
Abstract
Background/Objectives: The objective of the present work is to investigate the effects of the thermophoresis and the fluid 
viscosity on a forced convection heat and mass transfer on non-similar flow past a permeable wedge embedded in a porous 
medium. Methods of Analysis: The analysis is conducted by using a local non-similarity scheme of the second level truncation 
in the presence of thermophoresis and variable viscosity. The governing equations of the non-similar convection are presented 
in the dimensionless form by applying Falkner-Skan variable to obtain the set of ordinary differential equations. Runge-Kutta-Gill 
in conjunction with shooting method is applied to find a skin friction, rate of heat and mass transfer. The initial value problems 
are solved numerically using Runge Kutta-Fehlberg methods and presented graphically. Findings: The thermophoresis has 
significant effect to speed up the process for decreasing concentration significantly, while the effects of viscosity is to increase or 
decrease the velocity of fluid depend on the value of viscosity parameter, positive or negative, respectively. Validation is conducted 
by comparing the current works with previous works and found that the results are in excellent agreement. The conclusion is 
drawn that the non-similar velocity and the concentration of fluid are significantly affected by thermophoresis and viscosity. 
Application/Improvements: The results of an analysis on the effects of thermophoresis and viscosity on boundary layer flow 
over solid surfaces can be applied to design an instrument to remove pollutants from environment
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1.  Introduction
The study of convective heat and mass transfer over solid 
surfaces has attracted attentions during recent years due to 
its various applications, mainly in the heating and cooling 
processes, in designing equipment for removing pollutant 
and in an aircraft design. Thernophoresis particle deposi-
tion is a phenomena in which a particle moves from the 
hotter surface towards the cooler one due to temperature 
different. This force plays an important role on mass trans-
port in boundary layer flow. 

The analysis of thermophoretic over boundary layer flow 
was first conducted by Hales et al.2 by solving the simulta-
neous governing equations of aerosol and steam transfer 
over a vertical flat surface. Furthermore, many researchers 
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were interested to investigate the thermophoretic effects on 
a velocity, thermal and mass boundary layers of Newtonian 
fluid in various geometry and fluids. Chamkha and Pop3 
investigated the thermophoretic effect on free convection 
heat transfer over a vertical surface embedded in porous 
medium. Mahdy and Hady4 investigated the effects of 
particles deposition due thermophoretic force in a magneto-
hydrodynamics flow of non-Newtonian fluid under influence 
of magnetic force field. Duwairi and Damseh5 studied the 
influence of thermophoretic force on mixed convective heat 
transfer mode with non-isothermal wall temperature and 
non-uniform wall concentration. Jayanthi and Kumari6 used 
the non-Dary model to investigate the effect of time depen-
dent viscosity on fluid flow saturated porous medium over a 
vertical surface under free or mixed convection modes.



Non-similar Boundary Layers over a Wedge due to Thermophoresis and Viscosity Effects

Indian Journal of Science and TechnologyVol 8 (32) | Nov 2015 | www.indjst.org 2

Recently, Animasaun7 examines the influence of ther-
mophoretic force, fluid viscosity and thermal conductivity 
of an incompressible Casson magneto hydrodynamics flow 
along a vertical porous plate by taking into account a vis-
cous dissipation, nth order chemical reaction and suction. 

The effect of thermophoretic over a wedge and inclined 
surface was reported by some authors. Kandasamy et al.8 
studied the thermophoretic phenomenon, surface and 
volume chemical reaction effects on convective bound-
ary layers over a permeable wedge suction. Alam et al.9 
observed the influence of thermophoresis and suction 
parameters on an electrically conducting fluid flow past 
a semi-infinite inclined permeable surface under thermal 
surface radiation effect. The mode of the convection is a 
mixed convective heat and mass transfer. 

The stagnation point flow of two-dimensional is a 
classical problem in fluid dynamics. It was first explored 
by Hiemenz. These kinds of flows are occurred in many 
situations, such as flows past the front parts of rockets, 
aircraft, and aerodynamics vehicles. Some of published 
works which are much related with our current discus-
sion on Hiemenz flows are given by Jian et al.10, who 
investigated the deposition effect of aerosol particle onto 
a stretching surface from porous medium. Radiah et al.11 
and Siva Raman et al.12 analyzed the enhancement of heat 
transfer on nanofluid due to solar energy radiation past 
a porous wedge in the presence of suction/injection. In 
these kinds of problems, the boundary layer equations are 
reduced into ordinary differential equations by applying 
the well-known Falkner-Skan13 transformation.

