
Abstract
Background/Objectives: Compressed Sensing (CS) is an efficient sensing paradigm which guarantees reasonable 
reconstruction with less number of samples. We aim to increase the reconstruction quality of signals in CS. Methods/
Statistical Analysis: The behavior of random matrices is analyzed and an efficient method for improving the reconstruction 
quality is developed in CS based ECG reconstruction applications. The method is compared against Biorthogonal wavelet 
based approaches. Findings: Our analysis reveals that introduction of a modified column vector in the reconstruction 
matrix, which contains the sum of all columns of random matrix increases the reconstruction quality in CS applications. 
This idea was applied to different sparsifying domains and the results are very encouraging. We studied the effect of doing 
this on the singular values and both unitary matrices U and V. The first singular value (Σ) shot up making the condition 
number high, however there was not much change in the other singular values. The matrix U seems to remain random 
unitary matrix, where as matrix V has one value becoming unity in its rank space. Application/Improvements: Compared 
to wavelet based approaches the method shows reasonable improvement in Percentage Root Square Deviation (PRD). 
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1.  Introduction
It was emphasized that a paradigm shift is necessary to 
explore the intricacies of Compressed Sensing (CS)1. It 
has also been shown2 that how the random matrix can be 
modified by use of partial diagonal matrices in the recon-
struction space. In the present paper, we have found that 
modifying a column without changing the structure of 
the matrix improves the results further. We were able 
to get more than 50% of improvement in reconstruc-
tion quality. To best of our knowledge this is best result 
obtained for signal like ECG (raw data without filtering 
or thresholding). Filtering of the ECG signal and thresh-
olding during reconstruction was not attempted, since 

a realistic comparison for the analytical methods were 
found necessary.

The paper is arranged as follows. Section 2 describes 
brief review of Compressed Sensing, Section 3 explains 
how to create sparsifying matrices and in subsection 
we describe how we created sparsifying matrices from 
exponential splines. In this section we elaborate results 
which illustrate exponential spline basis are better than 
Biorthogonal wavelet basis for ECG reconstruction in 
compressed sensing applications. In Section 4 we extend 
the idea of duplication on two types of reconstruction 
matrices, one made using E-Spline bases and the other 
using Biorthogonal basis. This section details the main 
contribution of this paper which details how to duplicate 
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a column with the sum of others columns. Results are dis-
cussed in Section 5. We conclude this paper in Section 6.

2.  Compressed Sensing 
CS3–5 allows us to reconstruct the original data from less 
number of random projections. Most of the information 
that are captured are thrown away in normal compression 
techniques, in a sense the effort to capture the information 
is wasted, but in CS only the required amount of infor-
mation is captured. In CS, input data (N x 1) is projected 
on a random matrix (m x N) m<<N and the projected 
samples (m x 1) are used for reconstruction. If the data 
is not sparse in the domain of sensing, a sparsifying basis 
matrix of size N x N is used. The random sensing matrix is 
multiplied with the sparsifying matrix. We had done our 
modification on the resultant matrix. This matrix of size m 
x N is often known as reconstruction matrix. The complete 
CS scenario can be explained simply as, If ‘ is the input 
vector of size N x 1 and if, it has alternative notation in ψ 
domain where it is sparse that is x= ψα, then CS theory 
states that ‘x’ can be recovered from the vector ‘y’ of size 
m x 1 (m<<N) by solving convex optimization problem of 
type min ||α||11s.t.y = Φα·||α||11. where ’y’ is the projection 
of ‘x’ on φ. i.e. y = φx = φψα = Φα.·α is a column vec-
tor which are the coefficients of ‘x’ in ψ. We had done our 
modification in Φ matrix which is obtained by multiplying 
random sensing matrix φ with the sparsifying basis matrix 
Signals like ECG in its raw form (with noise) are not sparse 
in any domain (without filtering and thresholding). Since 
in compressed sensing techniques prior information of the 

signals are not supposed to be known, here also filtering 
and thresholding are not attempted.

3.  Sparsifying Matrix (Ψ) Creation 
Normally Biorthogonal wavelets are used as sparsify-
ing basis in CS applications for better results6 especially 
for ECG applications. We had developed a set of basis 
from Exponential Splines (E-Spline) and found out that 
E-Spline basis outperform Biorthogonal wavelet basis. 
Comparison results are given in the subsequent sections.

