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Abstract
Functional Dependency (FD) rules arise from applications semantic and enforcing integrity of minimal cover of FDs by
normalization or triggers is sufficient condition for guaranteeing integrity of database. Formal achievement of minimal and
optimal FDs from initial FDs is accomplished in this paper. Process of computing optimal and minimal FDs is presented and
modeled by Colored Petri Net (CPN). Proposed model iteratively applies a subset of Armstrong’s axioms and infers FDs that
are origin of all other FDs. Execution of model automatically is stopped when markings of model’s places do not change in
iteration. Minimal and optimal FDs are automatically computed and stored in two different places of the model. Although
CPN is used in many areas but modeling automatic generation of optimal and minimal cover set using CPN is a novel work.
Proposed CPN model in this paper can be considered as automatic proof generator too. Model is designed such that state
space graph of model is very small and is generated quickly. Colour sets are declared such that starting from initial mark-
ings, step by step proof of inferring optimal and minimal cover FDs can be extracted automatically. Proposed model can be
used as a simple tool for automatically computing optimal and minimal FDs of a set of initial FDs.
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1. Introduction
Enforcing integrity constraints of FDs using triggers
decreases performance of Database Management Systems
(DBMS). All FDs of a database can be inferred from small
set of FDs named original FDs. Integrity constraints of
all FDs will be enforced by defining triggers for origi-
nal FDs. Normalization of tables based on the minimal
cover FDs is one of the main responsibilities of Database
Administrator (DBA) team. Automatic generation of
optimal and minimal covers of FDs help DBA team. A
tool that automatically and formally generates optimal
and minimal covers of a set of FDs is demanded.

CPN has used as a powerful method for modeling
and formal investigation of various concurrent systems1-4.
Improving performance of workflow systems by proposed
novel effective methods of workflow scheduling called
phased method is investigated by CPN too5.

In6 investigated computing minimum cover
(irreducible cover) of a relational database and presented
a parallel algorithm for computing third normal form. A
better performance was gained in comparison with serial
computation and explained problems of database nor-
malization algorithm in parallel computation. Functional
dependencies with the mathematical approach were
investigated in several studies7- 9.

A formal approach for definition and design of
conceptual schemata for database systems was proposed
in10. In11 proposed a new approach to the design of rela-
tional database schemes. Their approach was combination
of synthesis approaches and traditional decomposition.
Their approaches automatically correct schemes with
lack of certain desirable properties. Fagin introduced
fourth normal form that is more powerful than earlier
approaches. His novel method is semi-automatic and is
useful for huge databases12. Other traditional  synthesis 
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approaches have been proposed in various published
papers13-15.

In9 combined previous algorithms in order to  produce
an optimal minimal cover in a systematic manner.
Automatic computation of new FDs which can be inferred
from initial FDs using Armstrong axioms16 was modeled
by CPN1. Formal proof of inferring new FDs from exist-
ing FDs has been extracted from state space analysis of
this model. Various tools for CPN modeling and analy-
sis exists that one of the best implemented tools is CPN
tools17,18 that is used in this paper.

At this part of paper two basic definition of CPN is
presented.

1.1 Definition 1
A nonhierarchical Colored Petri Net is a nine-
tuple   CPN = (P, T, A, Σ, V, C, G, E, I), where19:

•	 P: A limited set of places.
•	 T: A limited set of transitions T such that P T =Ø.
•	 A ⊆ (P×T)∪(T×P) is a set of arcs. CPN do not allow

parallel arcs.
•	 Σ: A limited non-Null set of color sets.
•	 V: A limited set of typed variables such that Type[v] 

∈Σ for all variables v∈V.
•	 C: P→Σ denotes a color set function that determines 

the color set which is assigned for each place.
•	 G: T→EXPRV denotes a guard function for each

transition t such that Type[G(t)] = Bool.
•	 E: A→EXPRV denotes an arc expression function

that assigns an arc expression to each arc a such that 
Type[E(a)] = C(p)MS, where p is jointed place to the arc
a. C(p)MS is all multi set on C(p).

•	 I: P→EXPRØ denotes an initialization function that
assigns an initialization expression to each place   
p such that Type [I(p)] = C(p)MS.

