
Abstract 
Background/Objectives:This paper is aimed at performing real time bigdata analytics on vehicular data collected from 
a network of ECUs (Electronic Control Unit) in cooperated into the different automobiles. Methods/Statistical Analysis: 
The analytics has been performed by building a software model that is capable of handling the vehicular data in real time. 
Bigdata platforms like hadoop, Apache Storm, Apache Spark(real time streaming), Kafka are utilised here. Automotive sen-
sor data from different Electronic Control Units are collected into a central data server and this data is pushed to kafka, from 
which the real time streaming models pulls the data and perform analysis. Findings:Automotive industry has undergone 
a drastic revolutionised innovation in the past decade in all of its respective segments. The industry had started utilizing 
the computational and mathematical aspects from top to bottom in its design strategies to achieve greater reliability on its 
products out on roads. Latest advancements in this field is the fully autonomous car. Today an automotive is a collection 
of innumerable sensors and microcontrollers which are under the command of the master ECU. A network of ECUs con-
nected across the globe is a source tap of bigdata. Leveraging the new sources of bigdata by automotive giants boost vehicle 
performance, enhance loco driver experience, accelerated product designs. Statistical Projections reveal that automotive 
industry is likely to be the 2nd largest generator of data by mid of 2016. The contribution of this paper to the automotive 
industry is the real time vehicle monitoring utilizing Bigdata platforms. This can contribute to better customer-industry re-
lations. Applications/Improvements:The model developed in this paper can contribute a lot to the automobile industry 
as it facilitates real time monitoring of the vehicles. This can improve customer-industry relation.
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1. Introduction
Conventional automobiles had engine as the heart but it 
lacked a brain. ECU formed the solution for this which is 
now the brain of all modern locomotives. An automobile 
out on road is under the command of this immaculate 
intelligent electronic system. Here the aim is to design 
and develop a suitable Software system that can  monitor 
the vehicular parameters (sensor outputs) in real time 
using various bigdata platforms and also a proposal for 
cost effective ECU design that can communicate to a 
central data server. Here comes the utility of bigdata 
platform. The ECUs are connected to a central data ware-
house through networks into which huge volume of data 
creeps in at high frequencies. Data can be structured or 

unstructured. The respective data is subjected to real time 
streaming (Spark, Storm, Kafka) or near real time through 
batch processing techniques (Hadoop). 

Spark streaming provides a real time response to 
the automobile (Driver warning system) in case of any 
malfunctioning sensors. Such a system is useful to the 
automobile manufacturer as well as the consumer. As a 
proposal model an ECU design template for the Vintage 
Automobiles is also discussed.

2. Methodology
The vehicular data from a central server is pushed to the 
software model. Here we have performed the analytics 
part using hadoop ecosystem1, Apache storm, Apache 
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Kafka and spark framework (spark streaming). Different 
possibilities of data analytics across various bigdata 
 platforms is performed here. Initially a batch processing 
model based on mapreduce algorithm has been developed 
and then the data collected is fed in batches to the HDFS 
(Hadoop Distributed File System)2 (Figure 1). 

Hadoop ecosystem has two major components the 
computational part the mapreduce and the storage part 
called the HDFS3. Mapreduce job runs on top of this data 
and generates output files in case of any discrepancies in 
the sensor readings. This mapreduce implementation has 
been performed on java as well as in hive (an SQL like 
language)4. In this case the disadvantage is that the pro-
cess is not real time and this mechanism is not reliable for 
critical systems in an automobile. Big Data4 is known for 
its velocity, volume and variety. As per the previous meth-
odology we couldn’t handle the velocity of the Big Data. 
That is computation on the fly is exceptionally slow in 
hadoop. To overcome this limitation, we can rely on other 
open source technologies like Apache Storm, Apache 
Kafka and Spark Streaming.

2.1 Storm Streaming
Apache Storm operates on continuous stream of data or 
data in motion making it a real time processing system. 
In storm we use hadoop services like HDFS or Hbase or 
cassandra. Streaming is a means to keep the information 
you care about and throwing the rest away. Storm does 
not run on hadoop clusters but it can read and write data 
to HDFS. Storm uses independent topologies using the 
concept of ’Directed Acyclic Graphs’. Storm topologies 
can be written in any language.

Storm cluster has 3 nodes:

Nimbus node similar to hadoop job tracker which 1. 
uploads computation, Distributes code, Launches 
workers, Monitors computation all across the cluster.

Zookeeper nodes to coordinate the storm cluster.2. 
Supervisor nodes communicate with nimbus via the 3. 
Zookeeper nodes. Data Stream flow in storm com-
prises of Spout which is the source of streams, Bolt 
which has the computational logic and tuple which 
has the values (logs) (Figure 2). 

