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Abstract
Given two sets of binary data, how can we determine if the data are dissimilar? The simplest technique is to simply subtract 
the two sets or to calculate the correlation between them. Both of these methods –as well as other methods– require some 
type of similarity operation to be applied to all points of the data. This implies that as the data becomes big, more processing 
time is required. In this paper, we present a novel approach to matching using a probabilistic model that requires a few 
number of points –and not all points – to be compared between two data sets to detect dissimilarity. Furthermore, the 
model is size invariant; big data can be matched just as quickly as matching small data. The similarity between the data can 
also be measured to a good degree by repeating the matching process several times.

1. Introduction
In the information age, big masses of data are being gen-
erated through experiments, measurements, modeling 
and simulation. This is not limited to engineering and sci-
ence disciplines, but is true for all disciplines. The need 
to analyze this data in a timely manner is becoming an 
important issue. 

In many instances, the data is binary, such as in the 
field of signal processing, computer science, space explo-
ration, mineral mining and biology, where the need to 
compare binary data arises. If the data is large then an 
efficient way of comparing this data becomes essential. 

For example, in the field of image analysis, binary 
images are usually produced as a result of applying a seg-
mentation process to an image, and the resulting image 
is then compared to a library of candidate images for 
identification and recognition purposes. With image 
sizes exceeding 20 MP common today, and image size 
doubling every 5 years, comparing such big images to a 
library consisting of thousands of images using current 
state-of-the-art matching methods is an extremely time 
consuming process despite the processing speed of cur-

rent computer systems. This is due to the fact that all 
current matching methods are image size dependent; as 
image size increases so does matching time.

Speech recognition is another field that is binary 
based. Sound acquisition is performed by converting an 
analog signal to a digital signal (via an ADC) and the 
data is saved in binary form. This data is usually large; 
sound recordings usually sampled at 48 kHz with 32 
bits/sample produce slightly more than 1.5 million bits/
second. Hence, comparing 10 seconds of an audio record-
ing requires the comparison of over 15 million bits. As a 
result, comparison of audio files can become a time-con-
suming process when the audio files are big for longer or 
higher-quality recordings.

As a third example –this time not from the field of sig-
nal processing– is in the field of computer file processing. 
Computer files are stored in binary format and the aver-
age computer file size is growing with every passing year. 
Twenty years ago, a 10 MB file was considered a large file; 
today file sizes of more than 100 MB, or even a 1 GB file, 
are common. Comparing files to detect file duplication 
or to measure the similarity between them for instance, 
should not require the comparison of the whole files.
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In general, comparing two sets of binary data to 
detect dissimilarity (or measuring their similarity) can 
be accomplished using many methods. Perhaps the most 
common technique is to calculate the correlation between 
the data1, or to simply subtract the two sets2. These meth-
ods, as well as the majority –if not all- of the methods 
require some type of similarity criteria to be evaluated at 
all point correspondences. Hence, these methods are data 
size dependent; as data size increases, more processing 
time is required. When the size of the data is big, these 
well-established methods can become quite slow, espe-
cially when matching thousands of data sets.

In this paper, we show that not all of the data needs 
to be compared to detect or measure dissimilarity/simi-
larity, but rather only, a few randomly selected points 
is sufficient for the task. This is possible by performing 
the matching task probabilistically. We show using our 
probabilistic binary matching model that if the data is 
completely different, i.e. they are the inverse of each other 
and have complement values at each point, then only one 
point needs to be mapped to detect dissimilarity, as is 
intuitively obvious. As the amount of similarity increases 
between the data, more points need to be mapped to detect 
dissimilarity. For example: data that are 10% similar can 
be detected with a single mapping with 90% confidence; 
with 2 mappings the detection confidence jumps higher 
to 99%, and increases with more mappings. Data that are 
50% similar can be detected with a single mapping with 
50% confidence and with 2 mappings the detection con-
fidence jumps up to 75%. On the other hand, very similar 
data that are 90% similar, have a detection confidence 
of only 10% for a single mapping, but reaches 50% con-
fidence by the 7th mapping, and 90% confidence by the 
22nd mapping. This scenario is analogist to looking at two 
very similar pictures that dictates the fine examination 
of many parts of the pictures before a difference between 
them can be detected. Furthermore, we show that using 
this approach, data size is irrelevant; big data can be pro-
cessed just as fast as small data. As a result, this approach 
is magnitudes faster than current state-of-the-art meth-
ods that are size dependent.