All analyses in the published works mentioned above 
were done by using a similarity transformation in which 
the flow fields are assumed to be similar. In case of the flow 
is non-similar, one had to solve nonlinear partial differen-
tial equations. The non-similarity of governing equations 
may results from a variety of causes, such as non-isother-
mal wall temperature, non-uniform wall concentration, 
non-uniform magnetic field along the wall, and time 
dependent viscosity. Because of the mathematical com-
plexity, most researchers avoid to use the non-similarity 
model on boundary-layers equations. This is a reason 
why most of published works on governing equations of 
boundary layers are related to similarity flow. This is to 
simplicity. This article is intended to investigate theoreti-
cally the convective boundary layers along a Newtonian, 
incompressible, viscous fluid on non-similar Hiemenz flow 
past a permeable wedge embedded in a non-isothermal  

porous wedge due to thermophoretic force of particle 
deposition and thermal variable viscosity in the presence 
of suction / injection with variable stream conditions.

Nomenclature
C 	 : species concentration of fluid.

pc 	 : specific heat capacity at constant pressure	
D 	 : coefficient of diffusion
g 	 : gravitational force
K 	 : permeability of a porous medium

ek 	 : porous medium effective thermal conductivity
T 	 : fluid temperature.

vu, 	: components of velocity in x and y direction
a 	 : thermal diffusivity
m	 : dynamic viscosity
r 	 : fluid density
n 	 : kinematic viscosity

Subscripts
∞ 	 : stream conditions
w 	 : wall conditions

2.  Mathematical Formulation
Let us consider a Hiemenz stagnation flow coupled with 
forced convective heat and mass transfer past a non-iso-
thermal heated permeable wedge embedded in a highly 
porous media. The flow is assumed to be a steady, two-
dimensional and laminar. The fluid is a Newtonian, 
viscous and incompressible. The non-Darcy model is 
used to characterize the flow due to flow in highly porous 
medium. The density variation due to temperature is 
considered in the momentum equation and the species 
concentration in stream conditions is infinitesimal small. 
The viscosity is assumed to be varies inverse linearly 
with temperature. The velocity at free stream condition 
is assumed to be the power of the longitudinal distance 
from the leading edge. The temperature and concentra-
tion at the surface vary along the surface of the wedge. 

Let the x -axis be put along the wedge wall from stag-
nation point and y -axis normal to it as shown in Figure 1.  
Slot suction or injection of fluid is placed at the wedge 
surface. The inertia force and viscosity are taken into 
account in the momentum equation due to the flow in 
highly porous medium. Under these assumptions, the 
system of equations governing flow fields (continuity of 
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mass, velocity, thermal and concentration boundary lay-
ers) under Boussinesq’s approximation are given by 

	
u
x

v
y

0
∂
∂

+
∂
∂

= 	 (1)

	u
u
x

v u
y y

u
y

U dU
dx

u U
K

F u U
K

1 ( ) ( )2 2

ρ
µ ν∂

∂
+

∂
∂

=
∂

∂
∂

∂






+ −
−

−
−

	
		  (2)

	
u T

x
v T

y
T

y c
u
yp

2

2

2

α µ
ρ

∂
∂

+
∂
∂

=
∂
∂

+
∂
∂





 	 (3)

	 u C
x

v C
y

D C
y

V C
y

( )T
2

2

∂
∂

+
∂
∂

=
∂
∂

−
∂

∂
	 (4)

with the conditions at the boundary

at = = = − = + = +∞ ∞y u v v T T bx C C cx0 : 0, , ,w
n

w
n

0     (5)

at ∞→y : mAxxUu == )( , ∞= TT , ∞= CC (6)

where ν= − ∂ ∂∗V k T T y( / )( / )T  is the velocity of ther-
mophoretic, with ∗k  is the constant coefficient of  
thermophoretic in the resistance of second order. When 
Forchheimer number 0=F , Equation (2) is reduced to 
the Darcy model. The term four and five on the right-
hand side of Equation (2) represent the first-order and the 
second-order Darcy resistance, respectively.

