
Abstract
Background/Objectives:This paper is aimed at performing real time bigdata analytics on vehicular data collected from
a network of ECUs (Electronic Control Unit) in cooperated into the different automobiles. Methods/Statistical Analysis:
The analytics has been performed by building a software model that is capable of handling the vehicular data in real time.
Bigdata platforms like hadoop, Apache Storm, Apache Spark(real time streaming), Kafka are utilised here. Automotive sen-
sor data from different Electronic Control Units are collected into a central data server and this data is pushed to kafka, from
which the real time streaming models pulls the data and perform analysis. Findings:Automotive industry has undergone
a drastic revolutionised innovation in the past decade in all of its respective segments. The industry had started utilizing
the computational and mathematical aspects from top to bottom in its design strategies to achieve greater reliability on its
products out on roads. Latest advancements in this field is the fully autonomous car. Today an automotive is a collection
of innumerable sensors and microcontrollers which are under the command of the master ECU. A network of ECUs con-
nected across the globe is a source tap of bigdata. Leveraging the new sources of bigdata by automotive giants boost vehicle
performance, enhance loco driver experience, accelerated product designs. Statistical Projections reveal that automotive
industry is likely to be the 2nd largest generator of data by mid of 2016. The contribution of this paper to the automotive
industry is the real time vehicle monitoring utilizing Bigdata platforms. This can contribute to better customer-industry re-
lations. Applications/Improvements:The model developed in this paper can contribute a lot to the automobile industry
as it facilitates real time monitoring of the vehicles. This can improve customer-industry relation.

Real Time Vehicular Data Analytics Utilising Bigdata
Platforms and Cost Effective ECU Networks

Yedu C. Nair*, P. V. Neethu, Vijay Krishna Menon and K. P. Soman

Center for Excellence in Computational Engineering and Networking, Amrita School of Engineering, Amrita Vishwa
Vidyapeetham, Amrita University,Coimbatore - 641112, Tamil Nadu, India; yeducnair777@gmail.com,

neethupv107@gmail.com,vijaykrishnamenon@gmail.com,kp_soman@amrita.edu

Keywords: ECU,Hadoop, Kafka, Spark, Storm

1. Introduction
Conventional automobiles had engine as the heart but it
lacked a brain. ECU formed the solution for this which is
now the brain of all modern locomotives. An automobile
out on road is under the command of this immaculate
intelligent electronic system. Here the aim is to design
and develop a suitable Software system that can monitor
the vehicular parameters (sensor outputs) in real time
using various bigdata platforms and also a proposal for
cost effective ECU design that can communicate to a
central data server. Here comes the utility of bigdata
platform. The ECUs are connected to a central data ware-
house through networks into which huge volume of data
creeps in at high frequencies. Data can be structured or

unstructured. The respective data is subjected to real time
streaming (Spark, Storm, Kafka) or near real time through
batch processing techniques (Hadoop).

Spark streaming provides a real time response to
the automobile (Driver warning system) in case of any
malfunctioning sensors. Such a system is useful to the
automobile manufacturer as well as the consumer. As a
proposal model an ECU design template for the Vintage
Automobiles is also discussed.

2. Methodology
The vehicular data from a central server is pushed to the
software model. Here we have performed the analytics
part using hadoop ecosystem1, Apache storm, Apache

*Author for correspondence

Indian Journal of Science and Technology, Vol 9(30), DOI: 10.17485/ijst/2016/v9i30/99062, August 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Real Time Vehicular Data Analytics Utilising Bigdata Platforms and Cost Effective ECU Networks

Indian Journal of Science and Technology2 Vol 9 (30) | August 2016 | www.indjst.org

Kafka and spark framework (spark streaming). Different
possibilities of data analytics across various bigdata
 platforms is performed here. Initially a batch processing
model based on mapreduce algorithm has been developed
and then the data collected is fed in batches to the HDFS
(Hadoop Distributed File System)2 (Figure 1).

Hadoop ecosystem has two major components the
computational part the mapreduce and the storage part
called the HDFS3. Mapreduce job runs on top of this data
and generates output files in case of any discrepancies in
the sensor readings. This mapreduce implementation has
been performed on java as well as in hive (an SQL like
language)4. In this case the disadvantage is that the pro-
cess is not real time and this mechanism is not reliable for
critical systems in an automobile. Big Data4 is known for
its velocity, volume and variety. As per the previous meth-
odology we couldn’t handle the velocity of the Big Data.
That is computation on the fly is exceptionally slow in
hadoop. To overcome this limitation, we can rely on other
open source technologies like Apache Storm, Apache
Kafka and Spark Streaming.

