
Abstract
Background/Objectives: The study considers the class of short time series possessing persistency. The investigation is 
focused on selecting and adapting mathematical tools to forecast such type of time series. Methods/Statistical Analysis: 
Adaptive prediction models are capable of adjusting their structures and parameters to changing conditions. Adaptive 
prediction methods opted for Brown’s method for time series of the load in a computing cluster. The time series under 
investigation possess persistency. Fractal dimension of time series should be defined applying the Hurst exponent averaged 
through these time series. The obtained fractal dimension should be taken as the smoothing ratio for Brown’s method. 
Findings: Applied forecasting tasks are often comprised of too short samples that do not allow obtaining statistically valid 
predictions. To forecast short time series is a problem of current importance; and to solve this problem it is required to have 
an idea of the process described by these time series. One of such series is dynamic measurement of load in a computing 
cluster, the statistics of which cannot be modeled for a long-term period. In Brown’s method, the predicted value is found 
applying the average weighted smoothing ratio within the range from zero to one. Selection of optimum smoothing ratio 
is mostly done experimentally, by sorting out all possible values within this range. This procedure can become quite labor-
intensive. Besides, there were ideas of more precise forecasting if the smoothing ratio is selected within the range from 
one to two. This suggestion has to be justified. This study offers a prediction method improving Brown’s method and 
confirms that the smoothing ratio should be selected within the range from one to two. Improvements/Applications: 
The suggested method provides theoretically precise calculated value of the smoothing ratio instead of the experimentally 
selected one and solves the problem of the measuring lag between forecast and actual values.
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1. Introduction
In adaptive prediction models1–4 time-related charac-
teristics of the parameters are used together with the 
characteristics of the interrelations existing between con-
secutive terms of time series and thus, the relevant models 
are rebuilt as the data deteriorate. These models are appro-
priate for more precise response to the changing terms of 
the time series affected by casual interference and they 

apply correcting elements for aligning basic model work 
and actual data. Prediction adaptive models are founded 
on two patterns: Moving Average (MA-models) and 
Autoregressive (AR-models)5,6. Within the moving average 
pattern, evaluation of the current level is represented by the 
weighted average value of all previous levels; furthermore, 
in the process of observation, the weights are counted with 
respect to their remoteness from the last level, i.e. the closer 
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those observations are to the end of the observed interval, 
the higher is the informational value of those observa-
tions. Such models are good at reflecting the changes 
occurring in a trend, but in their pure form, they cannot 
reflect the fluctuations. In the models built according to 
MA principle, the processes of responding to prediction 
errors and discounting the levels of the time series are 
implemented by means of applying smoothing (adapta-
tion) parameters whose values can alter within the range 
from zero to one7,8. In Autoregressive pattern (AR-model) 
the evaluation of the current level is represented by the 
weighted sum of not all but several preceding levels, in 
addition, the weighted quotients of observation are not 
ranked. Informational values of observation are deter-
mined not by their proximity to the modeled level, but 
by the strength of correlations between them. AR-models 
are most appropriate for stationary fluctuating pro-
cesses, while MA-models are better fit for non-stationary 
evolutional processes with the intrinsic properties of frac-
tality9,10 and multi-fractality11. The load in a computing 
cluster is a non-stationary evolutionary process, thus, in 
this case, MA-models will be considered for the purposes 
of prediction12. 

2. Concept Headings 
Suggested prediction method is applied to persistent13,14 
time series, i.e. to the series, where the Hurst exponent is 
within the range of [0.7; 1]. The property of persistency 
means that this particular section of a time series is prone 
to behave according to the trend as follows: If the values 
of a series used to increase over the previous period, it 
is probable that they would continue increasing over the 
following period as well. Persistent time series possess 
long-term memory therefore there are long-term correla-
tions between current and future events. 

Fractal dimension is a value that describes the space 
filled with an object and it is a fractional number by con-
trast to topological dimension (which is always an integral 
number). Fractal dimension D  of a time series correlates 
with the Hurst exponent H  as follows:

(1)

 Where H  is the Hurst exponent, which is a measure 
of displacement in partially Brownian movements.

The Hurst indicator H  can be calculated apply-
ing the algorithm of SR / - analysis or the normalized 
Hurst range. According to this algorithm, the given time 

series izZ = , ni ,1=  is split into starting sections 

τz , where n,1=τ . For those sections, the range is cal-

culated as follows: ( ) tttt
ZZRR ,1,1

minmax ττττ
τ

≤≤≤≤
−==  and 

then this range is normalized to standard deviation ( )τS

. The Hurst exponent amounts to the value as follows: 

( ) ( ) ( )( )( )
( )2/log

/log
τ

ττ
τ

SRH = .