3.  Falkner-Skan Transformation
In the boundary layers problem, the behaviors of flow, 
heat and mass transport inside boundary layers can be 
predict based on the performance of fluid flow at the 

free stream level which is called by stream function y. 
For non-similar flow over a wedge, the non-similarity 
dimensionless stream function is given by Falkner-Skan 
transformation as proposed by Kumari et al14. 
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where the stream function velocity 

	 β β= = −U Ax m, / (2 )m
1 1 	 (9)

where β π= Ω /1  is called a parameter of Hartree pres-
sure gradient and Ω is total angle of the wedge. 
By defining the stream function ψ ηx( , ) as shown in 
Equation (7), the continuity equation (1) is satisfied such 
that 
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By assuming the viscosity is a linear function of tem-

perature as given by Abo-Eldahab15
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∞
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where μ∞ is the dynamic viscosity of ambient fluid and γT 
is a thermal property of the fluid, the equation (13) can be 
represented as follows 

	
µ

= −a T T1
( )r

	 (13)

where γ µ= ∞a /T  and γ= −∞T T 1/r T . The constants val-
ues of a  and rT  can be calculated depend on the thermal 
property of the fluid and reference state.

The governing equations (2) – (4) subject to the 
boundary conditions (5) and (6) can be written in the 
dimensionless form by defining the following dimension-
less variables.
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Figure 1.  Flow analyses and coordinate system.
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Substituting equations (7) – (15) into equations (2) – (4) 
and rearranging yields
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with the dimensionless boundary conditions are
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where prime sign (ʹ) in the equations (16) – (18) and  
boundary conditions (19) – (20) represent the deriva-
tive with respect to variable η. Reynolds number, 
parameter porosity and Schmidt number are defined by 

ν=UxRe /x , λ ν= KA/  and ν=Sc D/ , respectively. 
Parameter S is a suction if 0>S  and S is an injection if 

0<S . Dimensionless parameter of Forchheimer number 
is denoted by Fn and dimensionless parameter of refer-
ence temperature is given by θ = − −∞ ∞T T T T( )/ ( )r r w . 

Now, introducing a dimensionless parameter ξ repre-
senting the distance along the wedge defined by 

	 ξ = −kx m(1 )/2 	 (21)

where k is a positive constant and substitute into the equa-
tions (16) – (18) with the boundary conditions (19) – (20) 

yields the system of partial differential equations (22) – 
(24) subject to boundary conditions (25) – (26), 
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The main physical quantities of interest are local skin 
friction coefficient, the Nusselt number and Sherwood 
number which are defined by 

	 τ
ρ

ξ
= = + ′′C

U
m f2

2( 1)
( ,0)

Ref
s

x
2 1/2

	   (27)

	 θ ξ( )= −
+

′Nu m 1
2

Re ,0x x
1/2 	 (28)

	   ϕ ξ( )= −
+

′Sh m 1
2

Re ,0x x
1/2  	 (29)

where  is the viscous friction on the wedge surface is 
determined by 
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4.  Local Non-similarity Solution
To derive equations for second level truncation, it is con-
venient to define the following new variables, 
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At the second level truncation, the simultaneous 

governing equations (22) – (24) are retained without 
approximation. Subsidiary equations for χ, Θ, Ф and their 
boundary conditions are obtained by taking the deriva-
tives of equations (22) - (24) with respect to ξ, and terms 
involving ξh, ξh', ξl and ξq are ignored. Now, the govern-
ing equations of the second level of truncation consists 
of the coupled of former equations and subsidiary equa-
tions.
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In the local non-similarity approach for second level 
truncation, the approximation is introduced in a subsid-
iary equation, that is, in equations (35) – (37). Hence, it 
yields more accurate result than those of the local similar-
ity solution. However, the exact solution for this problem 
are complicated, so numerical scheme is preferred. In 
this article, the numerical scheme from Runge-Kutta-Gill 
with modified Newton-Raphson shooting method can be 
applied to find the values of skin friction ′′f (0) , rate of 
heat transfer θ ′(0)  and rate of mass transfer ϕ'(0). Now, 
the governing equations (32) – (37) with all initials val-
ues are called a system of initial value problems. Finally, 
the Fourth order Runge-Kutta in conjuction to Fehlberg 
method can be applied to solve this problem. The solu-
tion profiles are shown graphically to show the interesting 
aspect of the solution. 