2.1 Storm Streaming
Apache Storm operates on continuous stream of data or
data in motion making it a real time processing system.
In storm we use hadoop services like HDFS or Hbase or
cassandra. Streaming is a means to keep the information
you care about and throwing the rest away. Storm does
not run on hadoop clusters but it can read and write data
to HDFS. Storm uses independent topologies using the
concept of ’Directed Acyclic Graphs’. Storm topologies
can be written in any language.

Storm cluster has 3 nodes:

Nimbus node similar to hadoop job tracker which 1.
uploads computation, Distributes code, Launches
workers, Monitors computation all across the cluster.

Zookeeper nodes to coordinate the storm cluster.2.
Supervisor nodes communicate with nimbus via the 3.
Zookeeper nodes. Data Stream flow in storm com-
prises of Spout which is the source of streams, Bolt
which has the computational logic and tuple which
has the values (logs) (Figure 2).

As far as this paper is concerned the real time data
is pushed on to Apache Kafka. Kafka consists of a mes-
sage producer, message consumer and message broker.
The producer forms the front end part. Here it is the data
server. The Brokers passes on this to the consumer which
is the storm framework that performs data processing.
Zookeeper continuously monitors the working of the
kafka and storm cluster. The data is input in a JSON for-
mat. For implementing the logic, we go for two classes
Topology and Bolt. Inside Storm Topology the configura-
tion code with details regarding storm, kafka, zookeeper is
written (Similar to configuration settings in main method
of mapreduce)5. Storm Bolt which implements IBasicBolt
is used to implement the processing logic. When Storm
Topology (main) is executed the Storm Bolt is called from
within and the streamed sensor data is checked for any
discrepancies. Here the uniqueid is the vehicleId. The data
creeps in at a high throughput rate at various timestamps.
If found faulty an entry is made into a cassandra/Hbase
table using an update statement. Cassandra/Hbase is a
column oriented database that has fast operating capabili-
ties (Figure 3).

All daemons relating to kafka, storm and zookeeper
must be started prior to the code execution. An alterna-
tive approach is that if any faulty readings are observed we
may put on to another topic in kafka which is pulled by the
data server periodically. As a part of future work a driver
warning system can be developed in automobiles. Thus

Figure 1. Hadoopt framework.

Figure 2. Storm framework.

Yedu C. Nair, P. V. Neethu, Vijay Krishna Menon and K. P. Soman

Indian Journal of Science and Technology 3Vol 9 (30) | August 2016 | www.indjst.org

real time vehicular monitoring is accomplished by using
Apache Storm, Apache kafka and cassandra/Hbase.

2.2 Spark Streaming
In the third methodology spark streaming application is
developed. Though storm stream processing and hadoop
batch processing offers low latency we lacked a single
system which combined the effect of both. While per-
forming statefull computations using external databases
storm is much slower compared to spark. Spark frame-
work has comeup with the solution for this. Spark has
been optimised to process batches in milliseconds thus
achieving low latency. Spark streaming is built on top of
spark combining both batch jobs and streams5. Advantage
is that we need to design algorithm once and run it on
spark standalone mode as well as on spark streaming.
Spark streaming connectors includes kafka, hdfs, flume
etc. Spark streaming6 allows arbitrary RDD computa-
tions under the abstraction of Dstreams. Dstreams are
sequence of RDDs7. The system is fault tolerant that is it
keeps track of parent RDDs. Master or Driver saves the
state of Dstreams to a check point file. In case the mas-
ter fails it can be restarted using the check point file. The
framework periodically saves the DAG (Directed Acyclic
Graphs) of Dstreams to fault tolerant storage, probably a
check point directory that should be configured initially.
Automatic restart is possible. Spark along with shark and
spark streaming forms a unistack that can solve all your
data analytics (Figure 4).

Spark framework can be configured as standalone/
MESOS/YARN8. The user code runs on the driver and
tasks are send to the executors. Executor which is the
receiver collects the data stream and divides into blocks
and keep in memory. Blocks are synchronously rep-
licated to another executor for fault tolerance. In every
batch interval the driver launches tasks for processing the
blocks. Here every data is processed exactly once unlike
the storm where data is processed at least once. The same

logic implemented in the hadoop and storm can be easily
implemented here also (Figure 5).