This paper is organized as follows: section 2 dis-
cusses our approach of representing binary data as binary 
vectors. We also discuss vector closeness and how it 
is measured. Section 3 presents the main theme of this 
paper and presents the probabilistic model for matching 
binary vectors. Section 4 explains the mechanics of how 
dissimilar vectors can be detected by examining only few 

points. Section 5 presents examples of the application of 
the matching model. Section 6 presents our conclusions.

2. Binary Vectors 
Our approach is to represent binary data as binary vectors 
and match these vectors. The data can be of any dimension: 
one-dimensional (e.g. sound files), two-dimensional: (e.g. 
images and matrices), three-dimensional (e.g. geographi-
cal data and CAT-scans), etc. The geometry of the data 
can be of any type as long as they have a similar arrange-
ment and a one-to-one correspondence exists between 
all points of the matched data, as shown in Figure 1. 
Regardless of the dimension of the data or its geometry, 
all data will be matched as if they are binary vectors, with 
the order of the data preserved. Hence, we are matching 
one-dimensional binary patterns.

   
(a)

 
(b)

 
(c)

Figure 1. Different Binary pattern pairs. a) Rectangular 
Grids b) Hexagonal Grids c) Triangular Grids.

2.1  Binary Vector Mapping
Initially let us define some terms that will be used in this 
paper. Let u and v be two binary vectors. Let u ∈ u and 
v ∈ v, where u and v are independent random variables. 
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Element mapping (P1) between two binary vectors refers 
to how an element value in the first vector maps to the 
corresponding element value in the second vector, i.e. 
how the values of the two vectors map to each other in a 
specific direction,

P1 = {u→v}, ∀u ,v ∈ {0,1}       (1)
The ‘→’ symbol is used to denote element mapping. 

Hence, u→v implies element value u of the first vector 
maps to element value v in the second vector. 

2.2 Binary Vector Similarity
Many similarity measures and distances have been devel-
oped for binary data over the last century that can be 
found in the literature3,4. In this section we discuss vector 
closeness and the similarity measure that is used in our 
work to measure similarity.

2.2.1 Similar and Dissimilar Vectors
The closeness between two vectors is based on an ele-
ment-to-element comparison of the two vectors. Vector 
closeness is categorized as either similar or dissimilar:
 1. Similar vectors (s): The two vectors are considered 

to be exactly the same. This can only be true if the two 
vectors have the same values at all corresponding ele-
ments, e.g. u = [1 1 1 0] and v = [1 1 1 0].

 2. Dissimilar vectors (d): The two vectors are differ-
ent. This can only be true if the two vectors are not 
similar, and they are of two types:

a. Inverse vectors (i): The two vectors have com-
pliment values at all corresponding elements, e.g. u = 
[0 1 0 1] and v = [1 0 1 0].

b. Quasi-dissimilar vectors (q): The two vectors 
are neither similar nor inverse, e.g.   u = [0 1 0 1] and 
v = [1 0 1 1]. 

2.2.2 Vector Similarity and Dissimilarity 
Coefficients 
Let κ0 and κ1 denote the vector similarity and dissimilarity 
coefficients, respectively, defined as:

0 ( , ) (( ) 0)κ φ≡ ⊕ =u v u v
    

     (2)

1( , ) (( ) 1)κ φ≡ ⊕ =u v u v
  

     (3)
where ⊕ denotes the exclusive-or operator, ϕ() is the 
probability mass function and 0 ≤ κ0,κ1 ≤ 1. Hence,

κ0 + κ1 = 1          (4)
If the Hamming distance (dH) 5 is given by,

∑
=

⊕=
n

i
iiH vud

0
)(),( vu

   
   (5)

then it can be seen that,

),(1)(1 vuvu Hd
n

=⊕κ        (6)

where n is the size of the vector. Furthermore, κ1 is equiva-
lent to the Sokal-Michener Metric6 (aka Simple Matching 
Coefficient (SMC)). Values of κ0 and κ1 correspond to,

•	 κ0 = 0 or κ1 = 1 for inverse vector pairs.
•	 0 < κ0,κ1  < 1 for quasi-dissimilar vector pairs. 
•	 κ0 = 1 or κ1 = 0 for similar vector pairs.