5.  Results and Discussion
The problem of convective heat and mass transfer in 
non-similar Hiemenz flow of Newtonian, viscous and 
incompressible fluid over a porous wedge which are 
described by governing equations (32) – (37) subject to 
boundary conditions (38) – (29) are solved numerically 
after finding the values of skin friction, rate of heat and mass 
transfer by applying the Classical Fourth-order Runge-
Kutta Fehlberg Scheme with respect to some prescribed 
parameters such as Prandtl number, Forchheimer num-
ber, Stanton number for various values of thermophoretic 
and viscosity parameters. To validate our this method, we 
already compared results of Stanton number St Rem x

1/2  to 
those of Mills et al.16, Tsai17 and Chamkha18 for various 
values of suction )0(f  and thermophoretic parameter 
τ with =Pr 0.7 , = = ∆ = =Sc Ha Ec0.0001, 0, 0, 02 , and 
θ ′ = −(0) 0.4138  which is presented in Table 1. The cur-
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rent results are found in excellence agreement with the 
previously published works. Hence, we are very confident 
to analyse and to draw conclusion based on this methods 
presented in this article.

St Rem x
1/2

τ f (0) Mills et 
all15

Tsai16 Chamkha17 Present 
works

0.01 1.0 0.7091 0.7100 0.7098 0.7100
0.01 5.0 0.3559 0.3565 0.3590 0.3565
0.01 0.0 0.0029 0.0029 0.0030 0.0029
0.1 1.0 0.7265 0.7346 0.7241 0.7346
0.1 0.5 0.3767 0.3810 0.3810 0.3810
0.1 0.0 0.0277 0.0275 0.0280 0.0275
1.0 1.0 0.8619 0.9134 0.8932 0.9133
1.0 0.5 0.5346 0.5598 0.5450 0.5598
1.0 0.0 0.2095 0.2063 0.2120 0.2062

Table 1.  Comparison the values of Stanton number 
St Rem x

1/2  to those of previous published works

The values of the skin friction ′′f (0) , rate of heat and 
mass transfer, θ ′(0) and ϕ′(0) , respectively, are evaluated 
for some prescribed parameter of interest. These values 
are very important not only from a major physical interest 
but also from mathematical aspects in which the govern-
ing equations are changed from a system of boundary 
value problems into a system of initial value problems. 
Hence, the governing equation can be solved numerically 
by applying the Fourth-Order Runge Kutta method. It is 
also noted that the values of Prandtl number =Pr 0.72  
represents air at temperature C200  and =Sc 0.62  corre-
sponds to a diffusion of water vapour in air. The reference 
temperature θ r  is negative or positive depends on state 
of fluid. In case of liquids, the reference temperature is 
negative, while the reference temperature is positive in 
case of gas, provided the wall temperature is greater than 
an ambient temperature. The other parameter values are 
given for local Reynold number =Re 5x , porosity param-
eter λ = 0.1 , suction S = 1, modified Reynold number 

=Re 1k , Eckert number Ec = 0.01, power law of tempera-
ture n = 0.3 and Hartree pressure gradient =m 0.0909 . 

The influence of thermophoresis and viscosity on 
dimensionless velocity and mass transfer profiles are 
displayed in Table 2 and Table 3. It is noticed that the 

increasing value of thermophoretic and viscosity param-
eters affect to decrease skin friction, but the rate of heat 
transfer remain constant. In addition, the mass transfer 
rate increases because of the increasing thermophoretic 
parameter and it remains constant with an increase of the 
viscosity parameter, provided the values of other param-
eters are kept constant. 

τ ξ′′f ( ,0) θ ξ− ′( ,0) ϕ ξ− ′( ,0)

1 4.923522 1.699558  2.679368    
5 4.556477   1.687626   6.556575    
7 4.465310   1.685227   8.581475    
10 4.380982   1.683370  11.659247    

Table 2.  The values of skin friction, heat and mass 
transfer rate ξ′′f ( ,0) , θ ξ− ′( ,0)  and ϕ ξ− ′( ,0)  for 
various values of thermophoretic parameter τ  with 
θ = −5r , =Fn 0.1

Table 3.  The values of skin friction, rate of heat and 
mass transfer ξ′′f ( ,0) , θ ξ− ′( ,0)  and ϕ ξ− ′( ,0)  for 
various values of reference temperature parameter θr 
with =Fn 0.1  and τ =1 .