As far as this paper is concerned the real time data 
is pushed on to Apache Kafka. Kafka consists of a mes-
sage producer, message consumer and message broker. 
The producer forms the front end part. Here it is the data 
server. The Brokers passes on this to the consumer which 
is the storm framework that performs data processing. 
Zookeeper continuously monitors the working of the 
kafka and storm cluster. The data is input in a JSON for-
mat. For implementing the logic, we go for two classes 
Topology and Bolt. Inside Storm Topology the configura-
tion code with details regarding storm, kafka, zookeeper is 
written (Similar to configuration settings in main method 
of mapreduce)5. Storm Bolt which implements IBasicBolt 
is used to implement the processing logic. When Storm 
Topology (main) is executed the Storm Bolt is called from 
within and the streamed sensor data is checked for any 
discrepancies. Here the uniqueid is the vehicleId. The data 
creeps in at a high throughput rate at various timestamps. 
If found faulty an entry is made into a cassandra/Hbase 
table using an update statement. Cassandra/Hbase is a 
column oriented database that has fast operating capabili-
ties (Figure 3). 

All daemons relating to kafka, storm and zookeeper 
must be started prior to the code execution. An alterna-
tive approach is that if any faulty readings are observed we 
may put on to another topic in kafka which is pulled by the 
data server periodically. As a part of future work a driver 
warning system can be developed in automobiles. Thus 

Figure 1. Hadoopt framework.

Figure 2. Storm framework.
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real time vehicular monitoring is accomplished by using 
Apache Storm, Apache kafka and cassandra/Hbase.

2.2 Spark Streaming
In the third methodology spark streaming application is 
developed. Though storm stream processing and hadoop 
batch processing offers low latency we lacked a single 
system which combined the effect of both. While per-
forming statefull computations using external databases 
storm is much slower compared to spark. Spark frame-
work has comeup with the solution for this. Spark has 
been optimised to process batches in milliseconds thus 
achieving low latency. Spark streaming is built on top of 
spark combining both batch jobs and streams5. Advantage 
is that we need to design algorithm once and run it on 
spark standalone mode as well as on spark streaming. 
Spark streaming connectors includes kafka, hdfs, flume 
etc. Spark streaming6 allows arbitrary RDD computa-
tions under the abstraction of Dstreams. Dstreams are 
sequence of RDDs7. The system is fault tolerant that is it 
keeps track of parent RDDs. Master or Driver saves the 
state of Dstreams to a check point file. In case the mas-
ter fails it can be restarted using the check point file. The 
framework periodically saves the DAG (Directed Acyclic 
Graphs) of Dstreams to fault tolerant storage, probably a 
check point directory that should be configured initially. 
Automatic restart is possible. Spark along with shark and 
spark streaming forms a unistack that can solve all your 
data analytics (Figure 4).

Spark framework can be configured as standalone/
MESOS/YARN8. The user code runs on the driver and 
tasks are send to the executors. Executor which is the 
receiver collects the data stream and divides into blocks 
and keep in memory. Blocks are synchronously rep-
licated to another executor for fault tolerance. In every 
batch interval the driver launches tasks for processing the 
blocks. Here every data is processed exactly once unlike 
the storm where data is processed at least once. The same 

logic implemented in the hadoop and storm can be easily 
implemented here also (Figure 5). 

Create streaming context as an entry point of stream-
ing functionality. Then create Dstreams from kafka data 
using the KafkaUtils functionality. The transformations are 
applied on this. That is the streaming data with faulty sen-
sor readings are immediately written to HDFS/Cassandra/
Hbase table or an arbitrary computation to update a UI. 
More logic if needed can be applied. Dstreams9 after pro-
cessing may be also stored to an HDFS location using 
saveAsHadoopFiles() function. Writing to kafka may be 
accomplished by using create Kafka Producer Pool func-
tionality. After writing the logic in scala10 ’context.start’ 
function commands the system to start data streaming11. 
The data server periodically pulls the files with faulty sen-
sor readings which can be send back to the ECU equipped 
with a GSM module (Figure 6). 

2.3  Data Set Description and Performance 
Statistics

Automotive data has been analysed here on a time criti-
cal basis. A record in a file is comprised of a Vehicle 
Id(unique), sensor1 reading, sensor2 reading, sensor3 
reading followed by timestamp. The data server pushes 
the data as JSON by means of kafka to storm/spark. The 
performance characteristics has been projected on the 
bargraph.

The data has been subjected to analysis on a 5 Node 
cluster where one node acts as the master and the others 

Figure 3. Storm streaming process flow.

Figure 4. Spark streaming framework.

Figure 5. Spark framework.
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as slaves(executors). Each node has 32 GB RAM, 3 TB 
Hard Disk, 8 core i7 extreme processors (Figure 7).

