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Abstract
Objectives: To synthesize the pure and tin doped chromium oxide 
nanoparticles and analyzing the structural, morphological, and 
elemental composition of the prepared samples. Methods: Sn2+ 
doped chromium oxide (Cr2O3) nanoparticles are synthesized by 
microwave-assisted solvothermal method which is simple and 
cost effective. The pure as prepared sample was subjected to 
TG/DTA analysis. The impact of the added dopant (Sn2+) on the 
Cr2O3 nanoparticles was investigated by X-ray diffraction pattern, 
scanning electron microscopy, and Energy dispersive X-ray spectra. 
Findings/application: The synthesized tin doped chromium oxide 
nanoparticles were annealed at 700 ˚C for 2 h to enhance the 
crystalline quality and to obtain the desirable crystal phase. The 
annealed samples were found to be in rhombohedral structure 
and its average grain size decreases from 24 to 10 nm on increasing 
the dopant concentration. The scanning electron micrograph 
corroborates that the prepared nanoparticles are mostly spherical in 
shape. The Energy dispersive X-ray spectra ensure the presence of Cr, 
O, and Sn. This study has proven that the particle size will be tuned 
by increasing the concentration of Sn2+ in pure Cr2O3 nanoparticles. 
The Cr2O3 nanoparticles are mainly used in paints and pigments, the 
reduction in size increases the coating performance such as scratch 
resistance, hardness, and UV resistance.

Keywords: Chromium Oxide, Solvothermal Method, X-ray 
Diffraction Pattern, Scanning Electron Microscopy, Rhombohedral, 
Energy Dispersive X-ray Spectra.

1.  Introduction
Nano-structured materials [1–2] have attracted many researchers in recent times due to 
their unique physical and chemical properties in contrast to the bulk counterpart. High 
surface area, high density of edge surface sites, and the limited size of the nanosized 
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materials [3–4] make them suitable in different potential applications. Among inorganic 
nanoparticles, chromium (III) oxide (Cr2O3) nanoparticles have impressed the researchers 
due to its myriad uses in developing nano pigments [5], heterogeneous catalysts [6–8] 
coating and wear resistive materials [9–10], hydrogen storage [11–13], digital recording 
system, photonic and electronic devices [14–15]. Several crystalline structures of 
chromium oxides like, corundum (Cr2O3), rutile (CrO2), CrO3, CrO4, Cr2O5, and Cr5O12 
has been reported in literatures [16]. Various methods have been developed by several 
researchers for the synthesis of Cr2O3 nanoparticles such as precipitation method [17–19], 
solvent free method [20], hydrothermal synthesis [21–22], solvothermal method [23–24], 
thermal decomposition method [25–26], sol gel method [27–29], and sonochemical 
method [30]. Though many researchers have adopted different techniques to produce 
Cr2O3 nanoparticles, here we dealt with the simple and cost effective microwave-assisted 
solvothermal method to synthesize chromium oxide (Cr2O3) nanoparticles which 
significantly reduces the reaction time from hours to minutes. Ethylene glycol is used as a 
solvent as it lowers the particle size and act as a good reducing agent. The influence of Sn2+ 
on the structural and morphological features of the pure Cr2O3 nanoparticles has been 
explored. The structural and morphological study of pure and doped Cr2O3 nanoparticles 
play a vital part in exploiting the properties for their use in several emerging technologies.