Create streaming context as an entry point of stream-
ing functionality. Then create Dstreams from kafka data
using the KafkaUtils functionality. The transformations are
applied on this. That is the streaming data with faulty sen-
sor readings are immediately written to HDFS/Cassandra/
Hbase table or an arbitrary computation to update a UI.
More logic if needed can be applied. Dstreams9 after pro-
cessing may be also stored to an HDFS location using
saveAsHadoopFiles() function. Writing to kafka may be
accomplished by using create Kafka Producer Pool func-
tionality. After writing the logic in scala10 ’context.start’
function commands the system to start data streaming11.
The data server periodically pulls the files with faulty sen-
sor readings which can be send back to the ECU equipped
with a GSM module (Figure 6).

2.3 Data Set Description and Performance
Statistics

Automotive data has been analysed here on a time criti-
cal basis. A record in a file is comprised of a Vehicle
Id(unique), sensor1 reading, sensor2 reading, sensor3
reading followed by timestamp. The data server pushes
the data as JSON by means of kafka to storm/spark. The
performance characteristics has been projected on the
bargraph.

The data has been subjected to analysis on a 5 Node
cluster where one node acts as the master and the others

Figure 3. Storm streaming process flow.

Figure 4. Spark streaming framework.

Figure 5. Spark framework.

Real Time Vehicular Data Analytics Utilising Bigdata Platforms and Cost Effective ECU Networks

Indian Journal of Science and Technology4 Vol 9 (30) | August 2016 | www.indjst.org

as slaves(executors). Each node has 32 GB RAM, 3 TB
Hard Disk, 8 core i7 extreme processors (Figure 7).

2.4 Proposal for a Low Cost ECU
ECU stands for electronic control unit. It can be also
referred to as Engine Management System. This paper
details the development of an ECU capable of perform-
ing or controlling fuel injection, ignition, fuel pump, idle
air valve, engine coolant temperature, Air pressure sen-
sor etc. This low cost ECU is designed using an STM32F4
Discovery dev board. Along with a Real Time Operating
system (RTOS) such as the chibios the ARM board creates
a splendid development environment for the Automotive
ECU developers. Using an RTOS can reduce the devel-
opment time, code implementation with minimal bugs
and making production costs economical. The low cost
ECU here is tested on a 1999 Matiz engine with limited
 functionalities.

Let us see how fuel injection system is controlled
by this ECU. The fuel injection system consists of a fuel
pump, fuel injectors, fuel pressure regulators, ECU, wiring
harness and engine sensors. For an EFI (Electronic Fuel

Injection) the inputs from following sensors are required:
oxygen sensor, Manifold Air Pressure sensor (MAP), air
temperature sensor, coolant sensor and throttle position
sensor. The fuel pump, pumps the fuel from a fuel tank
through a fuel filter to the injectors via a supply line based
on the throttle position sensor input. The fuel pressure
regulator senses the pressure and ensures that the injec-
tors maintain the desired pressure level12. A pathway is
created for the unused fuel to return back to the fuel tank
after providing proper lubrication to the injector compo-
nents. Such a closed loop fuel supply system guarantees
consistent fuel spray and fuel quantity from each of the
injectors. The wiring harness connects the injectors to the
ECU and to a power source.

The sensors mentioned above periodically sends their
readings to the ECU (here ARM board)13. As an example
if high acceleration or torque is required, the throttle/
gas pedal is pushed fully and the throttle valve opens to
its maximum, pulling in large volume of air. The current
throttle position sensor reading stimulates the arm board
via the interrupt level subroutines. Multithreading is
 utilised to achieve parallelism and for utilising the avail-
able ADC’s effectively. Pulse width modulation is used
for regulating amount of fuel. Higher duty cycle implies a
large ON time pulse that is more quantity of fuel. A series
of commands are generated by the ECU14. ECU(ARM
Processor) stimulates the fuel pump to pump in more
quantity of fuel. The pressure regulator sensor is instructed
so that the fuel is pumped at the adequate pressure cor-
responding to the respective throttle position after cross
validation from a look up table (already mapped engine
parameters). Air temperature sensor reading helps to cal-
culate the rate of combustion occurring in the chamber
through a mapping. Similarly, the data from manifold air
pressure sensor is used to calculate density and determine
the engine’s air mass flow rate that aids the ECU to deter-
mine the quantity of fuel for optimum combustion.

The oxygen sensors regulate the fuel injection by cal-
culating the oxygen concentration difference between
the inside of the exhaust and outside atmospheric con-
tent. These sensors are used to check the Air/Fuel ratio
(14.7 ideal). The difference in concentration is converted
to a voltage spike. A rich mixture generates a high volt-
age spike (converted by ADC in the STM32 board). The
so called interrupt computation sends an instruction to
pump less fuel to the fuel pump motor. As of now these
functionalities have been implemented in this ECU.

Figure 6. Spark streaming process flow.

Figure 7. Output performance statistics.