3.1  Sparsifying Matrix from Exponential 
Splines
Splines are polynomial segments connected in smooth fac-
tion. Exponential Splines are obtained by connecting one 
sided exponential. Michael Unser details about exponential 
splines7, we have followed the same way and made 1st, 2nd 
and 3rd order splines. Higher order splines can be made 
from the successive convolution of lower order ones. The 
splines obtained are shown in Figure 1. The representative 
magnitudes selected from 1st, 2nd and 3rd order splines are: 

F1 = [0 0.2009 0.4089 0.7704 1 0.7704 0.4089 0.2009 0] 
F2 = [0 0.2445 0.5469 0.8647 1 0.8647 0.5469 0.2445 0]
F3 = [0 0.3427 0.6286 0.8913 1 0.8913 0.6286 0.3427 0] 

For each of these we had made sparsifying matrices 
and labeled them as 1E1, 1E2, 1E3 and conducted CS 
based reconstruction using each of them on an ECG data 
obtained from MIT data base8 of size 800 x 1. The ECG 
is shown in Figure 2. Results are compared against the 

Figure 1.  Exponential Splines of first three orders.
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signal reconstructed using a Biorthogonal wavelet matrix 
and all these came better than that and it is shown in 
Figure 6. This is our primary level results which show 
E-Splines are better than Biorthogonal wavelets for CS 
based ECG reconstruction. In our second level we extend 
our idea of duplication in the reconstruction matrices 
made from both E-Spline and Biorthogonal wavelets. The 
corresponding F1, F2 and F3 are graphically shown in 
Figure 3, Figure 4 and Figure 5.

Reconstruction quality is analyzed on the basis of 
Percentage Root Mean Square Deviation (PRD).
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Where x(in) the input is signal and x(r) is the signal after 
reconstruction.

1E1 indicate the reconstruction using the spar-
sifying matrix made from F1, 1E2 indicates the 
reconstruction using the matrix made F2 and 1E3 from 
the matrix from F3. All these are compared against 
when Biorthogonal wavelet is used as the sparsify-
ing basis. All the PRDs came lesser than that of bior 
4.4. Number of measurements (random projections) 
ranges from 10% of 800 that is from 80 to 75% (600). 
These results confirm us that E-Spline basis are better 
than Biorthogonal wavelet basis for compressed sens-
ing for ECG signals, so we have introduced the idea of 
duplication in the reconstruction matrix made using 
E-Splines. In order to validate our results we have done 
the same type of duplication in reconstruction matrix 
made using Biorthogonal wavelet basis. There also the 
results improved compared to the  unmodified case. 
These results are shown in Section 5.

Figure 2.  Input ECG. 

Figure 3.  Representative cordinate F1.
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4.  Proposed Method
Maximally incoherent column vectors in reconstruction 
matrix (Φ) guarantees a unique recovery in Compressed 

Sensing applications. The mutual coherence or simply 
coherence measures the maximum similarity between 
the vectors. Coherence for a matrix A with columns as a1, 
a2….am is given as: 

Figure 4.  Representative cordinates F2.

Figure 5.  Representative Cordinates F3.

Figure 6.  Comparison on exponential Splines and biorthogonal wavelet matrix reconstructions.
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It is basically taking the projection (dot product) 
between two vectors and varies in between 0 and 1. For 
increasing the coherence we had replaced one column 
vector in the reconstruction matrix by the sum of col-
umns of the random matrix (φ). This can be done putting 
a column of ones in the sparsifying matrix. This is hap-
pening because, during matrix multiplication when a row 
is projected on to a column vector containing all ones, 
the resultant will be the sum of the projected vector. If a 
particular column of (say jth ) column of the sparsifying 
basis matrix is having all ones (it is not necessary to be 
one any other integer will give the result), jth column of 
the reconstruction matrix will be the linear combination 
of all other columns of the random matrix, hence we give 
the name duplication.