Applying this algorithm, the values of the Hurst expo-
nent ( )τH  for starting sections n,3=τ are found. Now, 
the averaged Hurst exponent for all starting sections 

n,3=τ  shall be found as follows:

(2)

This study suggests that the value of fractal dimension 
D  of the time series should be assigned to the smoothing 
ratioα  

(3)

Inserting value α  of (3) into (1), the calculation for-
mula of an improved Brown’s method applying fractal 
dimension will be as follows:

			  (4)

To solve the issue of the lags existing between the pre-
diction and the relevant actual values, it is suggested that 
forecasting should be carried out according to the follow-
ing formula: 

			   (5)

It is now possible to evaluate the percentage accuracy 
of prediction, by means of subtracting the relative devia-
tions of the resulting predicted values from the actual 
values.

				    (6)

Cumulative prediction error shall be the average value 
δ~  of all relative deviations (6).
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3. Results
For the purposes of carrying out forecasting applying the 
suggested method, consider four short time series of load 
on computing cluster with similar lengths                 : 

11
ixX =  – Time series of the load in a computing 

cluster, Gflops;
22
ixX =  – Time series of the load in processor 

No. 1 of a computing cluster, Gflops;

33
ixX =  – Time series of the load in processor 

No. 2 of a computing cluster, Gflops;

44
ixX =  – Time series of the load in processor 

No. 3 of a computing cluster, Gflops.
The results of calculating the Hurst exponent for these 

time series have been represented in Table 1 (values have 
been calculated accurate to five decimal places).

Figure 1 shows histograms of the time series under 
consideration; Table 2 gives the calculated averaged val-
ues of the Hurst exponent and fractal dimensions.

Table 1. 1X , 2X , 3X , 4X  time series and the relevant values of the Hurst exponent ( )τ1H , ( )τ2H , ( )τ3H , 

( )τ4H  for all starting sections

Sequential 
number of Time 
Series

1X ( )τ1H 2X ( )τ2H 3X ( )τ3H 4X ( )τ4H

1 16,590 – 23 – 10.2 – 27.4 –
2 16,484 – 22 – 12.1 – 20.4 –
3 19,524 0.85,359 31 0.84,202 9.8 0.82,165 21.1 0.84,455
4 21,476 0.91,718 26 0.77,761 9.8 0.77,095 21.6 0.77,544
5 19,371 0.88,795 28 0.82,522 11.3 0.66,498 13.7 0.53,943
6 21,007 0.87,374 24 0.86,553 13.0 0.64,683 27.8 0.78,130
7 19,938 0.85,452 18 0.84,354 12.2 0.70,833 21.2 0.71,180
8 19,872 0.83,675 20 0.85,590 13.1 0.81,880 27.6 0.79,263
9 21,688 0.80,974 25 0.80,842 10.7 0.82,160 31 0.82,352

10 20,832 0.81,221 19 0.82,368 12.5 0.76,241 35.2 0.82,763
11 22,256 0.80,229 28 0.74,851 10.4 0.79,282 31.8 0.86,672
12 23,534 0.77,455 35 0.75,304 9.3 0.82,203 29.7 0.88,134
13 27,454 0.78,720 28 0.76,699 12.9 0.69,722 32.6 0.89,469
14 31,419 0.81,451 31 0.78,153 10.6 0.71,321 25.3 0.87,263
15 31,194 0.86,280 22 0.73,502 12.7 0.63,591 24.6 0.86,291
16 30,478 0.90,076 27 0.73,781 11.3 0.63,401 18.3 0.86,628
17 29,568 0.92,515 22 0.72,057 9.6 0.65,670 18.5 0.86,994
18 29,685 0.94,128 22 0.72,368 10.1 0.67,507 25 0.86,109
19 31,777 0.95,513 30 0.68,252 12.0 0.64,577 25.2 0.85,222
20 14,825 0.94,457 17 0.67,717 10.6 0.65,504 24.5 0.84,691
21 21,497 0.94,063 24 0.67,637 10.0 0.68,809 25.3 0.83,903

1,21i =
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a)

c) d)

b)

Figure 1. Graphic representation of time series: a) 1X , b) 2X , c) 3X , d) 4X .