3. A Probabilistic Mapping Model 
for Binary Vectors
In this section, we present the development of a proba-
bilistic mapping model for detecting dissimilar binary 
vectors. The model predicts the probability of occurrence 
of dissimilar vectors when matching two binary vectors. 
In such a model, it is assumed that vector element loca-
tions are randomly selected and their intensity values are 
mapped. 

3.1  The Probabilistic Mapping Model
Let d denote the event of occurrence of dissimilar vectors 
and s denote the event of occurrence of similar vectors. 
Let k*, 0 ≤ k* ≤ 1, be a random variable representing the 
probability of event d occurring at any given mapping; as 
a result, the probability of s occurring is (1 − k*). On the 
first mapping two possible states are possible; d or s; the 
probability of occurrence of d is k* and the probability 
of s occurring is (1 − k*). On the second mapping, four 
cases are possible: dd, ds, sd and ss; their probabilities are 
k*2, k*(1 − k*), k*(1 − k*) and (1 − k*)2, respectively. On 
the third mapping there are 8 cases, and so on for further 
mappings. It can be seen that the probability distribution 
of d is a Binomial distribution given by, 

( , , *) ( *) (1 *)ϕ − 
= = − 

 
x p xp

X x p k k k
x    

x = 0, 1… p        (7)
where, X is a random variable denoting the number of 
times d occurs in p mappings and ϕ is the probability 
mass function of d occurring x times in p mappings. Let S 
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denote the s events only set, I the d events only set, and M 
the mixed events set, defined as follows:

S = {s, ss, sss, …}         (8)
I = {d, dd, ddd, …}         (9)
M = {sd, ssd, dss, …}       (10)

These three sets partition the sample space. The probabil-
ity of occurrence of S in p mappings, Pr(S,p,k), is then,

Pr( , , ) ( 0, , )
(1 *)
ϕ= =

= − p

S p k X p k
k    p > 1. 2 (11)

If D = I ∪ M = S , then the probability of occurrence of D 
in p mappings, Pr(D,p,k), is then,

Pr( , , *) (0 , , *)
1 ( , , *)
ϕ

ϕ
= ≤ <
= − =

D p k X p p k
X p p k

     (12)

Hence,
Pr(D,p,k*) = 1 – (1 – k*) p 
       p = 1, 2, … 

 
and  0 ≤ k ≤ 1     (13)

But by its definition we see that,
 (1 – k*) = κ0(u,v) = ϕ((z =(u ⊕ v)) = 0)

 
 (14)

where, ϕ(z) is the probability mass function of z =(u ⊕ 
v). For convenience we will use,   k = 1− k* = κ0, as the 
vector similarity coefficient. Thus,

Pr(D,p,k) = 1 – k p

      p = 1, 2, … 
 
and  0 ≤ k ≤ 1

   
(15)

This simple equation defines the probabilistic model for 
matching binary vectors. Note that k ∈ [0,1] is a continu-
ous variable while p is a positive nonzero integer variable. 
Pr increases with increasing k, but decreases with increas-
ing p except at k = 0 and k = 1. Hence,  

 Pr(D,p,k) < Pr(D,p+i,k)
       p = 1, 2, …,  0 < k < 1 and  i = 1, 2, …    (16)

Pr(D,p,k) > Pr(D,p,k+a)
       p = 1, 2, … and    0 < k+a < 1 

    
(17)