2.4 Proposal for a Low Cost ECU
ECU stands for electronic control unit. It can be also 
referred to as Engine Management System. This paper 
details the development of an ECU capable of perform-
ing or controlling fuel injection, ignition, fuel pump, idle 
air valve, engine coolant temperature, Air pressure sen-
sor etc. This low cost ECU is designed using an STM32F4 
Discovery dev board. Along with a Real Time Operating 
system (RTOS) such as the chibios the ARM board creates 
a splendid development environment for the Automotive 
ECU developers. Using an RTOS can reduce the devel-
opment time, code implementation with minimal bugs 
and making production costs economical. The low cost 
ECU here is tested on a 1999 Matiz engine with limited 
 functionalities.

Let us see how fuel injection system is controlled 
by this ECU. The fuel injection system consists of a fuel 
pump, fuel injectors, fuel pressure regulators, ECU, wiring 
harness and engine sensors. For an EFI (Electronic Fuel 

Injection) the inputs from following sensors are required: 
oxygen sensor, Manifold Air Pressure sensor (MAP), air 
temperature sensor, coolant sensor and throttle position 
sensor. The fuel pump, pumps the fuel from a fuel tank 
through a fuel filter to the injectors via a supply line based 
on the throttle position sensor input. The fuel pressure 
regulator senses the pressure and ensures that the injec-
tors maintain the desired pressure level12. A pathway is 
created for the unused fuel to return back to the fuel tank 
after providing proper lubrication to the injector compo-
nents. Such a closed loop fuel supply system guarantees 
consistent fuel spray and fuel quantity from each of the 
injectors. The wiring harness connects the injectors to the 
ECU and to a power source.

The sensors mentioned above periodically sends their 
readings to the ECU (here ARM board)13. As an example 
if high acceleration or torque is required, the throttle/
gas pedal is pushed fully and the throttle valve opens to 
its maximum, pulling in large volume of air. The current 
throttle position sensor reading stimulates the arm board 
via the interrupt level subroutines. Multithreading is 
 utilised to achieve parallelism and for utilising the avail-
able ADC’s effectively. Pulse width modulation is used 
for regulating amount of fuel. Higher duty cycle implies a 
large ON time pulse that is more quantity of fuel. A series 
of commands are generated by the ECU14. ECU(ARM 
Processor) stimulates the fuel pump to pump in more 
quantity of fuel. The pressure regulator sensor is instructed 
so that the fuel is pumped at the adequate pressure cor-
responding to the respective throttle position after cross 
validation from a look up table (already mapped engine 
parameters). Air temperature sensor reading helps to cal-
culate the rate of combustion occurring in the chamber 
through a mapping. Similarly, the data from manifold air 
pressure sensor is used to calculate density and determine 
the engine’s air mass flow rate that aids the ECU to deter-
mine the quantity of fuel for optimum combustion.

The oxygen sensors regulate the fuel injection by cal-
culating the oxygen concentration difference between 
the inside of the exhaust and outside atmospheric con-
tent. These sensors are used to check the Air/Fuel ratio 
(14.7 ideal). The difference in concentration is converted 
to a voltage spike. A rich mixture generates a high volt-
age spike (converted by ADC in the STM32 board). The 
so called interrupt computation sends an instruction to 
pump less fuel to the fuel pump motor. As of now these 
functionalities have been implemented in this ECU.

Figure 6. Spark streaming process flow.

Figure 7. Output performance statistics.
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2.5  ECU Network Communication using 
GSM/GPRS

 A GSM (Global System for Mobile Communication, 
originally from Group Special Mobile) modem is a wire-
less modem that works with a GSM wireless network. A 
GSM modem interfaced with the ECU15 makes the com-
munication possible with a central data server. The ECU’s 
equipped with this GSM module from different automo-
biles are wirelessly connected to the central data server. 
This ECU data collected in the central data server is taken 
for real time data analytics in spark, storm, hadoop etc. 
The GSM data may be send in the form of a string to the 
data server where it may be converted to JSON or other 
convenient forms.

3. Conclusion
We have presented a software model for performing real 
time big data analytics on vehicular data. The analytics 
has been performed on bigdata frameworks like hadoop 
and spark. Batch processing model is developed using 
hadoop mapreduce and hive. Real time stream process-
ing has been achieved through spark streaming and storm 
streaming. A comparison of the same has been done. A 
proposal model for designing a cost effective ECU and 
its wireless networking with a central data server is dis-
cussed. In the future scope a fully functional ECU with 
immense capabilities that can communicate with the cen-
tral data server will be developed. A highly reliable real 
time driver warning system development is also there in 
the future scope. Real time networked automobiles can 
contribute to safety, enhance engine health and perfor-
mance,  optimised research and development and much 
more.
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