Yedu C. Nair, P. V. Neethu, Vijay Krishna Menon and K. P. Soman

Indian Journal of Science and Technology 5Vol 9 (30) | August 2016 | www.indjst.org

2.5 ECU Network Communication using
GSM/GPRS

 A GSM (Global System for Mobile Communication,
originally from Group Special Mobile) modem is a wire-
less modem that works with a GSM wireless network. A
GSM modem interfaced with the ECU15 makes the com-
munication possible with a central data server. The ECU’s
equipped with this GSM module from different automo-
biles are wirelessly connected to the central data server.
This ECU data collected in the central data server is taken
for real time data analytics in spark, storm, hadoop etc.
The GSM data may be send in the form of a string to the
data server where it may be converted to JSON or other
convenient forms.

3. Conclusion
We have presented a software model for performing real
time big data analytics on vehicular data. The analytics
has been performed on bigdata frameworks like hadoop
and spark. Batch processing model is developed using
hadoop mapreduce and hive. Real time stream process-
ing has been achieved through spark streaming and storm
streaming. A comparison of the same has been done. A
proposal model for designing a cost effective ECU and
its wireless networking with a central data server is dis-
cussed. In the future scope a fully functional ECU with
immense capabilities that can communicate with the cen-
tral data server will be developed. A highly reliable real
time driver warning system development is also there in
the future scope. Real time networked automobiles can
contribute to safety, enhance engine health and perfor-
mance, optimised research and development and much
more.

4. Acknowledgement
The authors would like to express their gratitude towards
Ajith Peter and Achyuth Manalithazha for their valuable
comments and reviews on this topic.

5. References
1. Gopalani S, Arora R. Comparing apache spark and

map reduce with performance analysis using K-means.

International Journal of Computer Applications. 2015 Mar;
113(1):8–11.

 2. Spark Streaming [Internet]. [Cited 2016 Jan 19]. Available
from: http://spark.apache.org/streaming/.

 3. Purcell B. The emergence of big data technology and ana-
lytics. Journal of Technology Research. 2013 Jul; 4:1.

 4. Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica
I. Spark: Cluster computing with working sets. University
of California, Berkeley; 2010 Jun. p.1–7.

 5. ZahariaM, BorthakurD, SarmaJS, ElmeleegyK, Shenker S,
Stoica I. Delay scheduling: A simple technique for achiev-
ing locality and fairness in cluster scheduling.EuroSys; 2010
Apr. p. 1–14.

 6. Zaharia M, Das T, Li H, Shenker S, Stoica I. Discretized
streams: An efficient and fault-tolerant model for stream
processing on large clusters. University of California,
Berkeley; 2012 Jun.

 7. ZahariaM, ChowdhuryM, DasT, DaveA, MaJ, McCauleyM,
Franklin M, ShenkerS, StoicaI. Resilient distributed
datasets:A faulttolerant abstraction for in-memory cluster
computing. NSDI; 2012 Apr. p. 2-2.

 8. Spark Kafka Integration[Internet]. [Cited 2016 Jan 15].
Available from:http://spark.apache.org/docs/latest/stream-
ing/kafka/integration.html.

 9. Spark reference databricks[Internet]. [Cited 2016 Jan 18].
Available from: https://databricks.gitbooks.io/databricks
spark reference applications/.

10. Scala programming language[Internet]. [Cited 2016 Feb08].
Available from: http://www.scala-lang.org.

11. LogothetisD, OlstonC, ReedB, WebbKC, Yocum K.Stateful
bulk processing for incremental analytics. SoCC; 2010 Jun.
p. 51–62.

12. Ajudia MK, Kolte MK, Sarkar P. Validation process and
development of control strategy of electronic control unit
for injector and ignition coil drivers. International Journal
of Scientific and Research Publications. 2014May;4(5):1–5.

13. Zeng J, Zhang L, Kong F, Song X. Development of 32-bit
universal electronic control unit UECU32 for automotive
application. 2006 9th International Conference on Control,
Automation, Robotics and Vision; 2006 Dec. p. 1–6.

14. Cebi A, Guvenc L, Demirci M, Karadeniz CK, Kanar K,
Guraslan E. A low cost portable engine electronic control
unit hardware in-the-loop test system. Proceedings of the
IEEE International Symposium on Industrial Electronics,
Dubrovnik: Croatia. 2005 Jun; 1:293–8.

15. Huizong F, Ming C, Yu Z, Jianchun J, Huasheng D. A weak
coupled calibration system architecture for electronic con-
trol unit. IEEE Vehicle Power and Propulsion Conference
(VPPC),China; 2008 Sep. p. 1–4.