Table 2. Averaged values of the Hurst exponent and corresponding fractal dimensions 

Calculated values 1X 2X 3X 4X

Averaged Hurst exponent, H~ 0.86,813 0.77,080 0.71,744 0.82,158

Fractal dimension, D 1.13,187 1.22,920 1.28,256 1.17,842
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The prediction models for the time series under study 
are given below:

1
1

1 131866,0131866,1ˆ −+ ⋅−⋅= nnn xxx ,		  (7)

1
2

1 22920,022920,1ˆ −+ ⋅−⋅= nnn xxx ;			   (8)

1
3

1 282556,0282556,1ˆ −+ ⋅−⋅= nnn xxx 		  (9)

1
4

1 178418,0178418,1ˆ −+ ⋅−⋅= nnn xxx .		  (10)

To obtain prediction for the reference point n = 22, 
formula (5) shall be applied:

                                                                        ,		  (11)

                                                                  ;		  (12)

                                                                         ;		  (13)

                                                                         .		  (14)

Prediction error can be evaluated by subtracting the 
predicted values for reference points                and by 

obtaining average value δ~  of relative deviations 213 ...,, δδ  
according to formula (6).

Table 3 shows initial values, forecast values and the 
deviations of the forecast values from the actual values as 
percentages for each of the time series under investiga-
tion.

4.Discussion
To compare the results of applying Brown’s method15,16 
with the results of applying the improved Brown’s 
method, the forecasting shall be carried out for the four 
time series under study using Brown’s method. In the pro-
cess of prediction applying Brown’s method, the following 
smoothing quotients have been obtained experimentally:

                      for time series 
1X ;

                      for time series 2X ;

                      for time series 3X ;

                      for time series 4X .

Figure 2. Results of 
1X  time series forecasting of the load in a computing cluster applying an 

improved Brown’s method.

0,45α =

0,36α =

0,65α =

1
22 21 19ˆ 1,131866 0,131866x x x= ⋅ − ⋅

2
22 21 19ˆ 1, 22920 0,22920x x x= ⋅ − ⋅
3
22 21 19ˆ 1, 282556 0,282556x x x= ⋅ − ⋅

3,21n =

4
22 21 19ˆ 1,178418 0,178418x x x= ⋅ − ⋅

0,61α =
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Use 1~ω , 2~ω , 3~ω , 4~ω  to express the relevant predic-
tion errors of time series kX , 4,1=k  according to the 
basic Brown’s method. Table 4 shows actual values, pre-
dicted values and relative deviations. Figure 2 represents 
histograms of actual and predicted values for time series 

1X , obtained by applying the improved Brown’s method. 
Table 5 gives the values n = 22 and the relevant average 

prediction errors for the predictions carried out applying 
two methods.

Table 5 confirms that improved Brown’s method gives 
better prediction accuracy as compared to conventional 
Brown’s method in each time series. This fact proves 
that the suggested method makes it possible to take into 
account the preceding values more comprehensively to 
obtain the predicted value of a time series. The efficiency 
of the suggested improved Brown’s method can be eval-
uated by merit value δ~  for the time series of load in a 
computing cluster under investigation:

kk δωδ ~~~
−=∆ .				    (15)

Efficiency evaluations of the prediction method sug-
gested within the framework of this study as compared to 
conventional Brown’s method are given below:

%5.3%8.1%3.5~~~ 111 =−=−=∆ δωδ ;
%2.8%4.5%6.13~~~ 222 =−=−=∆ δωδ ;

%0.5%0.4%0.9~~~ 333 =−=−=∆ δωδ ;
%1.3%1.3%2.6~~~ 444 =−=−=∆ δωδ .

Thus, it proved possible to improve the prediction 

error of time series 
1X  by 3.5%; that of time series 2X  

by 8.2%; of time series 3X  by 5.0%; and of time series 
4X  by 3.1%.

5. Conclusion 
The results of the calculations show that the method 

suggested within the framework of this study ensures less 
prediction error at high ultimate precision of sorting out 
the smoothing ratio as compared to Brown’s method. This 
study illustrates persistent short time series forecasting 
exemplified by the process of loading in a computing clus-
ter. It should be noted that the improved Brown’s method 
can be applied to short time series of arbitrary character: 

Natural, social and economical, technical17,18. The prin-
ciple prerequisite is the property of persistency of time 
series that predetermines successful forecasting. The tool 
for calculating the smoothing ratioα  applying Brown’s 
method and based on direct calculation of the averaged 
Hurst exponent in persistent time series, suggested in the 
framework of this study, is less complicated from com-
putational perspective and makes it possible to achieve 
better accuracy of predicting the modified method, as 
compared to basic Brown’s model. This can be explained 
by the fact that the accuracy of classical prediction model 
is predetermined by the ultimate accuracy of sorting out 
the smoothing quotient. 
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