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Abstract
Background/Objectives: In modern radars waveform design plays a vital role.  In the design of radars the most significant 
parameter is the range resolution.  With the help of the signal processing tools like auto correlation and ambiguity function 
various waveform designs can be achieved. Methods/Statistical Analysis: In the proposed paper the discrete frequency 
coding method of random NLFM (Non Linear Frequency Modulation) signal is described which results in a random like 
frequency evolution. Random NLFM enables to achieve the thumbtack ambiguity function while minimizing the crosstalk 
between frequencies.  Findings: Random NLFM signals for different lengths are generated which are used in radars and 
sonars and also their ambiguity plots are obtained.  The PSLR (Peak Side Lobe Ratio) and ISLR (Integrated Side Lobe Ratio) 
for these signals are evaluated and a comparison is made among these signals to identify best NLFM waveform. Application/
Improvements: Non Linear Frequency Modulation waveforms using algebraic random number generators that are quite 
robust to electronic counter measures and have long duration for long range applications.  In future applications of NLFM 
especially in RADAR/SONAR applications, this idea may result into new methodology.

1. Introduction
In modern radars pulse compression is used to improve 
the signal to noise ratio and resolution in the range1–4. 
To obtain significant time-bandwidth product BT the 
transmitted pulse is modulated. The transmitted pulse 
is actually compressed in time domain. Pulse compres-
sion brings the advantage of high energy of a long pulse 
with the high resolution of a short pulse together. Popular 
pulse compression techniques are frequency coded as well 
as phase coded signals2–6. Linear Frequency Modulated 
(LFM) signals attain good ambiguity function but has 
the drawback of high grating lobes. Discrete frequency 
enables to achieve the thumbtack ambiguity function 
with random like frequency evolution3–9. 

2. Non-Linear Frequency 
Modulation (NLFM) Waveform
Pulse compression obtained with LFM suffers from side 
lobes. These side lobes can be decreased by using different 
side lobe suppression techniques. The shaping is obtained 
by varying the pulse amplitude along the time axis. In 
LFM, frequency varies in direct proportion to time 
very much similar to amplitude change with frequency. 
Shaping the spectrum by amplitude weighting an LFM 
pulse has a serious problem. 

The spectral energy could be reduced at the edges giv-
ing a window shaped spectrum by reducing the signal 
amplitude at the pulse edges with constant pulse ampli-
tude so as to spend less time in each spectral interval near 
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the band edges or both8–13. This approach in which vari-
able sweep rates are used is called Non Linear Frequency 
Modulation12–18.

3. Discrete Frequency Coding
Discrete frequency coding is similar to LFM. LFM gen-
erates high grating sidelobes and amplitude weighting is 
necessary to reform the spectrum. In discrete LFM the 
hopping orders of frequencies are varied in a linear fash-
ion where as in the case of discrete NLFM the frequency 
is hopped in a random fashion as indicated in Figure 1.

(a)Quantized linear FM

(b) Discrete random frequency coding
Figure 1. Binary matrix representation. 
     

Figure 1 represents a pair of hopping orders that are 
possible out of M! feasible orders that will meet the limi-
tation of just one dot per column and per row.  

Figure 2. Example of one coincidence occurring at τ/tb=1 
and ν / Δf =1.

It is noticed that in the case of LFM the delay and 
Doppler movements of equivalent number of units [τ = 
mtb, ν = mf, m = 0, ±1,. . . ±(M − 1)] will generate an over-
lap of dots, and the quantity of matching dots will be N = 
M − |m|.  It generates a diagonal ridge across the line ν = 
f τ/tb in the ambiguity function.  

3.1 Generation of Discrete Frequency 
(Random NLFM) Signals
In the generation of random NLFM signals a relatively 
long pulse of τ′ length is divided directly into N subpulses 
with each pulse of width τ1 (τ′ = Nτ1).  A group of ‘N’ sub 
pulses is called burst signal. The frequency is enhanced 
by Δf derived from one of the sub-pulses to another sub-
pulse within each burst. The bandwidth of the whole burst 
is given by NΔf.  Much more specifically,

τ1 = τ′ ⁄ N
where, N = group of pulses
The frequency for the   ith   sub pulse is given as
fi = f0 + iΔf ;    i = 1, N
f0>> Δf
Δfτ′ = N2

Depending on a predetermined concept or logic the 
frequencies for the subpulses are usually selected ran-
domly. The rows and columns are given as i = 1, 2, …, N 
and j = 0, 1, 2, …, (N - 1) respectively. Here the rows rep-
resent sub-pulses and the columns represent frequency.  
The dot signifies the frequency issued for the particular 
subpulse. The frequency assignments shown in the Figure 
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2 are usually chosen randomly. There will be a total of N! 
possible ways to assign the dots (achievable codes) for a 
matrix of size N × N.

Figure 3. Discrete frequency code of length ND = 10.

A series of arrangement of dots for which the resul-
tant ambiguity function reaches an ideal or possibly a 
thumbtack response is termed as discrete frequency code. 
Discrete frequency coding (random NLFM) can acquire 
near thumbtack response with following logic: there must 
be only one frequency per time slot (row) along with fre-
quency slot (column). The achievable number of discrete 
frequency codes for an N × N matrix is usually lesser than 
N!. As N becomes larger the code density ND ⁄ N! is con-
siderably less.

Discrete frequency codes can be generated by several 
analytical methods. Two different methods are described 
here.  In the first method:  Let the number of sub-pulses 
be chosen as

N = q – 1
The primitive root of q is specified as γ.  
γ, γ 2  ,  γ 3,….,γq-1 modulo q  produce each and every 

integer from 1 to q -1.
For an N × N matrix the rows and columns for the first 

method are given by
i = 0, 1, 2, …, (q-2)
j = 1, 2, 3,.…., (q-1)
A dot is placed if
i = (γ)j mod q
A new code is generated by deleting the first row and 

column of the matrix obtained using the first method. 