1.2 Definition 2
The following concept can be defined for CPN = (P, T, A,
Σ, V, C, G, E, I)19:

•	 A marking may be defined as a function M that
maps each place p ∈ P into a multi set of tokens   
M(p) ∈ C(p)MS.

•	 The term initial marking M0 refers to ∀ p ∈ P:   
M0(p) = I(p).

•	 The variables of a transition t can be defined as
Var(t)⊆V and includes free variables that is appeared
in the guard of t and in the arc  expressions of arcs
linked to t.

•	 A binding of a transition t may be defined as a
function that maps each variable v∈Var(t) into a value 
b(v)∈Type[v]. The term B(t) refers to the set of all
bindings for a transition t.

•	 A binding element can be defined as a pair (t,b) such
that t ∈ T and b ∈ B(t). Whereas BE(t) refers to the set
of all binding elements for a transition t, which can be
defined by BE(t)={(t, b)| b ∈B(t)}. BE is the set of all
binding  elements in a CPN model.

•	 A step Y ∈ BEMS refer to a non-empty, finite multi set
of binding elements.

Main aim of this paper is automatic computation of 
optimal and minimal cover of a set of FDs. Following 
rules are used for computing optimal cover of FD20:

•	 Decompose each FD rule such that left side of each
rule involves single attribute.

•	 Each attribute in the successor part of an FD rule can-
not change closure set Z+ (more explanation of Z+ is
presented in20).

•	 Remove repeated FDs, and only keep one of them in
the set of FDs.

Set of FDs is irreducible (minimal) set, when 
following conditions holds true20:

•	 This set be optimal.
•	 FDs that can be concluded using transitivity rule are

eliminated.

In order to find optimal FDs, transition and decom-
position rules will be used. Activity diagram of the whole
process of the proposed model is as shown in Figure 1.
Initial dependencies are presented to model at the first
step. Then, from these dependencies, optimal dependen-
cies will be computed by applying three main functions
named transition, decomposition, and optimization.
Afterwards, irreducible dependencies will be achieved
using the optimal dependencies and the special functions
that their descriptions are presented at follow. If there is
dependency between A and B, and there is dependency
from B to C, then the Set of Obvious Functional De-
pendencies (SOFD) function inserts A to C dependency
to SOFD List. As is shown in Figure 1, in order to com-
pute all irreducible FD rules a loop is designed. If new
sate can be added to state space in compression with 
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Colset PRODRULE = with IN|DE|TR|BL|OP;
Colset PREDRULELIST = list INT;
Colset ATTRIBUTELIST = list ATTRIBUTE;
Colset RULEGENERATION =  product PRODRULE 

*PREDRULELIST;
�record N:INT * F:ATTRIBUTELIST 

* S: ATTRIBUTELIST *
G:RULEGENERATION;
Colset RULES = list FD;
Colset TOKEN = with t;
Color set ATTRIBUTE is of enumerated type and 

represents name of attributes that are used in FDs. Colour
set ATTRIBUTELIST is defined as list of attributes that
is used in the successor and predecessor parts of each
FD. Colour set PRODRULE is defined to represent name
of Armstrong’s production rule is used for generating
each new FD. Table 1 displays brief description of each 
value of enumerated color set PRODRULE. Colour set 
PREDRULELIST determines a list of the number of FDs
index (integer value) that a new FD rule was deduced using
these FDs. Colour set PRODRULE and PREDRULELIST
are only used in model checking.

Color set FD shows comprehensive form of an FD rule
that contains four fields. The first field named N indicates
the index of current FD. Second and third fields indicate
successor (denoted by F) and predecessor (denoted by S) 
part of an FD rule, respectively. Fourth field is of color 
set RULEGENERATION shows which FDs are used for
deduction of current FD rule and is denoted by G. Colour
set TOKEN is defined for controlling serial execution of the
transitions for decreasing size of state space of the model.

2.2 Initial Marking and Variables
Proposed model is presented with a case study. Initial

markings of model that presents case study are as follows:
val InitialAttribs = 1`[ A,B,C,D,E,F,H];

Figure 1.  Main process of computing optimal and minimal
cover set of proposed CPN model.