Pr(D,p,k) is a cumulative distribution function (cdf) 
of the probability distribution function of detecting dis-
similar vectors at a given mapping. Furthermore, the 
value of Pr(D,p,k) can be interpreted as the detection 
confidence (DC) of detecting dissimilar binary vectors 
for given values of p and k. Hence, (15) can be stated as, 

DC(D,p,k) = 1 – k p p = 1, 2, …  and  0 ≤ k ≤ 1   (18)

We will use both equivalent forms of this equa-
tion ((15) and  (18)) as warranted in our discussion. 
Furthermore, from (18) the vector similarity coefficient k 
can be expressed as a function of DC and p,

1

( , , ) (1 )= − pk D DC p DC
     p = 1, 2, …   and  0 ≤ DC ≤ 1    (19)
Similarly, the number of mappings  p can be expressed 

as a function of DC and k,

log(1 )( , , )
log( )
−

=
DCp D DC k
k

 

      0 ≤ DC ≤ 1 and  0 ≤ k ≤ 1     (20)
which determines the number of mappings required to 
detect dissimilarity for given values of DC and k. Several 
curves of Pr(D,p,k) versus p for different values of k are 
shown in Figure 2. Figure 3 shows curves of Pr(D,p,k) for 
highly similar vectors, k ≥ 0.75. 
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Figure 2. Curves of Pr(D,p,k) versus p for several values of  
k.
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Figure 3. Curves of Pr(D,p,k) versus p for high values of  k.

We see from the figures, that the curves share a com-
mon profile:

•	 DC values increase as p increases for 0 < k < 1 
and reach a limit of 1,

         
( ) 11lim),Pr(lim =−=

∞→∞→

p

pp
kkp  (21)

•	 Curves with smaller k values reach unity faster 
than those with larger k values, i.e., as k increases 
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more mappings are required to reach a specific 
DC value.

For the special two cases of k = 0 and k = 1, these two 
curves have unique profiles,

•	 The k = 0 curve (inverse vectors) is a constant 
line at 1, achieved on the first mapping.

•	 The k = 1 curve (similar vectors) is zero for all 
mappings.

Table 1 lists the DC values for the first 20 mappings 
for 0 ≤ k ≤ 0.9, in increments of 0.1 (rounded to 4 deci-
mal digits). We see that, for k = 0.1, the DC value quickly 
reaches a value of 1.0000 by the 5th mapping, i.e., perform-
ing 5 mappings is sufficient to detect dissimilarity 100% 
for vectors with similarity k = 0.1. For k = 0.2, DC = 1.0000 
in 7 mappings and for k = 0.3, DC = 1.0000 in 9 map-
pings. As vectors become more similar and k increases 
more mappings are required to reach DC = 1.0000. For 
example, DC = 1.0000 is reached at 29, 46 and 94 map-
pings for k = 0.7, 0.8 and 0.9, respectively.

Figure 4 shows curves of Pr(D,p,k) versus k for several 
values of  p. "For p = 1, the Pr(D,1,k) curve" reduces to a 
straight line which can be seen from (15),

Pr(D,1,k) = 1− k     (22)

This line represents the probability of detecting dis-
similar vectors on the first mapping, which decreases 
linearly as k increases. At k = 1 (i.e. similar vectors) 
Pr(D,1,1) = 0, i.e. there is no possibility that the vectors 
can be determined to be dissimilar on the first mapping; 
in fact Pr(D,p,1) = 0 implying that it’s impossible for the 
vectors to be dissimilar for any number of mappings. On 
the other hand, if k = 0 (i.e. inverse vectors) then Pr(D,1,0) 
= 1 (and Pr(D,p,0) = 1), i.e. just one mapping is sufficient 
to determine that the vectors are dissimilar. It is interest-
ing to note that even when vectors are very similar, the 
probability of detecting dissimilarity between them with 
a single mapping is still possible, even though that prob-
ability is very low (e.g. if k = 0.9, then Pr(D,1, 0.9) = 0.1). 