Using this method of coding a discrete frequency code 
(random NLFM) of size N = q – 2 is produced.

For a discrete frequency signal the normalized com-
plex envelope is given as
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The output of the matched filter for discrete frequency 
random NLFM signal is calculated as
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4. Ambiguity Function of Random 
NLFM Signals
An ambiguity function is a two-dimensional function of 
time delay and Doppler frequency χ (τ, ν) showing the 
distortion of a returned pulse due to the receiver matched 
filter.  

The ambiguity function (AF) can be defined as
(5)

|χ(τ, ν)| = ∫
∞

∞−

+ 22* |)()(| dtetutu tj πντ

where, u is the complex envelope of the signal. 
A target moving toward the radar is indicated by posi-

tive ν. The ambiguity function of random NLFM signals 
shows the near thumbtack response. Except some side 
lobes near to the origin the remaining side lobes have 
amplitude of 1/N and that are close to the origin have 
an amplitude 2⁄N, which is typical nature of discrete fre-
quency code. For a discrete frequency random NLFM 
the compression rate is given as N. The most important 
method for learning and evaluating radar signals is the 
ambiguity function. Here in this paper ambiguity dia-
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grams for random NLFM pulses of different lengths are 
plotted and also their PSLR and ISLR (which are defined 
below) are compared.

5. Peak Side Lobe Ratio (PSLR) 
It is defined as the ratio of the peak value of side lobe 

to the maximum value of main lobe.  PSLR represents the 
ability of the radar to identify a weak target from a nearby 
strong one.

The peak side lobe ratio can be calculated using the 
formula 

PSLR=20log 
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6. Integrated Side Lobe Ratio 
(ISLR)
The ISLR is defined as the ratio of total power (energy) 
in the side lobes to the power in the main lobes. ISLR 
characterizes the ability to detect weak targets in the 
neighbourhood of bright targets.

The integrated side lobe ratio can be calculated using 
the formula

ISLR=10log 
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7. Results

7.1 Ambiguity Plot for Random NLFM Pulse 
of Length p=53
The following are the amplitude, phase, frequency 
response and zero doppler cut for random NLFM signal 
of length p=53.
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Figure 4. Amplitude, phase and frequency response for 
random NLFM signal of length p=53.                  
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Figure 5. Ambiguity plot for random NLFM signal of length 
p=53.
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Figure 6. Zero doppler cut of the AF of the length p=53.

7.2 Ambiguity Plot for Random NLFM Pulse 
of Length p=71

The following are the amplitude, phase, frequency 
response and zero doppler cut for random NLFM signal 
of   length p=71.
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Amplitude plot for p=71
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Figure 7. Amplitude, phase and frequency response for 
random NLFM signal of length p=71.                   
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Figure 8. Ambiguity plot for random NLFM signal of length 
p=71.
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Figure 9. Zero doppler cut of the AF of the length p=71.
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Amplitude plot for p=79
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Figure 10. Amplitude, phase and frequency response for 
random NLFM signal of length p=79.                   
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 Figure 11. Ambiguity plot for random NLFM signal of 
length p=79.
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Figure 12. Zero doppler cut of the AF of the length p=79.
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7.3 Ambiguity Plot for Random NLFM Pulse 
of Length p=79

The following are the amplitude, phase, frequency 
response and zero doppler cut for random NLFM signal 
of length p=79.

8. Comparison of PSLR and ISLR 
of Random NLFM Signals of 
Different Lengths
The prime numbers up to length 47 of random NLFM sig-
nals gave poor results hence in this paper we considered 
the prime numbers from the length 53 onwards. Above 53 
the lengths for which the PSLR and ISLR values are not 
good are omitted. And a comparison is made only among 
those lengths which have produced good results.

In this paper the random NLFM signals for prime 
numbers of lengths P = 53, 71, 79, 83 and 103 are com-
pared (Table 1). The PSLR and ISLR computed for lower 
lengths are considerably less and hence are ignored. The 
following table represents the comparison of the PSLR 
and ISLR of random NLFM signals for the following 
prime numbers. The ambiguity diagrams are plotted only 
for p= 53, 71 and 79.

Table 1. Comparison of the PSLR and ISLR of random 
NLFM signals 

S.No Prime Number PSLR in dB ISLR in dB
1  P=53 -17.0836 -4.0443
2 P=71 -17.5252 -4.3159
3 P=79 -17.9525 -4.9689
4 P=83 -18.3816 -5.0633
5 P=103 -18.7349 -5.3180

9. Conclusion 
In this paper the novel idea of random Non Linear 
Frequency Modulation is introduced.  The ambiguity 
diagrams are developed for the lengths of p = 53, 71 and 
79 lengths respectively. The Doppler resolution plots are 
also obtained.  The PSLR and ISLR values are obtained for 
five different lengths and a comparison is made among 
them. The ambiguity plots show very narrow main lobe 
and the envelope of it along Doppler axis vary randomly 
in random NLFM. As the length is increasing the wave-
form exhibits better PSLR and ISLR.  From the ambiguity 

plots it can be observed that as the length of the pulse 
increases, the range side lobes are drastically reduced. 
In the communications random numbers play vital role 
in many applications. The NLFM generation using ran-
dom numbers is entirely different concept compared with 
other methods of NLFM generation. on Linear Frequency 
Modulation waveforms using algebraic random number 
generators that are quite robust to electronic counter 
measures and have long duration for long range appli-
cations. In future applications of NLFM especially in 
RADAR/SONAR applications, this idea may result into 
new methodology. 
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