Figure 7 and Figure 8 shows two matrices Φ1 (400 
X 800) and Φ2 (400 X 800), where in Φ2 all elements in 

400th column are replaced by the sum of columns of the 
random sensing matrix (φ). The dot product between 
two consecutive vectors comes around .8 to .9. The dot 
product between two consecutive vectors in unmodified 
case comes around .8 to .9 where in modified case the dot 
product comes less than 0.1. Scaling certain vectors in 
reconstruction vectors will increase the incoherence but 
while reconstruction we must multiply the same sparsify-
ing matrix to get back the signal as, x = , so our method 
of modification of column vector in sparsifying matrix by 
ones will help to reconstruct the signal exactly.

5.  Result and Discussions
Table 1 compares the results with modified reconstruc-
tion matrix (Φ2) with unmodified matrix for the input 
signal shown in Figure 2, which is of normal ECG type 
obtained from MIT data base8 record 103m. We had tried 
with abnormal ECG signals also, which is shown in Figure 
9. The results obtained for this signal in Figure 9 is shown 
in Table 2. Here also the improvement was substantial. 

Figure 7.  Φ1 = φ , where φ is the random sensing matrix and  is the sparsifying matrix. 

Figure 8.  Φ2, where column sum of φ replace the 400th column.
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Clearly at an average of 50% of increase in reconstruction 
quality is there in modified method. In reconstructions 
side reconstruction algorithms basically returns the coef-
ficients α which are the coefficients of ‘x’ in ψ. x can be 
reconstructed as x = ψ α. 

In Tables 1 and 2, 1E1 indicates when 1st order 
spline coordinates (F1) are used for making the sparsi-
fying matrix. 1E2 for F2 and 1E3 for F3. Table indicates 

the difference in PRDs when the modification is done 
in measurement matrix while using these spline 
coordinates. Our experiments show that there is sub-
stantial improvement in PRD even for Biorthogonal 
wavelet basis when comparing modified and unmodi-
fied cases.

The graph in Figure 10 dictates the improvement 
in PRD before and after modification in measurement 

Figure 9.  Abnormal ECG [9].

Table 1.  Random samples vs. PRD

No: of Random 
Samples taken 

from 800 x1 
input vector .

PRD-1E1 PRD-1E2 PRD-1E3 PRD-Bior 4.4
PRD after 

modifcation 
for 1E1

PRD after 
modifcation 

for 1E2

PRD after 
modifcation for 

1E3

PRD after 
modifcation for 

Bior4.4

80.00 88.81 93.32 92.38 108.35 20.4994 21.2349 20.2137 50.8681
120.00 74.16 78.79 74.02 86.88 15.7661 16.5257 15.4717 38.5456
160.00 67.88 69.24 66.25 81.47 11.5477 11.0857 12.0057 28.425
200.00 53.81 57.50 51.79 72.52 9.7007 9.3771 9.1115 22.6069
240.00 43.51 45.07 41.86 73.84 6.5692 7.0968 6.3339 21.9363
280.00 35.93 33.09 30.34 71.56 5.731 5.7996 5.856 17.5538
320.00 26.32 24.90 20.39 71.22 4.4007 4.8104 4.4359 15.7269
360.00 18.56 16.08 14.72 59.23 3.868 4.1227 3.8131 15.5494
400.00 16.62 10.60 11.65 61.78 3.5319 3.5452 3.0002 11.3524
440.00 10.82 6.19 7.31 54.67 3.4017 3.267 2.6602 10.8858
480.00 8.83 4.26 6.37 45.11 3.0745 3.1139 2.5387 8.7638
520.00 7.03 3.90 5.70 45.26 3.0476 2.8674 2.527 7.3366
560.00 4.57 2.99 4.25 36.93 2.5604 2.7856 2.2834 6.5067
600.00 3.35 2.63 3.26 28.25 2.4176 2.2687 2.1417 4.7271
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matrix when First order spline (1E1) coordinates are 
used for making the sparsifying matrix, for the input 
signal shown in Figure 2. The Figure 11 shows the 
improvement when Biorthogonal wavelets are used as 

the transform basis for the input signal in Figure 2 for 
modified and unmodified cases. For further insight we 
had done SVD and QR in modified and unmodified 
matrices.

Table 2.  Random samples vs. PRD

No: of Random 
Samples taken 

from 800 x1 
input vector .