Figure 5 shows curves of p(D,DC,k) versus k for sev-
eral DC values. For 50% confidence rate, DC = 0.50, the 
curve starts at k = 0.5 and is monotonically increasing. 
For k ≤ 0.5, DC = 0.50 can be achieved by the first map-
ping; there is 50% chance or more that dissimilarity can 
be detected on the first mapping. For k > 0.5 more than 
one mapping is required to detect dissimilarity and as k → 

Table 1. Detection confidence vs. number of mappings (p) for selected values of k 

p 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1 1.0000 0.9000 0.8000 0.7000 0.6000 0.5000 0.4000 0.3000 0.2000 0.1000
2 1.0000 0.9900 0.9600 0.9100 0.8400 0.7500 0.6400 0.5100 0.3600 0.1900
3 1.0000 0.9990 0.9920 0.9730 0.9360 0.8750 0.7840 0.6570 0.4880 0.2710
4 1.0000 0.9999 0.9984 0.9919 0.9744 0.9375 0.8704 0.7599 0.5904 0.3439
5 1.0000 1.0000 0.9997 0.9976 0.9898 0.9688 0.9222 0.8319 0.6723 0.4095
6 1.0000 1.0000 0.9999 0.9993 0.9959 0.9844 0.9533 0.8824 0.7379 0.4686
7 1.0000 1.0000 1.0000 0.9998 0.9984 0.9922 0.9720 0.9176 0.7903 0.5217
8 1.0000 1.0000 1.0000 0.9999 0.9993 0.9961 0.9832 0.9424 0.8322 0.5695
9 1.0000 1.0000 1.0000 1.0000 0.9997 0.9980 0.9899 0.9596 0.8658 0.6126
10 1.0000 1.0000 1.0000 1.0000 0.9999 0.9990 0.9940 0.9718 0.8926 0.6513
11 1.0000 1.0000 1.0000 1.0000 1.0000 0.9995 0.9964 0.9802 0.9141 0.6862
12 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9978 0.9862 0.9313 0.7176
13 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9987 0.9903 0.9450 0.7458
14 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9992 0.9932 0.9560 0.7712
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9995 0.9953 0.9648 0.7941
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9967 0.9719 0.8147
17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9977 0.9775 0.8332
18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9984 0.9820 0.8499
19 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9989 0.9856 0.8649
20 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9992 0.9885 0.8784
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1, the curve rapidly grows upward signifying that much 
more points are needed to be mapped to reach a 50% 
detection. This profile is common for all DC values, but 
as DC increases, the curves intersect the single mapping 
line at lower values; more points are required to detect 
dissimilarity with higher DC values.
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Figure 4. Curves of Pr(D,p,k) versus k for several values of  
p.
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Figure 5. Curves of p(D,DC,k) versus k for several DC values.

3.2  The Probability of Detecting Dissimilar 
Vectors
The probability distribution function of detecting dis-
similar vectors, PD(p,k), can be obtained from its cdf; 
Pr(D,p,k), 

PD(p,k) = kp−1 − kp p = 1, 2, …   (23)
Table 2 lists values of PD(p,k) for the first 20 mappings 

for 0 ≤ k ≤ 1.0, in increments of 0.1 (rounded to 4 decimal 
digits). Figure 6 shows plots of PD(p,k) versus p for sample 
values of k. Some remarks about the distribution:

•	 For k = 0: the distribution has a value of unity at 
p = 1 and zero elsewhere.

•	 For k = 1: the distribution values are very small 
and for all practical purposes can be considered 
to be zero everywhere, with the sum of the distri-
bution being unity.

•	 For 0 < k < 1.0:
•	 The distribution is monotonically decreasing.

•	  The first value in the distribution, PD(1,k) = 
1 − k, is always the largest value of the distri-
bution.

•	  As k increases the values of the distribution at 
any given p decreases.
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Figure 6. Plots of PD(p,k) versus p for various values of k.