2.  Materials and Methods
Chromium triacetate (Cr(C2H3O2)3), urea (H2NCONH2), stannous chloride dehydrate 
(SnCl2&middot;2H2O) were used as the precursor and ethylene glycol was used as 
solvent. Distilled water and acetone was used for washing the samples. Initially, chromium 
acetate and urea were taken in the molecular ratio 1:3 and dissolved in 200 ml ethylene 
glycol then it was stirred well with the help of a magnetic stirrer. The dissolved solution 
should be kept under microwave irradiation until the solvent evaporated completely. The 
resulting colloidal particles were washed several times with water and then with acetone to 
remove the impurities if present. Then the samples were dried in atmospheric air at room 
temperature. The dried samples were annealed at 700 °C for 2 h and collected as yield. 
Similar procedure was carried out for the preparation of Sn2+ doped Cr2O3 nanoparticles by 
adding different concentration of dopants (2, 4, 6, 8, and 10 wt%) with the above precursors 
used to prepare the pure samples. The prepared samples were structurally characterized by 
X’Pert Pro-PAnalytic diffractometer with monochromated CuKα radiation (wavelength 
1.5406 Å). The morphology of the pure and Sn2+ doped samples have been unveiled with 
SEM images obtained from scanning electron microscopy (Jeol, Japan). The atomic weight 
percentage of the elements found in the pure and Sn2+ doped samples were obtained from 
EDX spectra recorded by Oxford instruments, UK.

3.  Results and Discussion

3.1.  TG/DTA Analysis
The as prepared sample of pure Cr2O3 was subjected to TG/DTA analysis in order to study 
its thermal stability which is the pre-requirement for device application. The differential 
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thermal and thermogravimetric curves obtained for the as prepared Cr2O3 nano particles 
are shown in Figure 1.

The TG/DTA measurement was performed under nitrogen (inert) atmosphere in the 
temperature range 30–900 °C. Four steps of weight loss were noticed in TG curve. The first 
step happened below 100 °C with a weight loss of 10 wt% was attributed to the removal of 
absorbed water .The second step between 100 and 270 °C with a weight loss of 26.2 wt% 
was brought about by the deterioration of Cr(OH)3, and in the third step the huge weight 
loss acquires due to decomposition of oxygen. From the TG/DTA analysis, it is confirmed 
that the samples are highly in a single phase of Cr2O3 above 500 °C. Therefore, in order 
to improve the crystallinity and purity of sample phase, all the prepared samples were 
annealed at the temperature of 700 °C for 2 h and further used for all measurements.

3.2.  PXRD Analysis
The PXRD pattern of pure and doped Cr2O3 nanoparticles is shown in Figure 2. The 
peaks were marked by comparing the reported JCPDS data file no 82-1484. It belongs 
to rhombohedral system with lattice parameter a = 4.957Å; c = 13.592Å and space 
group 3cR . The indexed diffraction pattern clearly indicates that the increase in dopant 
concentration gradually reduces the peak intensity and increases full width half maximum 
(FWHM). The reason is that the restrained amount of Sn2+ atoms entered as substitutes 
sharing the oxygen with Cr atoms and hence diminishes the crystallinity [31–32]. A slight 
move towards the lower degree which is seen in the Sn2+ doped samples may due to the 
difference between ionic radii of the substitutes Sn2+ (1.18 Å) with that of Cr3+ (0.64 Å). 
Table 1 shows the lattice parameters (a&c) of the pure and Sn2+ doped Cr2O3 nanoparticles 
calculated from the equation [33],

	  

2 2 2

2 2 2
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where d is the interplanar distance and h, k, l are the Miller indices of the plane.

FIGURE 1.  TG-DTA thermogram of as prepared pure Cr2O3.



677 / 685

N. Kalaiselvi and K.U. Madhu

Indian Journal of Science and Technology� Vol 13(06), DOI: 10.17485/ijst/2020/v13i06/149428, February 2020

The variation of the lattice parameters on increasing the dopant concentration revealed 
that added dopant has successfully entered in Cr2O3 lattice and produce lattice elongation. 
The grain size (D) has been calculated using Debye–Scherrer formula (D = Kλ/ β cos θ 
where, D is the crystallite size, K is the shape factor, β is the full width at half maximum, λ 
is the X-ray wavelength, and θ is the Bragg angle ) and tabulated in Table 1.

