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Abstract
A new Two Derivative Runge-Kutta method (TDRK) based on First Same as Last (FSAL) technique for the numerical solution 
of first order Initial Value Problems (IVPs) is derived. We present a fourth order three stages TDRK method designed using 
the FSAL property. The stability of the new method is analyzed. The numerical experiments are carried out to show the 
efficiency of our methods in comparison with other existing Runge-Kutta methods (RK).

1. Introduction
We consider the numerical solution of the IVPs for first 
order Ordinary Differential Equations (ODEs) in the 
form of

		      (2)
In the last few years, many researches have proposed 

several TDRK methods as well as implementing FSAL 
technique. Chan and Tsai1 in their paper presented a 
theoretical formulation used for the derivation of TDRK 
methods. They constructed a special class of explicit 
methods of order up to seven that involve one -eval-
uation and a minimum number of -evaluations. In2 

developed a new Trigonometrically Fitted TDRK method 
of algebraic order five, analyze the linear stability and 
phase properties of the new method. Numerical results 
are reported to indicate the efficiency and competence 
of the new method compared with few highly efficient 
methods. 

Other from that, in3 derived three practical exponen-
tially fitted TDRK (EFTDRK) methods where numerical 
results show that the new EFTDRK methods are more 
accurate and more efficient than their prototype TDRK 

methods or some well-known RK methods of the same 
order and the traditional exponentially fitted RK method 
in the literature. Recently, in4 introduced a new class of 
implicit TDRK collocation methods designed for the 
numerical solution of systems of equations and showed 
how they have been implemented in an efficient parallel 
computing environment. 

In the earliest year, in5 derived a family of embedded 
RK formulae RK5(4) by implementing FSAL technique. 
An extended region of absolute stability and a ‘small’ 
principal truncation terms in the fifth order formulae are 
presented in their paper. In6 derived explicit Exponentially 
Fitted RKN methods (EFRKN) with two and three stages 
and third and fourth algebraic orders as well as a 4(3) 
embedded pair based on the FSAL technique for the 
numerical integration of second order IVPs with oscilla-
tory solutions. 

By using FSAL property7 presented extended Runge-
Kutta Nyström methods (RKN) for numerical integration 
of perturbed oscillators where the derivation of family of 
fixed step-size ERKN methods and the embedded pairs of 
ERKN methods are presented. The next method proposed 
by8 is higher order RK (pair) method which are pairs of 
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embedded RK methods of fourth and fifth order as well 
as a new RK method of order five are specially adapted to 
the numerical integration of IVPs with oscillatory solu-
tions.

In9 proposed a new way for constructing efficient 
embedded modified RK methods for the numerical solu-
tion of the Schrödinger equation. The embedded pairs 
are constructed based on the FSAL technique which has 
fourth and fifth algebraic order. The new pair is more 
efficient compared to other well-known comparable 
embedded RK pairs based on the applications of the new 
pair to several problems related to the Schrödinger equa-
tion.

Hence, in this paper, we construct a fourth order 
three stages TDRK method by implementing the FSAL 
property. In Section 2, an overview of TDRK method is 
given. The new FSAL TDRK method is constructed and 
the stability of the new method is analyzed in Section 3. 
Meanwhile in Section 4, the numerical results are dis-
cussed. The discussion and conclusion of the new method 
are reported in Section 5 and 6 respectively.

2. Two Derivative Runge-Kutta 
Methods
In this paper, we consider the following scalar ODE as 
given in Equation (1) with  In this study, 
we assume that the second derivative is also known where

  (2)
When a general  -stage TDRK method is applied to 

the ODE Equation (1) and (2), the following equations 
are obtained

	      (3)

	      (4)
Where, 
An explicit TDRK method can be presented using the 

Butcher Tableau with the coefficient in Equation (3) and 
(4) as given in Table 1.

Explicit methods which have minimal number of 
function evaluations can be constructed by considering 
the methods in the form

Table 1. Butcher tableau for explicit TDRK method
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(7)

Where, 
This method is called Special Explicit TDRK methods. 

The special part of this method is that it involves only one 
evaluation of  per step which makes it different from 
traditional explicit RK methods.