Figure 2.  Proposed CPN model of the system.

Table 1. Description of abbreviations that are used 
in PRODRULE color set.

Abbreviation Description

IN Initial FD

DE Decomposition

TR Transitivity

BL Black List

OP Optimal

generated sate space after previous processing of FDs, the
main loop continues. If new state cannot be added to state
space in compression with sate space of previous process-
ing of FDs, loop finishes and model reports irreducible set
through Irreducible set place as is shown in Figure 2.

The overall structure of paper contains five sections,
with this introductory section. Section two begins with
introducing preliminary elements that is used in con-
struction of our proposed model. The third section is
concerned with the top level functions of the model and
shows the structure charts of model’s function. In fourth
section, the findings of the research, state space graph and
model checking of case study model is presented. Finally,
conclusion gives a brief summary and future work of this
study.

2. Preliminary Elements

2.1 Color Sets
All color sets that are used in proposed model are defined
as follows:

Colset ATTRIBUTE = with A | B | C | D| E | F | H;
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val InitialRules =  [{N=1,F=[A],S=[B,C],G=(IN,[])},
{N=2,F=[B],S=[E],

G=(IN,[])},{N=3,F=[C,D],S=[E,F],G=(IN,[])},
{N=4, F=[E,F],S=[H],G=(IN,[])},
{N=5, F=[C],S=[D],G=(IN,[])}];
InitialAttribs shows the list of the attributes that are 

used in the case study. Colour set of InitialAttribs is
ATTRIBUTELIST. InitialRules declares the initial mark-
ing of place Rules. This initial marketing with color set 
RULES represents the five following FDs of case study.

1: A → BC
2: B → E
3: CD → EF
4: EF → H
5: C → D

 Variable of the mode is declared as follows:
var L,L1,L2,L3 : RULES; var c : BOOL;
var al: ATTRIBUTELIST; var k: TOKEN;

2.3 Proposed Model of System
Proposed CPN model of system is as shown in Figure 2.
Place Rules shows all current rules that we want to work
on them, and after running, it gives us transitivity and
decomposition features. Place OptR gives optimal rules
of FDs that exist in Rule’s place. Place irreducible shows
minimal FDs of initial FDs. Places step1 and step1D are
fusion places in order to generate main loop, and places
step2, step3 and step4 can help us to enforce sequential
firing of transitions for decreasing size of state space of
mode. This model contains four main functions that
exist in guard conditions of transitions. Each function
calls some preliminary function. All these functions are
explained in the following section, and structure chart of
these functions is presented in Figure 3.

CPN models are usually faced with state space
explosion problem21. Against this problem, few effective
techniques are used in design of the model. In CPN, permu-
tations of a list member are considered as  different tokens. 

The first proposed technique is; order of members in the
list is considered in a way that multiple permutations of
list members and different tokens are not generated. As a
result, a single meaning (marking) of model does not gen-
erate multiple states in the state space graph of the model.
Second technique is defining more functionality of model
using coding in ML language22. Coding in high level ML
language caused the number of model places decreases
significantly. This technique respectively decreases the
size of state space of the model. Third proposed technique
is sequencing enabling of transitions to decrease size of
state space graph of system.

2.4 Preliminary Function of Model
Several preliminary functions are needed for writing the
main functions of the model. At first, preliminary func-
tions of the model are introduced and explained. Of
course, structure chart of the functions is provided in the
next section for better understanding of the relationship
between the main functions and preliminary functions.
In all of the functions, it is assumed that attributes in left
and right side of FDs are not repeated. Moreover, sub-at-
tributes can be related to the list of attributes in the same
class, but in rules where left side sub-attribute is more
than 2 attributes, two or more sub-attributes cannot be
found from left side with a relation to other attributes
in the same class. This limitation can be eliminated by
improving optimization functions, which can be a task
for the future studies.