3.3.  SEM Analysis
In the present investigation, the morphology of pure and Sn2+ doped Cr2O3 nanoparticles 
were unveiled with SEM. The SEM micrographs were recorded and portrayed in Figures 
3–8.

FIGURE 2.  PXRD pattern of pure and Sn2+ doped Cr2O3 nanoparticles.

TABLE 1.  Structural data of pure and doped Cr2O3 nano particles

Sample name Dopant concentration 
(Wt%)

Lattice parameter (Å) Unit cell 
volume

Grain size 
(error~ ±2) 

nma c

Pure Cr2O3 4.9573 13.6138 334.5567 24
Cr2O3: Sn2+ 2 4.9722 13.6312 337.0011 21

4 4.9836 13.6412 338.7965 15
6 4.9921 13.6533 340.2547 13
8 4.9964 13.6572 340.9385 11

10 4.9984 13.6616 341.3214 10
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FIGURE 3.  SEM topograph of pure Cr2O3 NPs.

FIGURE 4.  2 wt% Sn2+ doped Cr2O3 NPs.

FIGURE 5.  4 wt% Sn2+ doped Cr2O3 NPs.
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FIGURE 6.  6 wt% Sn2+ doped Cr2O3 NPs.

FIGURE 7.  8 wt% Sn2+ doped Cr2O3 NPs.

FIGURE 8.  10 wt% Sn2+ doped Cr2O3 NPs.
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The spherical nanoparticles were agglomerated to reduce the complete surface free 
vitality. It was noted that the agglomeration increases with the increasing concentration 
of the dopant. Because of their high surface energy the smaller nanoparticles frequently 
stuck to the neighboring particles, thus seemed like greater particles [34].

3.4.  EDX Analysis
The elemental composition of pure and Sn2+ doped Cr2O3 nanoparticles were studied 
using EDX analyses. The presence of Cr, O, and Sn2+ was clearly indicated in EDX spectra 
shown in Figures 9–14 and the elemental proportions were tabulated in Table 2.

FIGURE 9.  EDX spectrum of pure Cr2O3 NPs.

FIGURE 10.  2 wt% Sn2+ doped Cr2O3 NPs.
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FIGURE 11.  4 wt% Sn2+ doped Cr2O3 NPs.

FIGURE 12.  6 wt% Sn2+ doped Cr2O3 NPs.

FIGURE 13.  8 wt% Sn2+ doped Cr2O3 NPs.
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FIGURE 14.  10 wt% Sn2+ doped Cr2O3 NPs.

The atomic percentage of Cr and O for pure sample matched well with that of 
stoichiometric composition of Cr2O3 which clearly indicates the purity of the sample. The 
peaks due to carbon around 0.27 keV are assigned to the carbon coating layer onto the 
grid that make up the support on which the samples are placed. The gold peak is formed 
around 2.2 keV since it is used as a coating material to enhance the conductivity and to 
improve the resolution. 

4.  Conclusion
Pure and Sn2+ doped Cr2O3 nanoparticles were prepared fruitfully by microwave-assisted 
solvothermal method and its annealing temperature was fixed from thermogravimetric 
analysis. It was proved that adding Sn2+ with pure Cr2O3 nanoparticles reduces the particle 
size drastically. Almost spherical and agglomerated particles were identified with SEM 
micrograph. The EDX spectra result confirms the presence of the expected element and its 
atomic weight percentage.

TABLE 2.  Elemental composition of pure and Sn2+ doped Cr2O3 nano particles 

Sample name Atomic weight % of

Oxygen Chromium Dopant (Sn2+)

Pure 31.4 68.29 –
2 wt% Sn2+ doped Cr2O3 30.21 69.06 0.73
4 wt% Sn2+ doped Cr2O3 32.21 66.5 1.24
6 wt% Sn2+ doped Cr2O3 25.74 72.63 1.63
8 wt% Sn2+ doped Cr2O3 22.85 74.81 2.34
10 wt% Sn2+ doped Cr2O3 26.72 69.84 3.44
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