Table 2. Butcher tableau for special explicit TDRK 
method
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According to1, the order conditions for special explicit 
TDRK methods up to four are listed as below:

•	 Order 2: 

(9)

•	 Order 3:

(10)

•	 Order 4:

(11)
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The following simplifying assumption is used in prac-
tice

(12)

3. A Fourth order Two Derivative 
Runge-Kutta Method with FSAL 
Property
A particularly interesting special class of explicit RK 
methods is that for which the coefficients have a special 
structure known as First Same as Last (FSAL) where

 and 	    (13)
The advantage of FSAL methods is that the function 

value  at the end of one integration step is the same 
as the first function value at the next integration step. 

We implement the FSAL technique into the TDRK 
methods where the order conditions in Equation (9)–
(11) along with the simplifying assumption in Equation 
(12) need to be satisfied in order for a method to be a 
TDRK method. In particular, we consider in this paper a 
three stage explicit TDRK method given by the following 
Butcher tableau which has FSAL property.

(14)
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3.1 Construction of the New Method
Evaluating the simplifying assumption in Equation (12) 
we will get

(15)

According to the order conditions in Equation (9)–
(11) we have

(16)

(17)

(18)

Solving Equation (16)–(18) we obtain

The new method can be written in the following 
Butcher tableau:

(19)
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This new method is called as FSALTDRK3(4) method.

3.2 Stability of the New Method
In this sub-section, we will investigate the linear stabil-
ity of the new method. The stability function of TDRK 
method is given as follows:

	    (20)
Meanwhile for special explicit TDRK method, we 

consider the following test equation
 where 

					       (21)
Applying Equation (21) to the special explicit TDRK 

method which is Equation (6) and (7) produces the dif-
ference equation

Figure 1. Stability region of method FSALTDRK3(4).

		     (22)
where

				    (23)

 is the coefficient of the new method with
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(24)

The stability function of the FSALTDRK3(4) method 
is

	    (25)
The stability region of the FSALTDRK3(4) method is 

plotted in Figure 1.
Meanwhile, the stability interval of this new method 

is 

4. Problems Tested and Numerical 
Results
In this section, we compare the performance of the pro-
posed method FSALTDRK3(4) with existing RK methods 
by considering the following problems. All problems 
below are tested using C code for solving differential 
equations.

Problem 1 (In10)

The exact solution is

Problem 2 (In11)

The exact solution is

Problem 3 (In11)

The exact solution is

Problem 4 (In12)

The exact solution is 
Problem 5 (In13)

The exact solution is 
The following notations are used in Figures (2-6):
•	 FSALTDRK3(4): New TDRK method with FSAL 

property of fourth order three stages derived in 
this paper.

•	 RKM5(4): Existing fourth order five stages 
Merson’s method given in14.

•	 RKE6(4): Existing fourth order six stages 
England’s method given in14.

•	 RKB5(4): Existing fourth order five stages RK 
method derived by15.

•	 RK4: Existing fourth order four stages classical 
RK method given in14.

•	 RK4(3/8 rule): Existing fourth order four stages 
classical 3/8 rule RK method given in14.

The numerical results and the graphic performance of 
these methods are presented in the following Tables (3-7) 
and Figures (2-6):

Table 3. Numerical results for problem 1

h Methods T=10 Function 
Evaluation

0.1 FSALTDRK3(4) 1.020036 (-5) 303
RKM5(4) 1.334286 (-5) 505
RKE6(4) 4.016703 (-5) 606
RKB5(4) 5.633442 (-5) 505
RK4 4.135314 (-5) 404
RK4(3/8 rule) 1.546268 (-4) 404

0.05 FSALTDRK3(4) 5.659144 (-7) 600
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RKM5(4) 6.941171 (-7) 1000
RKE6(4) 2.456736 (-6) 1200
RKB5(4) 3.015911 (-6) 1000
RK4 2.001408 (-6) 800
RK4(3/8 rule) 8.018841 (-6) 800

0.025 FSALTDRK3(4) 3.311131 (-8) 1200
RKM5(4) 3.897247 (-8) 2000
RKE6(4) 1.515634 (-7) 2400
RKB5(4) 1.723513 (-7) 2000
RK4 1.067869 (-7) 1600
RK4(3/8 rule) 4.481370 (-7) 1600

0.0125 FSALTDRK3(4) 1.998886 (-9) 2403
RKM5(4) 2.297481 (-9) 4005
RKE6(4) 9.208075 (-9) 4806
RKB5(4) 1.026252 (-8) 4005
RK4 6.101190 (-9) 3204
RK4(3/8 rule) 2.632901 (-8) 3204