Some preliminary functions such as isEqual,
gerRuleIndex, isRuleExists, getAttribIndex and isAt-
tribExists of proposed model is reused from our previous
published paper and complete explanation and ML code of
them were presented in that paper1. Function isEqual takes
two attribute lists and compare these two lists. If they are
equal, it returns true and otherwise returns false1. Function
gerRuleIndex finds the position of a special FD in the list
of rules1. Function getAttribIndex takes two parameters.
First, a special attribute that searches the attribute list
which is taken as the second parameter1. Function isRule-
Exists is used with gerRuleIndex to find special rules in the
list of rules and returns result with Boolean type. Function
isAttribExists takes two parameters in order to find special
attributes in the attribute list1. Function remove_element
takes a list of attributes as the first parameter and a special
attribute as the second parameter. This recursive func-
tion returns a list of attributes that remove the attribute
(second parameter) from it.Figure 3.  Structure chart of model's functions.
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fun remove_element(list:ATTRIBUTELIST, element:
ATTRIBUTE):ATTRIBUTELIST = case list of [] => []
| list_head::list_tail => let val a = remove_element(list_

tail, element)
in

if list_head = element then a
else list_head::a

end
Function isRelation takes a list of rules that exist in 

rules place as the first parameter and a list of attributes
that we want to optimize as the second parameter. This
function searches in the attributes list to find an attribute
that has a relation with sub attributes in this list.
fun isRelation (L: RULES,LA:ATTRIBUTELIST):bool=

let  val rsu=ref 0 
val Brsu=ref false 
val n1=List.length(LA)
val nr = ref 0 
val i = ref 0 
val j = ref 0

in
      while !i < n1 do (
       let val XX= List.nth(LA,!i)
         in  j:= 0;
           while !j < n1 do (
              let val ZZ = List.nth(LA,!j)
                val t1={N=(!nr),F= [XX],S=[ZZ],G=(OP,[])}
                  in  if isRuleExists(t1,L)andalso
                    not(isEqual([XX],[ZZ]))then
                rsu := !rsu + 1
             else ()
      end;
                    j := !j + 1) (* while j *)
             end;
         i := !i + 1); (* while i *)
         if !rsu = 0 then
            Brsu := true
         else();
      !Brsu
     end;

Function repair takes a list of attributes. It compares
all paired attributes using two nested loops. If functional
dependency was found for this pair of attributes (from
FDs taken from input), the attribute which is found in the
right side of this dependency will be eliminated in order
to optimize attributes.
fun repair(f1:FD,L: RULES, LA:ATTRIBUTELIST) :FD=
    let val rsu=ref 0

        val Brsu=ref false
        val n1=List.length(LA)
        val nr = ref 1
        val i = ref 0
        val j = ref 0
        val L4 = ref []
        val n7=List.length(L)
    in
        while !i < n1 do (
           let val XX= List.nth(LA,!i)
           in  j:= 0;
               while !j < n1 do (
                  let val ZZ = List.nth(LA,!j)
                      val t1 = { N= #N f1,F = [XX],
                              S=[ZZ],G=(OP,[#N f1])}
                      val RE=remove_element(#F f1,ZZ)
                  in  if isRuleExists(t1,L)andalso
                            not(isEqual([XX],[ZZ]))
                      then
                      L4 := !L4^^[{N= #N f1,F = RE, S=(#S f1),
                            G=(OP,[#N f1,getRuleIndex(t1,L)+1])}]
                      else ()
                  end;
               j := !j + 1) (* while j *)
           end;
        i := !i + 1); (* while i *)
        if !rsu = 0 then
              Brsu := true
        else();
     (List.nth(!L4,0))
end;

3.  Top Level Functions of the 
Model

The main functions of the model in the current paper
are investigated in this section which includes two rules
from Armstrong rules implemented in1. Function Tran
and Decomp are retrieved from the previous work1. In
addition, some functions will be used for optimization
and finding irreducible relationships. These functions are
guard conditions of transitions in Figure 2 which include
a list of rules, and finally provide a list of rules in due
places. In Armstrong functions, a C variable of binary
type is transformed which indicates whether a new rule
is inferred or not.

