
Abstract
Background: In this study, we use operational Tau method (OTM) for finding the answer for fractional integral-differential 
equations (FIDEs). Methods: We prove that the approximated solutions of the Legendre Tau method converge to the 
exact solution in the  norm. Also, some numerical findings are presented to clearly show the better performance of 
the proposed approach. Results: Outcomes reveals that the spectral approach based on the shifted Legendre basis can be 
considered as a structurally simple method that is typically applied for numerical solve of FIDEs. Also, our concentration 
restricted to linear Volterra FIDEs, we propose the approach to be developed to more common FIDEs. Despite the relatively 
low degrees utilized the numerical findings demonstrate the better performance of the spectral approach, in real condition, 
by considering the Legendre basis. Conclusion: Although the spectral rate of convergence illustrates the error of the 
Legendre spectral method demonstrates a tendency to increase fast.
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1.  Introduction
It is said that several phenomena in various branches of 
science can be explained properly by patterns utilizing 
math instruments from fractional calculations, i.e., the 
approach of differential and integrals of fractional non-
integer order. This mathematical event let describing an 
actual object more accurately1.

Some kind of fractional boundary value problems 
(FBVPs) with Caputo’s derivatives, and a coupled system 
of fractional differential equations have been evaluated by 
Kilbas and Trujillo2, Zhang3, respectively. In4, they inves-
tigated the existence and uniqueness of solving of some 
types of FBVPs with Caputo’s differentials and Riemann–
Liouville differentials, respectively.

Besides, in these cited works, more contributions5 have 
been made to the analytical and numerical investigation 
of the solutions of FBVPs. Recently, multiple numerical 

approaches to solve fractional integro-derivate equations 
(FIDEs) were given6.

Being and uniqueness of answers for the fractional 
integro differential equalizations in Banach are discussed 
in7. Wittayakiattilerd8 considered fractional integro-
differential equations of mixed type with delay in the 
Riemann-Liouville sense. Local and global existence and 
uniqueness of mild solution are verified by utilizing a 
group of solution operators and the contraction mapping 
issues on Banach space. 

The great aim of our study is to study the fractional 
integro-differential equations

	 � (1)

subject to the initial values

	 � (2)

with  are 
given functions,  is the unknown function to be 
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determined,  is the fractional derivative. In our paper, 
we let 

Sudsutad9 presented some new Being and uniqueness 
results for FIDEs based on the Banach contraction 
principle and Krasnoselskii’s fixed point theorem.

Vanani10 solved the Volterra fractional 
integro-differential equation by using operational Tau 
method (OTM) and presented an algorithm to finding 
approximate solution.

In this work, we investigate an approximate solution 
by applying operational spectral method and using shifted 
Legendre polynomials and then, analyzes the accuracy by 
presenting spectral rate. 

2.  Notation and Preliminaries
For  to be the tiniest integral that is prominent 
than or equivalent to α, the Caputo’s fractional acquired 
scoundrel of order α>0, is determined as:

	 � (3)

where

For the Caputo’s derivative [8]:

	 � (4)

Revive that for α∈N; the Caputo differential scoundrel 
matches with the general differential scoundrel of inte-
gral form. Comparable to integer-order differentiation, 
Caputo’s fractional differentiation is a straight action:

	 � (5)

where  and  are constants.
The Legendre polynomials  are 

defined on the interval  To use certain polyno-
mials on the interval (0,1), we determine the so-called 
moved Legendre polynomials by adding the correction 
of parameter t=2x-1. Let the moved Legendre polyno-
mials L_i (2x-1) be expressed by  satisfying the 
orthogonality relation

	 � (6)

where 
The analytic form of the shifted Legendre polynomial 

of degree n is given by

	 � (7)

Theorem 1. �The fractional acquired of series α in the 
Caputo mind for the moved Legendre 
polynomials is provided by

	 � (8)

where

(9)

3. A Shifted Legendre Tau Method
The primary purpose of this part is to state the construction 
of OTM and its relevance to the fractional calculus. 

The main idea of OTM is that we attempt a polynomial 
to fair y(x)∈L^2 [0,1] where

L^2 [0,1] is the period of all functions f:[0,1]→R, with 
||f||^2<∞ with

For simplicity, we let 
Consider first introduce some basic notation that will 

be utilized in the sequel. We set

The moved Legendre-Tau approach to Eq. (1) subject 
to Eq. (2) is to get y_N (x)∈S_N (I) such that

	 � (10)

and

	 � (11)

Here, the central concept is that we use a truncated 
set of moved Legendre polynomials to approaching 
the unfamiliar function, and the fractional-differential 
director of this truncated series is developed by moved 
Legendre polynomials themselves (Theorem 1), and later 
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the coefficients of this group are taken to be identical to 
the coefficients of the right-hand side development. We 
express

	 � (12)

then Eq. (10) can be written as

By using Theorem 1 and approximating 
, we get

	 �(13)

On the other hand, according to Eq. (5) and using 
equality instead of, we have

	 � (14)

The initial conditions are converted to

	 � (15)

We define the square matrix  
with

	 � (16)

Note that, the second term of  is calculated as 
follows:

Let  be Legendre-Gauss quadrature nodes 
and weights (Theorem 3.29). A first approximation to the 
second term using a Legendre collocation approach is

	 � (17)

However, the integral term in Eq. (17) cannot be 
assessed correctly, we convert the integral interval [0,x_l] 
to [0,1] and apply a Gaussian model quadrature domin-
ion to evaluate the integral. More specifically, under the 
direct transformation

	 � (18)

the Eq. (17) becomes

Again, by using Gaussian type quadrature rule, we can 
obtain the value of the second term of Eq. (16). 