0.00625 FSALTDRK3(4) 1.225219 (-10) 4803
RKM5(4) 1.395175 (-10) 8005
RKE6(4) 5.855847 (-10) 9606
RKB5(4) 6.257205 (-10) 8005
RK4 3.636633 (-10) 6404
RK4(3/8 rule) 1.593087 (-9) 6404

Table 4. Numerical results for problem 2

h Methods T=10 Function 
Evaluation

0.1 FSALTDRK3(4) 3.575835 (-3) 303
RKM5(4) 8.586984 (-3) 505
RKE6(4) 4.395414 (-3) 606
RKB5(4) 3.731913 (-3) 505
RK4 4.395414 (-3) 404
RK4(3/8 rule) 7.375759 (-3) 404

0.05 FSALTDRK3(4) 1.693585 (-4) 600
RKM5(4) 5.279925 (-4) 1000
RKE6(4) 1.920408 (-4) 1200
RKB5(4) 2.188156 (-4) 1000
RK4 1.920408 (-4) 800
RK4(3/8 rule) 4.240103 (-4) 800

0.025 FSALTDRK3(4) 9.950386 (-6) 1200
RKM5(4) 3.272659 (-5) 2000
RKE6(4) 1.033100 (-5) 2400
RKB5(4) 1.361399 (-5) 2000

RK4 1.033100 (-5) 1600
RK4(3/8 rule) 2.556161 (-5) 1600

0.0125 FSALTDRK3(4) 6.131551 (-7) 2403
RKM5(4) 2.032682 (-6) 4005
RKE6(4) 5.934668 (-7) 4806
RKB5(4) 8.517467 (-7) 4005
RK4 5.934668 (-7) 3204
RK4(3/8 rule) 1.570303 (-6) 3204

0.00625 FSALTDRK3(4) 3.794398 (-8) 4803
RKM5(4) 1.265868 (-7) 8005
RKE6(4) 3.829597 (-8) 9606
RKB5(4) 5.324702 (-8) 8005
RK4 3.829596 (-8) 6404
RK4(3/8 rule) 9.734090 (-8) 6404

Table 5. Numerical results for problem 3

h Methods T=10 Function 
Evaluation

0.01 FSALTDRK3(4) 2.183865 (-9) 3003
RKM5(4) 1.550359 (-1) 5005
RKE6(4) 1.675961 (-1) 6006
RKB5(4) 2.091357 (-2) 5005
RK4 1.675961 (-1) 4004
RK4(3/8 rule) 1.369084 (-1) 4004

0.005 FSALTDRK3(4) 6.373158 (-11) 6000
RKM5(4) 9.198903 (-2) 10000
RKE6(4) 8.135433 (-1) 12000
RKB5(4) 5.065821 (-2) 10000
RK4 8.135433 (-1) 8000
RK4(3/8 rule) 4.476555 (-2) 8000

0.0025 FSALTDRK3(4) 8.056888 (-12) 12000
RKM5(4) 3.131521 (-1) 20000
RKE6(4) 1.681169 (-1) 24000
RKB5(4) 1.232556 (-1) 20000
RK4 1.681169 (-1) 16000
RK4(3/8 rule) 1.881734 (-1) 16000

0.00125 FSALTDRK3(4) 2.583933 (-12) 24000
RKM5(4) 4.383508 (-3) 40000
RKE6(4) 3.220834 (-1) 48000
RKB5(4) 2.696577 (-1) 40000
RK4 3.220834 (-1) 32000
RK4(3/8 rule) 2.432933 (-1) 32000

0.000625 FSALTDRK3(4) 3.696599 (-12) 48003
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RKM5(4) 2.314545 (-2) 80005
RKE6(4) 6.878039 (-3) 96006
RKB5(4) 2.125186 (-2) 80005
RK4 6.878039 (-3) 64004
RK4(3/8 rule) 7.583173 (-3) 64004

Table 6. Numerical results for problem 4

h Methods T=10 Function 
Evaluation

0.1 FSALTDRK3(4) 8.570419 (-2) 303
RKM5(4) 1.428479 (-1) 505
RKE6(4) 2.105403 (-1) 606
RKB5(4) 1.319206 (-1) 505
RK4 2.105403 (-1) 404
RK4(3/8 rule) 2.218055 (-1) 404