Function Opt has the responsibility of generating
optimal FD rules using current FD rules. This function 
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takes all rules and updates the rules in OptR place. This 
function calls the functions repair, isRelation, isRuleEx-
ists and isAttribExists.
fun Opt(L: RULES,L4:RULES) : RULES  =
    let val L2 = ref []
        val n = List.length(L)
        val i = ref 0
        val k=ref 0
    in
        while !i < n do (
           let val F1 = List.nth(L,!i)
               val Dd= List.nth(#S F1,0)
           in
               if List.length(#S F1) = 1 andalso List.length(#F
                       F1)=1 andalso not(isEqual(#S F1,#F F1))
               then
                  L2:= !L2^^[F1]
               else  if List.length(#S F1) = 1
                         andalso List.length(#F F1) > 1 then (
                         if not (isAttribExists(Dd,#F F1)) andalso
                               isRelation(L,#F F1) then
                                  L2:= !L2^^[F1]
                         else if not(isRelation(L,#F F1)) then
                                  L2:= !L2^^[repair(F1,L,#F F1)]
                              else()
                      )
                     else()
       end;
        i := !i + 1 ); (* while i *)
    !L2
    end;

Function Irr provides a list of rules which should not 
be in irreducible rules from optimal rules, the rules which 
are present in optimal list and are not present in this list 
will be returned as irreducible rules.
fun Irr(OptR: RULES , BR:RULES) : RULES  =
  let val L2 = ref []
val L3=ref []
val n = List.length(OptR)
val i = ref 0
val k=ref 0
val j = ref 0
val cs = ref 0
val Found = ref false
val Gen = ref false
val nr = ref 0
  in
nr := n+1;

while !i< n do (
        let  val F1 = List.nth(OptR,!i)
  in j := 0;
     while !j < n do (
if !i < !j then
           let val F2 = List.nth(OptR,!j)
              val ta={N=(!nr),F=(#F F1),S=( #S F2),G=(BL,[#N 
F1,#N F2])}
              val tb={N=(!nr),F=(#F F2), S=(#S F1),G=(BL,[#N 
F1, #N F2])}
             in  if isEqual(#S F1 , #F F2) then
                    ( cs :=1;
                     Gen := true )
                 else if isEqual(#S F2, #F F1)then
                        ( cs := 2;
                          Gen := true )
                      else ( cs := 0;
                             Gen := false);
                             case (!cs) of
                    1=> if !Gen=true andalso 
not(isRuleExists(ta,!L2))
                        then
                               ( L2 := !L2 ^^ [ta] ;
                                nr := !nr +1;
                                 Found := true )
                         else ()
         | 2 =>if !Gen=true andalso not(isRuleExists(tb,!L2))
                         then
                               ( L2 := !L2 ^^ [tb];
                                 nr := !nr +1;
                                 Found := true )
                             else ()
                    |0 => ()
                    end
                 else ( );
            j := !j + 1 ) (* while j *)
        end;
       i := !i + 1 ); (* while i *)
       while !k< n do (
         let val FF = List.nth(OptR,!k)
         in
             if  not(isRuleExists(FF,!L2))  then
                   L3 := !L3 ^^ [FF]
             else()
         end;
       k := !k + 1 ); (* while k *)
!L3
end;
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Figure 3 illustrates the structure chart of model’s func-
tions. Top row of the Figure shows high level functions
that call preliminary functions which are shown below.
Source of arrow shows caller function.

4. State Space Graph and Model
Checking of Case Study Model
A sample case study that was explained in section 2.2 is
modeled in this paper. Report of state space of the model
is as follows:
State Space
     Nodes: 11
     Arcs: 11
     Secs: 0
     Status: Full
  Scc Graph
     Nodes: 8
     Arcs: 7
     Secs: 0
Home Properties
----------------------------------------------------------------
  Home Markings
     [8,9,10,11]
Liveness Properties
----------------------------------------------------------------
  Dead Markings
     None
  Dead Transition Instances
     None
  Live Transition Instances
     All

This report shows that our proposed model has small
state space graph and runs very quickly. Figure 4 displays
complete state space graph of the model.