3.3  The Expected Value of the Mapping 
Detection Number

The expected value of p is given by,
1

1

2 2 3

2 2

2
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      (24)

which is a geometric series with ratio 1, and thus the 
expected value of p is given by,

k
pE

−
=

1
1][     (25)

This is an important equation as it gives the expected 
number of mappings required to detect dissimilarity. 
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Let MDN denote the Mapping Detection Number 
which is defined as the number of mappings required to 
detect a pair of vectors as being dissimilar. MDN will be 
used to measure detection quickness. The expected MDN 
as a function of k is then,

1[ ( )]
1

=
−

E MDN k
k

   (26)

A plot of this equation appears in Figure 7, and values 
of E[MDN] (i.e. E[p]) for selected k values are tabulated 
in Table 3. E[MDN] is a monotonically increasing curve: 
The values of E[MDN] are fairly small for k ≤ 0.9 (where 
E[MDN] ≤ 10) and increase gradually from a value of 1 at 
k = 0 to a value of 10 at k = 0.9. For larger values of k the 
curve increases rapidly; as k →1 results in E[MDN] → ∞. 
Let MDNµ be the mean value of MDN, i.e.,

MDNµ  = E[MDN]    (27)
Then (26) can be used to estimate k,

1
( ) µ

µ
µ

−
=

MDN
k MDN

MDN
    (28)

This equation will be used to measure the vector simi-
larity coefficient quickly as described below.
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Figure 7. A plot of the expected MDN vs. k.

The variance of p is given by,
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E[ p2] is derived as follows,
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Table 2. PD(p,k) vs. number of mappings (p) for selected values of k

 p k 
0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1 1.0000 0.9000 0.8000 0.7000 0.6000 0.5000 0.4000 0.3000 0.2000 0.1000 0.0000
2 0.0000 0.0900 0.1600 0.2100 0.2400 0.2500 0.2400 0.2100 0.1600 0.0900 0.0000
3 0.0000 0.0090 0.0320 0.0630 0.0960 0.1250 0.1440 0.1470 0.1280 0.0810 0.0000
4 0.0000 0.0009 0.0064 0.0189 0.0384 0.0625 0.0864 0.1029 0.1024 0.0729 0.0000
5 0.0000 0.0001 0.0013 0.0057 0.0154 0.0313 0.0518 0.0720 0.0819 0.0656 0.0000
6 0.0000 0.0000 0.0003 0.0017 0.0061 0.0156 0.0311 0.0504 0.0655 0.0591 0.0000
7 0.0000 0.0000 0.0001 0.0005 0.0025 0.0078 0.0187 0.0353 0.0524 0.0531 0.0000
8 0.0000 0.0000 0.0000 0.0002 0.0010 0.0039 0.0112 0.0247 0.0419 0.0478 0.0000
9 0.0000 0.0000 0.0000 0.0000 0.0004 0.0020 0.0067 0.0173 0.0336 0.0431 0.0000
10 0.0000 0.0000 0.0000 0.0000 0.0002 0.0010 0.0040 0.0121 0.0268 0.0387 0.0000
11 0.0000 0.0000 0.0000 0.0000 0.0001 0.0005 0.0024 0.0085 0.0215 0.0349 0.0000
12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0015 0.0059 0.0172 0.0314 0.0000
13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0009 0.0042 0.0137 0.0282 0.0000
14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0005 0.0029 0.0110 0.0254 0.0000
15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0020 0.0088 0.0229 0.0000
16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0014 0.0070 0.0206 0.0000
17 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0010 0.0056 0.0185 0.0000
18 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0007 0.0045 0.0167 0.0000
19 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0005 0.0036 0.0150 0.0000
20 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0029 0.0135 0.0000
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The first term on the left hand side of (30) is the deriv-
ative of a geometric series with ratio 1. Hence, 

(31)
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The second term on the left hand side of (30) is also a 
geometric series with ratio 1. Hence, (30) simplifies to,
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Substituting (25) and (32) into (29), the variance of p 
is f finally obtained,
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The standard deviation of p is then,

k
kp
−

=
1

][σ         (34)

Both the variance and standard deviation have simi-
lar curve profiles to that of the expected value; they are 
monotonically increasing with the rate increasing as k 
approaches 1, and in the limit as k → 1 their values become 
infinite. These equations can be used to estimate the vari-
ance and standard deviation of MRN. Values of σ[p] for 
selected k values are tabulated in Table 4.