PRD-1E1 PRD-1E2 PRD-1E3 PRD-Bior 4.4

PRD after 
modifcati

on for 
1E1

PRD after 
modifcati

on for 
1E2

PRD after 
modifcati

on for 
1E3

PRD after 
modifcati

on for 
Bior4.4

80 86.41 89.67 87.62 107.11 54.6236 54.218 54.9216 77.1839
120 75.89 80.16 76.87 84.58 43.427 44.4456 41.9154 59.4779
160 64.31 69.94 63.53 73.10 27.6844 28.7917 27.6138 53.9111
200 50.39 53.78 49.86 67.46 21.6142 20.4679 21.8589 51.2171
240 38.13 40.49 32.92 60.27 17.5227 15.1197 14.8688 44.3655
280 27.17 27.10 23.36 58.95 14.5978 10.6096 12.0841 44.8997
320 21.52 19.79 16.19 54.34 12.7238 8.7932 11.6678 37.8369
360 16.18 11.49 12.29 51.33 10.2379 7.9668 8.9614 32.2924
400 11.02 8.09 9.40 40.23 8.8409 7.0405 7.4815 31.2757
440 11.14 6.49 8.77 40.83 8.7917 6.0505 6.9935 26.3513
480 9.12 5.90 7.91 30.51 7.3567 5.2896 6.8954 24.6267
520 8.08 5.92 6.63 28.87 7.908 5.9754 6.4532 20.4767
560 7.93 5.43 5.76 16.66 7.4984 5.3355 5.7352 16.4755
600 7.02 5.11 5.13 8.52 6.7851 5.1951 5.1825 13.4541

Figure 10.  Comparison between proposed method and normal reconstruction using first order spline as transform 
(sparsifying) basis.
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5.1  Singular Value Decomposition – SVD
SVD for a real matrix A (m x N) , is given by UΣVT, where 
U is an ‘m x m’ matrix whose ‘m’ column are called left 
singular values, which are the Eigen vectors of AAT. V is 
an N x N matrix whose first N columns are called as right 
singular values, which are the Eigen vectors of ATA. Σ has 
the Eigen values from ATA. They are called the singular 
values of A. If A has a rank r, then there will be r singular 
values, rest of the values will be zero. From U and V all 
fundamental subspaces can be found, first r columns of 
U are bases for the column space of A, remaining ‘m-r’ 
columns are the basis of left null space of A. (Null space of 
AT). First ‘r’ columns in V are the bases for the row space 
of A where last ‘N-r’ columns in V give the bases for null 
space of A.

5.1.1  SVD of an Unmodified Reconstruction 
Matrix 
For an unmodified Φ (Φ = φψ), with m rows and N col-
umns and with all independent rows (rank, r = m), the 3 
dimensional plot (2 dimensional view didn’t reveal much 
details) of U and V are shown in Figure 12 and Figure 
13. The matrix is of size 520 x 800. Figure 13 presents the 
V matrix of an unmodified matrix, as we had considered 
A matrix of size 520 x 800, first 520 (m) columns are the 

Figure 11.  Comparison between proposed method and normal reconstruction using bi orthogonal wavelet as transform 
(sparsifying) basis.

bases of row space remaining 280 (N-r, 800-520) columns 
are the bases of null space of A.

5.1.2  Singular Value Plot
Singular values of the matrix are plotted in the Figure 14.

Since all rows of Φ are independent none of the sin-
gular values are zero. First (maximum) SVD value is 
111.25923 and the minimum is 3.2886 and the Condition 
number of the matrix is 33.8318.

5.1.3  SVD on Modified Matrix
After taking sum of elements in each row and replacing 
with the 400th column (this can be done for any column) 
we had done SVD on the Φ matrix. The U matrix obtained 
after decomposition is shown in the Figure 15. As the data 
is randomly spread we were not able to find the signifi-
cant difference between the modified and unmodified 
U matrices. The V matrix obtained after decomposition 
is shown in Figure 16. In the V matrix one Eigen vec-
tor comes out higher than the other vectors, which is 
encircled inside the red circle, which directly point out 
increase in the one singular value and it came likewise 
also. Singular value plot for modified matrix is shown in 
the Figure 17. Here in modified case the first (maximum) 
singular value came around 526.6753 and the minimum 
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Figure 12.  U matrix for an unmodified matrix Φ.