After generation of state space of model, full
description of each state space node can be extracted
using some build-in functions of CPN. Following code
extracts complete description of state n = 8 of state space.
let
   val file_id = TextIO.openOut(“d:/outputfile.txt”)
 in
   TextIO.output(file_id, NodeDescriptor 8);
   TextIO.closeOut(file_id)
end;

Full description of a state space node displays  marking
of the system at that state. Full description of state  number
8 of Figure 4 is as follows.
8:
FD’Step1 1: empty
FD’Step2 1: empty
FD’Step1D 1: empty
FD’Rules 1: 1`[{N=1,F=[A],S=[B,C],G=(IN,[])},{N=2,F
=[B],S=[E],G=(IN,[])},{N=3,F=[C,D],S=[E,F],G=(IN,[]
)},{N=4,F=[E,F],S=[H],G=(IN,[])},{N=5,F=[C],S=[D],G
=(IN,[])},{N=6,F=[C,D],S=[H],G=(TR,[3,4])},{N=7,F=[
A],S=[B],G=(DE,[1])},{N=8,F=[A],S=[C],G=(DE,[1])},{
N=9,F=[C,D],S=[E],G=(DE,[3])},{N=10,F=[C,D],S=[F],
G=(DE,[3])},{N=11,F=[A],S=[E],G=(TR,[2,7])},{N=12,F
=[A],S=[D],G=(TR,[5,8])}]
FD’OptR 1: 1`[{N=2,F=[B],S=[E],G=(IN,[])},{N=4,F=[E
,F],S=[H],G=(IN,[])},{N=5,F=[C],S=[D],G=(IN,[])},{N
=6,F=[C],S=[H],G=(OP,[6,5])},{N=7,F=[A],S=[B],G=(
DE,[1])},{N=8,F=[A],S=[C],G=(DE,[1])},{N=9,F=[C],S
=[E],G=(OP,[9,5])},{N=10,F=[C],S=[F],G=(OP,[10,5])},
{N=11,F=[A],S=[E],G=(TR,[2,7])},{N=12,F=[A],S=[D],
G=(TR,[5,8])}]
FD’Step3 1: empty
FD’Step_4 1: 1`t
FD’Irreducible_set 1: 1`[{N=2,F=[B],S=[E],G=(IN,[])},{
N=4,F=[E,F],S=[H],G=(IN,[])},{N=5,F=[C],S=[D],G=(I
N,[])},{N=6,F=[C],S=[H],G=(OP,[6,5])},{N=7,F=[A],S=
[B],G=(DE,[1])},{N=8,F=[A],S=[C],G=(DE,[1])},{N=9,F
=[C],S=[E],G=(OP,[9,5])},{N=10,F=[C],S=[F],G=(OP,[1
0,5])}]

Full description of state 11 of Figure 4 is as follows.
11:
FD’Step1 1: empty
FD’Step2 1: empty
FD’Step1D 1: empty
FD’Rules 1: 1`[{N=1,F=[A],S=[B,C],G=(IN,[])},{N=2,F
=[B],S=[E],G=(IN,[])},{N=3,F=[C,D],S=[E,F],G=(IN,[]
)},{N=4,F=[E,F],S=[H],G=(IN,[])},{N=5,F=[C],S=[D],G

Figure 4.  State spaces graph of CPN model for case study’s
markings.
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=(IN,[])},{N=6,F=[C,D],S=[H],G=(TR,[3,4])},{N=7,F=[
A],S=[B],G=(DE,[1])},{N=8,F=[A],S=[C],G=(DE,[1])},{
N=9,F=[C,D],S=[E],G=(DE,[3])},{N=10,F=[C,D],S=[F],
G=(DE,[3])},{N=11,F=[A],S=[E],G=(TR,[2,7])},{N=12,F
=[A],S=[D],G=(TR,[5,8])}]
FD’OptR 1: 1`[{N=2,F=[B],S=[E],G=(IN,[])},{N=4,F=[E
,F],S=[H],G=(IN,[])},{N=5,F=[C],S=[D],G=(IN,[])},{N
=6,F=[C],S=[H],G=(OP,[6,5])},{N=7,F=[A],S=[B],G=(
DE,[1])},{N=8,F=[A],S=[C],G=(DE,[1])},{N=9,F=[C],S
=[E],G=(OP,[9,5])},{N=10,F=[C],S=[F],G=(OP,[10,5])},
{N=11,F=[A],S=[E],G=(TR,[2,7])},{N=12,F=[A],S=[D],
G=(TR,[5,8])}]
FD’Step3 1: 1`t
FD’Step_4 1: empty
FD’Irreducible_set 1: 1`[{N=2,F=[B],S=[E],G=(IN,[])},
{N=4,F=[E,F],S=[H],G=(IN,[])},{N=5,F=[C],S=[D],
G=(IN,[])},{N=6,F=[C],S=[H],G=(OP,[6,5])},{N=7,
F=[A],S=[B],G=(DE,[1])},{N=8,F=[A],S=[C],G=(DE,[1]
)},{N=9,F=[C],S=[E],G=(OP,[9,5])},{N=10,F=[C],S=[F],
G=(OP,[10,5])}]