3.4 Size Invariance
Equations (15), (19) and (20) are not a function of the 
vector size (n); hence detecting dissimilarity is size invari-

ant using this probabilistic approach. Vector of any sizes 
can be matched with the same quickness, whether they 
consist of only a few elements or if they consist of millions 
of elements. The matching quickness is only dictated by 
the amount of similarity k between the vectors.

4. Detecting Dissimilar Vectors 
In this section, the mechanics of detecting dissimilar vec-
tors is explained. The mapping model predicts the number 
of mappings required to detect dissimilarity with a given 
confidence. We discuss below a method that can be used 
with the mapping model for dissimilarity detection.

4.1  A Dissimilarity Detection Method

Detecting dissimilarity between vectors based on the dis-
cussion presented can be accomplished in many ways; 
perhaps the simplest method is to repeatedly select points 
and compare them until the values differ. This strategy 
is very fast and can remarkably detect even very similar 
vectors very rapidly. If this strategy is to be used then the 
following items should be noted:
 1. Points should be randomly selected.
 2. A mapping limit (Lmap) should be used to terminate 

the mapping process.
Using such a simple procedure will result in either,

•	 the vectors determined to be dissimilar, or 
•	 the matching trial being inconclusive (i.e.  Lmap is 

reached). 
In the latter case, the vectors are highly similar, and 

Lmap can be increased and the process repeated. If the type 
of dissimilarity (inverse/quasi-dissimilar) is to be deter-
mined, then a more elaborate detection scheme based on 
mapping tuples needs to be followed (not discussed in 
this paper). 

4.2  Measuring Similarity
To measure similarity, (28) can be used. To obtain a good 
estimate of MDNµ, several detection trials should be con-

Table 3. E[p] for selected  values of k

k 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99 0.999 0.9999 0.99999
E[p] 1.000 1.111 1.25 1.429 1.667 2 2.5 3.333 5 10 100 1000 10000 100000

Table 4. σ[p] for selected  values of k

k 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99 0.999 0.9999 0.99999
σ[p] 0.000 0.351 0.559 0.782 1.054 1.414 1.936 2.789 4.472 9.487 99.5 999.5 9999 100000



Indian Journal of Science and Technology 9Vol 9 (28) | July 2016 | www.indjst.org 

Adnan A. Y. Mustafa

ducted and the average value taken. It should be noted 
that using (28) gives an approximate value and not an 
exact value, due to the nature of the mapping process 
which is integer based. Nevertheless, MDNµ values should 
coincide with E[MDN] values obtained from (26), which 
we show to be very true.

5. Discussion
For illustrative purposes, we present two examples.

5.1  Example 1
We initially present an example with small sized vectors. 
Let v1, v2 and v3, be three binary vectors of size n = 30, 
defined as follows,

v1 = [000111010000010100100100000010]
v2 = [010111011000010100101101000010]
v3 = [011100100000010000001101010010]
For visualization purposes, these vectors are shown as 

patterns in Figure 8. Visual inspection of the three vec-
tors immediately reveals that the vector pair consisting 
of (v1,v2) is the most similar pair. In fact, k = 0.867 for 
this pair. The vector pair consisting of (v1,v3) is the least 
similar with k = 0.633 and the last vector pair (v2,v3) has 
k = 0.700. With these k values (26) predicts E[MDN] to 