0.05 FSALTDRK3(4) 5.167567 (-3) 600
RKM5(4) 8.158682 (-3) 1000
RKE6(4) 1.226338 (-2) 1200
RKB5(4) 7.669778 (-3) 1000
RK4 1.226338 (-2) 800
RK4(3/8 rule) 1.300372 (-2) 800

0.025 FSALTDRK3(4) 3.361561 (-4) 1200
RKM5(4) 5.130850 (-4) 2000
RKE6(4) 7.815214 (-4) 2400
RKB5(4) 4.879689 (-4) 2000
RK4 7.815214 (-4) 1600
RK4(3/8 rule) 8.311731 (-4) 1600

0.0125 FSALTDRK3(4) 2.174382 (-5) 2403
RKM5(4) 3.258069 (-5) 4005
RKE6(4) 5.000124 (-5) 4806
RKB5(4) 3.118758 (-5) 4005
RK4 5.000124 (-5) 3204
RK4(3/8 rule) 5.325290 (-5) 3204

0.00625 FSALTDRK3(4) 1.355205 (-6) 4803
RKM5(4) 2.020031 (-6) 8005
RKE6(4) 3.112604 (-6) 9606
RKB5(4) 1.938293 (-6) 8005
RK4 3.112553 (-6) 6404
RK4(3/8 rule) 3.318062 (-6) 6404

5. Discussion
The efficiency of the method developed is presented in 
Figures (2-6) by plotting the graph of the decimal loga-

rithm of the maximum global error against the logarithm 
number of function evaluations. Observing from the graph 
plotted in Figures (2-5) we can see that FSALTDRK3(4) 
have the smallest maximum global error and number of 
function evaluations per step compared to other existing 
RK methods. Meanwhile according to Table 7 and Figure 
6, FSALTDRK3(4) is significantly more efficient in term 
of the number of function evaluations per step than other 
existing RK methods although its maximum global error 
is slightly bigger than RKM5(4).

Figure 2. Efficiency graph for problem 1 with  
and 

Figure 3. Efficiency graph for problem 2 with  
and 

Figure 4. Efficiency graph for problem 3 with   
and 
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Figure 5. Efficiency graph for problem 4 with  
and 

Figure 6. Efficiency graph for problem 5 with  
and 

Table 7. Numerical results for problem 5

h Methods T=10 Function 
Evaluation

0.1 FSALTDRK3(4) 2.870389 (-6) 303
RKM5(4) 1.033965 (-6) 505
RKE6(4) 7.470167 (-6) 606
RKB5(4) 2.976730 (-6) 505
RK4 7.470167 (-6) 404
RK4(3/8 rule) 6.552390 (-6) 404

0.05 FSALTDRK3(4) 1.793384 (-7) 600
RKM5(4) 5.814523 (-8) 1000
RKE6(4) 4.175982 (-7) 1200
RKB5(4) 1.718551 (-7) 1000
RK4 4.175982 (-7) 800
RK4(3/8 rule) 3.660042 (-7) 800

0.025 FSALTDRK3(4) 1.125747 (-8) 1200
RKM5(4) 3.455697 (-9) 2000
RKE6(4) 2.467759 (-8) 2400

RKB5(4) 1.029720 (-8) 2000
RK4 2.467759 (-8) 1600
RK4(3/8 rule) 2.159810 (-8) 1600

0.0125 FSALTDRK3(4) 7.043062 (-10) 2403
RKM5(4) 2.105660 (-10) 4005
RKE6(4) 1.499930 (-9) 4806
RKB5(4) 6.303309 (-10) 4005
RK4 1.499930 (-9) 3204
RK4(3/8 rule) 1.311178 (-9) 3204

0.00625 FSALTDRK3(4) 4.405021 (-11) 4803
RKM5(4) 1.299799 (-11) 8005
RKE6(4) 9.244484 (-11) 9606
RKB5(4) 3.898320 (-11) 8005
RK4 9.244479 (-11) 6404
RK4(3/8 rule) 8.075920 (-11) 6404

6. Conclusion
In this paper, we have developed a new special explicit 
TDRK method with FSAL property. Based on the numer-
ical results obtained, we can conclude that the new 
FSALTDRK3(4) method is more promising compared 
to other well-known existing explicit RK methods of the 
same order in term of accuracy and the number of func-
tion evaluations per step.
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