θr ξ′′f ( ,0) θ ξ− ′( ,0) ϕ ξ− ′( ,0)

-1.0 5.044627   1.685399   2.506783    
-5.0 3.208586   1.654288   2.456865    
-10.0 2.969034   1.648642   2.448369    

Furthermore, the influence of thermophoretic param-
eter on the dimensionless fluid velocity, temperature and 
concentration of fluid profiles are depicted in Figure 2. 
It is noticed that an increasing thermophoretic value 
affects to decrease the velocity and concentration pro-
file of fluid but fluid temperature remains constant. This 
is evaluated at liquid reference temperature θ = −r 5 . In 
special case, when the value of Schmidt number is small 
for which the convection effects is small compared to the 
Brownian diffusion effect. However, when the values of 
Schmidt number is large (Sc > 100), the confection effects 
is maximal compared to diffusion effect, therefore, the 
concentration boundary layer is expected to be altered 
by thermophoretic parameter. This is similar to the result 
of Goren18 on the effect of thermophoresis on boundary 
layer flow over a flat plate. 
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Figure 2.  Thermophoretic effect on the dimensionless 
velocity, temperature and concentration profiles λ= = = = =Sc SPr 0.72,Re 5, 0.1, 0.62, 1,x  

λ= = = = =Sc SPr 0.72,Re 5, 0.1, 0.62, 1,x  θ= = = = = − =F Ec n r mRe 1, 0.1, 0.01, 0.3, 5, 0.0909.k n

θ= = = = = − =F Ec n r mRe 1, 0.1, 0.01, 0.3, 5, 0.0909.k n

The effects of viscosity parameter θr on dimension-
less velocity, temperature and concentration profiles are 
shown in Figure 3a and 3b. In case of liquid, the increas-
ing values of viscosity parameter will decrease the profiles 
of dimensionless velocity, temperature and concentration 
inside the boundary layer which is depicted in Figure 3a. 
While in the case of gas, when the viscosity parameter 
increases, then the velocity of fluid increases and it means 
that the thickness of thermal boundary layer decreases. So, 
fluid motion is accelerated and the temperature of the fluid 
along the wall is reduced by the increasing value of viscos-
ity parameter, but the concentration of the fluid remains 
constant with an increase of the viscosity parameter.

Figure 3(a).  In the case of  0<rq .

Figure 3(b)  In the case of  .θ >r 0
Figure 3.  Viscosity variable effects on dimensionless 
velocity, temperature and concentration profile for λ= = = = =Gr ScPr 0.72,Re 5, 1, 0.1, 0.62,x  

λ= = = = =Gr ScPr 0.72,Re 5, 1, 0.1, 0.62,x  Rek= 1,= = = = =F F Ec n m0.1, 0.1, 0.01, 0.3, 0.0909.n n

= = = = =F F Ec n m0.1, 0.1, 0.01, 0.3, 0.0909.n n

6.  Conclusion
Discussion on this paper focuses on numerical study of 
the impacts of thermophoresis particle deposition and 
variable viscosity on forced convective boundary lay-
ers Hiemenz flow over a porous wedge. Based on the 
final form of the mathematical models, there are many 
parameters involved, but only some effects of parameters 
are discussed here. For certain values of parameters will 
determine a certain solution which related to the specific 
physical meaning. For this purpose, this model will be 
examined by the impact of thermophoresis and viscosity 
parameters. Two conclusion are drawn from this study. 

•	 The increase in the value of the termophoretic 
parameter will accelerate the decline in the concen-
tration of the liquid inside concentration boundary 
layer. It means that the thickness of concentration 
boundary layer decreases with an increase of the 
thermophoretic. 

•	 Fluid motion is accelerated and the temperature of 
the fluid along the wall is reduced by the increasing 
value of viscosity parameter, but the concentration of 
the fluid remains constant with an increase of the vis-
cosity parameter. It is also observed that the velocity 
boundary layer thickness decreases with the increase 
of viscosity parameter. 
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