be 7.5, 2.727, 3.333 mappings, respectively, i.e. on aver-
age 8 mappings should be sufficient to detect (v1,v2) as 
being dissimilar, 3 mappings is sufficient to detect (v1,v3) 
as being  dissimilar, and 4 mappings should be sufficient 
to detect (v2,v3) as being dissimilar. Indeed for 500 tri-
als tested, the MDNµ  values found were 7.265, 2.634 and 
3.230 for (v1,v2), (v1,v3) and (v2,v3), respectively. All values 
are within a single mapping of the predicted E[MDN]. 
Figure 9 plots MDNµ  vs. trial no. for the three vector pairs 
where MDNµ is calculated up to the trial no. shown. Also 
shown as a dotted line is E[MDN]. We see that the MDNµ 
curves for all pairs quickly approach their respective 
E[MDN] values, and are within ±1 mapping of E[MDN] 
by the 100th trial. Figure 10 shows plots of the estimated 
value of k vs. trial no. for the three vector pairs using (28). 
Also shown are the exact k values for each pair as dot-
ted lines. Once again, we see that the estimated k value 
approaches the exact k values with increasing trials. The 
% error of estimating k vs. trial no. for the three vector 
pairs is shown in Figure 11, where it can be seen that the 
% error is less than 5% for all pairs after 200 trials.
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Figure 10. Similarity coefficient (k) vs. number of trials for 
the binary vector pairs. Also shown are the k values for each 
vector pair (dotted lines).

Figure 8. The binary vectors represented as 1D patterns. 
From top to bottom: v1, v2 and v3.
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Figure 9. MDNµ vs. number of trials for the binary vector pairs. Also shown the E[MDN] for each vector pair 
(dotted lines).
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Figure 11. Percent similarity coefficient error vs. number 
of trials for the binary vector pairs.

5.2  Example 2
Figure 12 shows three binary matrices displayed as pat-
terns, M1, M2 and M3, of size n = 50×50, represented as 
2D patterns. The difference matrices are shown in Figure 
13, where dij = |Mi − Mj|. For the first matrix pair (M1,M2) 
the matrices exhibit very high similarity with k = 0.965 
and corresponding E[MDN] = 28.74 mappings. Thus on 
average 29 mappings are required to detect dissimilarity 
between (M1,M2). This somewhat higher mapping value is 
due to the higher similarity that exists between these two 
matrices. Tests conducted produced MDNµ = 26.76 after 
100 trials; ~2 mappings off E[MDN] but with increased 
trials produces closer results. This is shown in Figure 14 
which plots MDNµ  vs. trial no. for the three matrix pairs 
where MDNµ is calculated up to the trial no. shown. Also 
shown as a dotted line is E[MDN]. For the second pair 
(M1,M3), k = 0.507 with corresponding E[MDN] = 2.03 
mappings. Thus on average 3 mappings are sufficient to 
detect dissimilarity between M1 and M3. From the first 5 
trials MDNµ = 1.6 mappings, which is within 1 mapping of 
E[MDN] and as the number of trials increases the MDNµ 

values rapidly approach E[MDN]. For the last matrix 
pair (M2,M3), k = 0.498 with E[MDN] = 1.99 mappings; 
once again the MDNµ values are within ±1 mapping off of 
E[MDN]. Figure 15 shows plots of the estimated value of k 
vs. trial no. for the three matrix pairs. Also shown are the 
exact k values for each pair as dotted lines. The estimated 
k values are in close proximity to the exact k values. The 
% error of estimating k vs. trial no. for the three matrix 
pairs is shown in Figure 16, where it can be seen that the 
% error is less than 4% for all three pairs after 200 trials.

6. Conclusion
In this paper we have presented a quick way to compare big 
binary data quickly. We showed that only a small fraction 
of the data needs to be compared to detect dissimilarity 
and not all of the data. This is accomplished by using a 

            
Figure 12. The binary matrices represented as 2D patterns. 
From left to right: M1, M2 and M3.

       
Figure 13. Difference matrices represented as 2D patterns. 
From left to right: d12, d13 and d23.

Figure 14. MDNµ vs. number of trials for the binary matrices. 
Also shown the E[MDN] for each matrices pair.

Figure 15. Similarity coefficient (k) vs. number of trials for 
the binary matrices. Also shown are the k values for each 
vector pair (dotted lines).

Figure 16. Percent similarity coefficient error vs. number of 
trials for the binary matrices.
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probabilistic matching model that predicts the number of 
points required to be compared between the two data sets 
to detect dissimilarity. The model shows that size is irrel-
evant. Big data can be matched as quickly as small data. 
The similarity between the data can also be measured to 
a good degree by repeating the detection process a few 
times. Tests conducted showed that experimental results 
are in good agreement with the models prediction.
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