. With the develop-

Table-2
Item Time

Interval
Conditional
Pattern base

Conditional
FP-tree

Frequent
item

P <*, 3, 11> {(fcam:1} ∅ ∅
P <*, 6, 11> {(cb:1),

(fcam:1)}
{(c:2)}|p {cp}

M <*, 3, 11> {(fcab:1),
(fca:1)}

{(f:2, c:2,
a:2)}|m

{fm, cm,
am, fcm,
fam,
cam,
fcam}

M <*, 6, 11> {(fca:1)} ∅ ∅
B <*, 3, 11> {(fca:1),

(f:1)}
{(f:2)}|b {fb}

B <*, 6, 11> {(c:1)} ∅ ∅
A <*, 3, 11> {(fc:2)} {(f:2, c:2)}|a {fa, ca,

fca}
A <*, 6, 11> {(fc:2)} {(f:2, c:2)}|a {fa, ca,

fca}
C <*, 3, 11> {(f:2)} {(f:2)}|c {fc}
C <*, 6, 11> {(f:2)} {(f:2)}|c {fc}
F <*, *, 11> ∅ ∅ ∅

Table 3

Items Item
per unit
profit

Items Item
per unit
profit

Items Item
per unit
profit

a 3 g 5 m 9
b 10 h 3 n 2
c 1 I 4 o 4
d 6 j 8 p 7
e 5 k 3
f 7 l 6

Support

T
im

e
in

Se
co

nd

Figure 3. Frequent Patterns Generated.

Figure 4. Comparison for Dx=11500.

Figure 5. Comparison for Dx=17000.

0
10
20
30
40
50
60
70
80

5% 10% 15% 20%

TFP-Apriori

WTFP-AR

Support

T
im

e
in

 S
ec

on
d

0
10
20
30
40
50
60
70
80

5% 10% 15% 20%

TFP-Apriori

WTFP-AR

Support

T
im

e
in

 S
ec

on
d

ment of technology, the arduousness to obtain data is
decrementing and the arduousness to analyze the astro-
nomically immense volume of data is incrementing.
The projected algorithm’s provides an competent time
responsive approach for mining recurrent items in data-
set. Temporal FP-Tree with utility of an itemset as weight
proposed in this work discovers frequent patterns during
the time gaps designated by schedule schemas.

Projected system is the improvement of Temporal-
Frequent-Pattern (TFP) method with weighted constraint
of item’s utility in the transaction. In tribulation result it
is demonstrated that the a-few issues can be prosper-
ously settled with the assistance of Proposed Algorithm.
We likewise had demonstrated the completing time
examination by charts with Apriori’s Algorithm, which

Indian Journal of Science and TechnologyVol 9 (28) | July 2016 | www.indjst.org 6

Discovering Weighted Calendar-Based Temporal Relationship Rules using Frequent Pattern Tree

demonstrates proposed algorithm, takes a lesser amount
of time to Apriori’s.

By this with the assistance of conception of time and
other weighted constraint, we consider the frequent pat-
terns that have enough support in their lifespan period
with the required their utility in transactional database.

7. References
1.	 Agrawal R, Mannila H, Srikant R, Toivonen H, Verkano I.

MIT Press: Fast Discovery of Association Rules. 1996.
2.	 Srikent and Agrawal. Almaden: International Business

Machine: Fast Algorithms for Mining Association Rules.
1994.

3.	 Agrawal and Srikant R. Mining Sequential Patterns.
Proceeding IEEE International Conference on Database
Engineering. 1995.

4.	 Juan M Ale and Gustavo Rossi. An approach to discovering
temporal Association Rules. Association for Computing
Machinery symposium on Applied Computing. 2000.

5.	 Book::Jiawei Han, Kamber and Jian Pei. The Morgan
Kaufmann Publishers: Data Mining: Concepts and
Techniques, 3rd Edition. 2011.

6.	 Lee Chang, Cheng-Ru Lin and Ming-Syan Chen. Sliding-
window filtering: An Efficient algorithm for Incremental
Mining. Proceeding of Association for Computing
Machinery International Conference on Information and
Knowledge Management. 2001.

7.	 Xiaoxin and Jiawei. San Francisco: Classification based on
predictive association rule. 2003.

8.	 Thabtah Abdelijaber, Peter C and Yonghong. Comparison
of classification techniques for a personnel scheduling
problem. International Business Information Management
Conference. 2004.

9.	 Tunc and Dag, Generating classification association rules
with modified Apriori. Spain: International Conference on
Artificial Intelligence. 2006.

10.	 Book:: Ian H Witten, Eibe Frank and Mark A Hall. Morgan
Kaufmann Publishers: Data mining: Practical Machine
learning tools and techniques. 2000.

11.	 Wei Wang, Jiong Yang and Philip S Yu. Efficient mining
of weighted association rules. Proceeding of 7th SIGKDD
International Conference on Knowledge Discovery and
Data Mining. 2000.

12.	 Coenen Frans and Leng Paul. An Evaluation of Approaches
to Classification Rule Selection. Proceeding of 4th IEEE
International Conference on Data Mining. 2004.

13.	 Ayad Ahmed, El-Makky Nagwa and Taha Yousry.
Incremental Mining of Constrained Association Rules.
Proceeding of SIAM Conference on Data Mining. 2001.

14.	 Weka:: Data Mining Software. Available from: http://www.
cs.waikato.ac.nz/ml/weka.

15.	 Rymon R. Search Through Systematic Set Enumeration.
Proceeding 3rd International Conference Principles of
Knowledge and Reasoning. 1992.

16.	 Book:: Chen X, Petrounian I. Knowledge Discovery and
Data Mining. Chapter 5-A Development Framework of
Temporal data Mining. 2001.

17.	 Ozden B, Ramaswamy S and Silberschatz A. Cyclic
Association Rule. Proceeding of 14th International confer-
ence on Data Engineering. 1998.

18.	 Jiawei Han, Jian Pei, Yiwen Yin and Runying Mao.
Mining Frequent Pattern without Candidate Generation.
Proceeding ACM-SIGMOD International Conference
Management of Data. 2000.

19.	 Roddick JF, Hornsby K, Spiliopoulou M. An Updated
Bibliography of Temporal, Spatial, and Spatio-temporal
Data Mining Research, TSDM. 2000.

20.	 Hong Yao, Howard J Hamilton and Cory J Butz. A foun-
dational Approach to Mining Item-set Utilities from
Databases. Florida, USA: Proceedings of the 4th SIAM
International Conference on Data Mining. 2004.