Figure 13.  V matrix for an unmodified reconstruction matrix Φ.

singular value came as 0. 2.8478 and the condition number 
is 184.9411. Increase in condition number normally dete-
riorates the matrix, so we made the reconstruction matrix 
using the modified V and U unmodified SVD values. The 
reconstruction quality still preserved indicating that the 
mutual in coherence plays the key than the increased 
singular value. We had done SVD decomposition of the 
reconstruction matrix when an identity matrix is used 
as sparsifying matrix. Figure 18 shows the 2 dimensional 

plot of V matrix with and without modification. Instead 
of adding columns to the reconstruction matrix with unit 
scaling, smaller integer scaling also may be used (e.g. 2, 3 
etc). A negative scaling also results in same improvement, 
indicating that the scaling can be done in both directions. 
Figure 19 shows the V matrix in that case. In V matrix 
the one element of Eigen vector with unit magnitude was 
found in the opposite direction. Two similarly scaled, one 
positive and the other negative also yielded same results.



Improving Information Content in Compressed Sensing by Modifying the Random Re-Construction Matrices  

Indian Journal of Science and TechnologyVol 9 (14) | April 2016 | www.indjst.org 10

5.2  QR Decomposition 
QR decomposition factorize the matrix (A) into 
two matrices (Q and R) such that A = QR, where Q 
is an orthogonal matrix and R an upper triangular  
matrix.

Figure 14.  Singular values for the unmodified reconstruction matrix Φ.

Figure 15.  U matrix for the modified reconstruction matrix Φ.

5.2.1  QR Decomposition on the Unmodified 
Reconstruction Matrix
We had done the QR decomposition on the modi-
fied and unmodified reconstruction matrices and the 
results are plotted. Figure 20 and Figure 21 shows 
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Figure 17.  Singular value plot for the modified reconstruction matrix Φ. Notice that the first singuar value being very high 
compared to others.

Figure 16.  V matrix for the modified matrix.

the Q and R matrices of unmodified reconstruction 
matrix. Q matrix of unmodified reconstruction matrix. 
Q matrix came as a randomly distributed orthogonal 
matrix such that QQT = 1. R matrix obtained from the 
unmodified matrix after the reconstruction is shown 
in the Figure 21.

5.2.2  QR Decomposition on the Modified 
Reconstruction Matrix
The Q and R matrices obtained are shown in Figure 22 
and Figure 23.

Q matrix for the modified reconstruction matrix 
obtained is shown in Figure 22. The data are randomly 
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Figure 18.  Diagonal elements of V Matrix with identity matrix as basis, without and with modification on reconstruction 
matrix,

Figure 19.  Diagonal elements of V matrix with identity matrix as basis, without and with modification.

distributed for this orthogonal matrix. R matrix for the 
modified Φ is shown in Figure 23. In R matrix there is set 
of high value elements through 400th column (where the 
row sum replaced the corresponding element).

6.  Conclusion
It is a basic question in Compressed Sensing that how 
information content can be improved without affect-
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Figure 20.  Q matrix of the unmodified matrix Φ.

Figure 21.  R matrix after QR for unmodified reconstruction matrix Φ.

ing the structure of the random matrix. Our work gives 
one such solution, which is evident from results and 
their analysis. By the changes we made on the random 
re-construction, one could conclude that we have gener-
ated a condition that mutual incoherence of one vector 
remained high while the solution is iterated. 

However, the scaling had no effect. This is proved by 
taking the V matrix of the modified matrix and using the 
singular values of the un-modified matrix, also resulted in 
a similar improvement in reconstruction. 

Normally, the singular values are affecting scale 
of the vectors in V and therefore the large value or the 
first singular value has no significant contribution in the 
reconstruction. To establish this, we have reconstructed 
the matrix with previous singular values and the V matrix 
corresponding to the modified matrix and it has been 
found that the quality of reconstruction is preserved. This 
is evident from a visualization of the V matrix, which 
changed only by one unit vector value contained in the 
matrix. Of course, some modest changes happened to 
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Figure 22.  Q matrix for modified reconstruction matrix Φ.

Figure 23.  In R matrix there is set of high value elements through 400th column (where the row sum replaced the corresponding 
element).

other vectors, but it remained random unitary matrix in 
general.

The matrix Q remained as a random unitary matrix. 
This paper also explains in depth how E-Splines can be 
used in compressed sensing. However, Biorthogonal 
wavelets were also used for a comparison. The improve-
ments in both cases are worth noting.
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