Comparing full description of states 8,9,10, and 11
shows that, tokens of places OptR, Rules and Irreducible_
set in all of these states are exactly the same. Only tokens
of places Step1, Step2, Step3 and Step4 differ from each
other. As a sample, full descriptions of states 8 and 11 are
shown. This means that the process of computing optimal
and irreducible FDs was converged and yields a single
result. Irreducible set of FDs that is computed automati-
cally by the model and can be extracted from marking
of place Irreducible_set of states 8-11 is summarized as
follows:

B → E
EF → H
C → D
C → H
A → B
A → C
C → E
C → F
Computed optimal FD set of the model that is stored 

in place OptR of Figure 2 in states 8-11 is as follows:
B  → E
EF → H
C → D
C → H
A → B
A → C
C → E

C → F
A → E
A → D
Model is designed such that if proof of each minimal 

FDs will be required, it can be extracted by model check-
ing of state space graph of model. Our proposed model
can be used as automatic proof generator. Table 2 shows
marking of three important places of the model in state
one up to four of the system. For more clarity, new FDs
that are added to each place of a state are shown with
bold, italic, and underline font. Brief name of rule and
FDs that are used for inferring new FD is shown at first
appearance of new FD rule. Transitions from states 1 up
to 4 are result of firing transitions Transitivity, Decom-
position and Optimal respectively.

Table 3 shows marking of three important places of the
model in state 5 up to 8 of the system. Transitions from
states 4 up to 8 are result of firing transitions Irreducible,
Transitivity, Decomposition, and Optimal respectively.
As is shown in Table 3 and Table 4, all information for
extracting automatic proof of each new FDs exists in the
state space of mode. Extracting proof of FDs was  presen-
ted in other paper1.

Table 2.  Brief description of states 1 up to 4 of state
space.

Places 
State Number

1 2 3 4

Rules

1. A→BC
2. B→E

3. CD→EF
4. EF→H
5. C→D

1. A→BC
2. B→E

3. CD→EF
4. EF→H
5. C→D

6. TR(3,4):
CD→H

1. A→BC
2. B→E

3. CD→EF
4. EF→H
5. C→D

6. CD→H
7. DE(1): A→B
8. DE(1): A→C

9. DE(3): CD→E
10. DE(3):CD→F

1. A→BC
2. B→E

3. CD→EF
4. EF→H
5. C→D

6. CD→H
7. A→B
8. A→C

9. CD→E
10. CD→F

OptR

2. B→E
4. EF→H
5. C→D

6. Op(5,6):
C→H

7. A→B
8. A→C

9. Op(5,9):
C→E

10. Op(5,10):
C→F

Irreducible_
set
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5. Conclusion
A novel CPN model of automatically computing  optimal
and irreducible FD rules is presented with complete
description. This model takes initial FD rules as an input
and computes optimal FD rules of them. Then irreducible
FD rules are generated using computed optimal FD rules.
The model is designed such that proof of all results exists
in state space of the model. All proofs can be extracted
automatically by application dependent model checking
of the system. State space explosion of model is eliminated
by using novel techniques in this paper. First technique is
paying attention to not generating different permutations
of list members in whole functions and parts of the model.
Second technique is decreasing the number of model
places and defining most functionality of the model in 

terms of ML functions. This proposed model can be used
as a toll for computing optimal and minimal cover of a set
of FDs. Also, this model can be used as automatic proof
generator of optimal and minimal FDs.
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