Therefore, Eq. (14) and Eq. (15) are equivalent to the 
matrix equation

Solving the above system yields the unknown 
vector  and then we obtain an 
approximate solution of FIDEs.

4. Accuracy of Solution
Let  denotes the Sobolev space of consisting all 
functions  on  such that  and all its weak 
derivatives up to order  are in  The norm and 
semi norm of  are defined respectively by

	 � (19)

and 

	 � (20)

Let  be of polynomials with degree  on 
 and  be the orthogonal projective operator  
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onto . Then, for any function  in  
belongs to  and satisfies

To prove the convergence of our method, we consider 
the following assumptions:

( )
( )
( )
( ) From [26], the following relations with shifted 

Legendre polynomials and shifted Legendre-Gauss-
Lobatto nodal points for  may readily be obtained 
as

	 � (21)

	 � (22)

	 �(23)

where  and  and  are constants 
independent of 

In the following theorem, an error estimation 
for the approximate solution of Eq. (1) with supple-
mentary conditions of Eq. (2) is calculated. Consider 

 be the error function of the 
evaluation solution .

Theorem 1. � Assume  and  
satisfy the assumptions  and  
repectively. Also, assume that the correct 
solution satisfies the assumption  
Let  be the approximation solution of Eq. 
(1) is given by spectral method with shifted 
Legendre polynomials. Then

	 �(24)

Proof. Applying the interpolation operator on both sides 
of Eq. (1) and using the linearity of it, we get

According to Eq. (3), we get

	 �(25)

By subtracting Eq. (25) from Eq. (1), the following 
equation is obtained

	 �(26)

With the aid of the definition of Caputo fractional 
derivative in Eq. (3), we have

	 � (27)

where

and

By virtue of Eq. (22), there exists  such that

	 � (28)

By using Eq. (21),  satisfies the following 
inequality

	 � (29)

where

On the other hand, linear operator  is 
continuous and bounded, then there exists  such that

	 � (30)

Therefore, by applying Eq. (29) and Eq. (30) and then 
using the definition of , we infer
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	 � (31)

From Eq. (21), there exists  such that

	 � (32)

Finally, from Eq. (31) and Eq. (32), we have

	 �(33)

The rest of our proof is proving boundedness of  
According to Eq. (23), for , there exists  
such that we will have

 
	 � (34)

Finally, the three inequalities (33), (34) and (23) yield

5.  Numerical Illustrations
To dispense the efficiency of the scheme, we perform it to 
solve three cases. 

Example1. � Suppose the below integro differential 
equation [10]

With the initial condition , the correct 
solution 

We use the proposed approach with  and we 
evaluate solution as:

Thus, by solving the corresponding linear system of 
this problem, we get

Example2. � Consider the fractional integro-differential 
equation

subject to initial condition  and choose 
 so that the correct solve is 

Our approximate solution for this integro-differential 
equation, using  is:

Example3. � Suppose the below linear fourth-order 
fractional integro-differential 

with boundary conditions 

This problem has the exact solution  
in the case of  In this example, we implement the 
Tau Legendre method for  with  and 

 with .
Our results for these values of  have been shown in 

Figures 1-3.In the Tables1 and 2, the numerical results of 
our proposed method are compared with those obtained 
by ADM in, FDTM considered in 11 and Chebyshev-
pseudo spectral method presented in12.We observe that 
the Tau approximation is an extremely good approxima-
tion to solution of FIDEs and is much better than the 
mentioned methods.

Figure 1.  Describe the exact solution and approximate 
solution with  for 
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6.  Conclusion
Our conclusions indicate that the spectral method based 
on the shifted Legendre basis can regard as a structur-
ally simple algorithm that is conventionally applicable 
as numerical solution of FIDEs. Furthermore, we have 
limited our consideration to linear Volterra FIDEs; we 
demand the way to extend quickly to more customary 
FIDEs.

Despite the relatively small degrees used the 
numerical results show the excellent execution of the 
spectral approach, individually, with the Legendre base. 
Nevertheless, the alarming rate of convergence represents 
the failure of the Legendre spectral approach displays a 
trend to develop quickly.
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Table 1.  Comparison of  for  and 
 for example 4

t Method in 
Our method 

with t Method in 
Our method 

with 

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
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t Method in 
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