
Abstract 
Background/Objectives: Evolutionary Algorithms (EAs) have a major role in solving optimization problems. Distributed 
Evolutionary Algorithms (dEAs) improve the performance of classical EAs. In dEAs, the initial population is divided into a 
number of subpopulations and an independent as well as cooperative coevolution happens among the subpopulations. 
Methods/Statistical Analysis: The success of dEAs is mainly attributed to the migration process they follow, during the 
evolution. The migration process alters the diversity of the subpopulations. The contribution of the migration process 
over the success of dEAs can be better understood and/or improved in the light of changes it brings in the diversity of 
subpopulations. Three methodologies used in the modelling process are the theoretical approach, statistical approach and 
the empirical approach. Findings: This paper is to analyze and design a mathematical model of the migration process, for 
its better understanding. A statistical equation to measure the diversity changes in the subpopulation during the migration 
process is also derived. The derived equation is validated on different types of populations. Application/Improvement: 
The derived equation can be applied to study and improve the performance of distributed evolutionary algorithms.
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1.  Introduction
Evolutionary Computation (EC), is a field in computer 
science, which adopts Darwinian principles of biological 
evolution. It comprises of a pool of algorithms, collectively 
known as Evolutionary Algorithms (EA). This collec-
tion includes algorithms such as Evolution Strategy (ES), 
Evolutionary Programming (EP), Genetic Algorithm 
(GA), Genetic Programming (GP) and Differential 
Evolution (DE). Evolutionary Algorithms are popula-
tion based, systematic random search algorithms. For a 
given optimization problem, they search for the global 
optimal solution from a possible set of random solutions. 
In EA terminology, each random solution is named as a 
candidate and the set of candidates is known as a pop-
ulation. The primary step for any EA is initialization of 

the population. With the randomly initialized initial 
population, the EAs undergo the common evolutionary 
processes like selection of parents, recombination of par-
ents, mutation of the offspring and selection of the best 
candidate for the next generation. The completion of all 
the above processes for all the candidates in the current 
population is termed as the end of one generation. This 
whole process (generations) will be repeated until a user 
defined termination condition is reached.

In the process of searching for the global solution 
in the search space of random solutions, the mutation 
and recombination processes add new candidates in the 
population. Thus they are the techniques for increasing 
the diversity of the population. This phase in evolution-
ary search is commonly known as exploration phase. 
The selection processes (parent selection and survivor 
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selection) involves finding the best candidates among 
all the (or few) candidates in the population. This phase 
in evolutionary search is the exploitation phase, which 
results in decrease in the population diversity. The contri-
butions of both the exploration and exploitation phases are 
important, for an evolutionary search to end successfully. 
Even though, the EAs are searching for the solution with 
balanced exploration and exploitation processes (by mix-
ing exploration (through mutation and recombination 
processes) and exploitation (through selection process) at 
every generation, their performance can still be improved 
with proper additional mechanism for balancing the effect 
of exploration and exploitation processes.

The distributed evolutionary algorithms (dEA) is 
one among the techniques to improve the performance 
of EAs. The subpopulation of dEAs cooperate with each 
other by an exchange mechanism termed as migration. 
The migration process transfers the candidate among the 
subpopulation. This exchange has a greater impact on the 
population diversity of subpopulation, thus becoming an 
important phase of dEA. Hence it is useful and essential 
for the researchers in the EC community to understand the 
effect of migration process on the population diversity. 

This paper focuses on modelling the migration process 
mathematically to understand its impact on population 
diversity. The paper follows three different approaches to 
gain insight about the impact of migration on population 
diversity. As a part of the study, a mathematical equation 
is derived to measure the new variance of a population 
after the migration. The derived equation is validated on 
different sample data sets.

The insights presented in the paper will definitely form 
a subset to the researchers to analyze the diversity changes 
in the subpopulation during their co-evolution with 
migration. This may even form another line of research to 
work on tuning the performance of dEA, further, by add-
ing suitable improvements to the migration process in the 
light of its impact on population diversity. 

2. � Distributed Evolutionary 
Algorithms (dEA)

There are several methods available in the literature 
to improve the performance of EAs. One among these 
methods is parallelization of EAs. There are several ways 
of bringing parallelism. The island based distributed 
model is one among the ways to parallelize EAs. In this 
model, the initial population of the EA is divided into n 

subpopulations and they are distributed to n nodes of the 
parallel system. Now the EA will run on each node sepa-
rately, with the subpopulation at that node. The n nodes 
can be n separate machines in a cluster or n differ process 
with in the same machine.

The distributed evolutionary algorithms (dEA) drasti-
cally outperform the classical EAs. The reason behind the 
success of dEA involves the cooperative co-evolution of the 
subpopulations. The subpopulations use a coordination 
mechanism termed as migration. In migration process, 
the candidates are exchanged among the subpopulations 
at a specific interval. Since the migration process injects 
new candidates to the existing population, the direction 
of search within the subpopulations is changed. It also 
alters the diversity of the subpopulations. However, the 
diversity of the subpopulations should neither decrease 
nor increase too fast. The quick decrease or increase in 
population will result in premature convergence or stag-
nation problems. The diversity should gradually decrease 
or increase as it reaches the global optimum. 

Since (generally) dEAs outperforms classical EAs, 
it is evident that the migration process maintains the 
steadiness in the decrease and increase of the population 
diversity. Hence, it is of research interest to investigate the 
novelty that is happening during the migration process in 
altering the population diversity. This paper is intended 
to present the insights gained by the authors based on the 
mathematical analysis done in this research direction.

Beyer in the year 19981 and Feoktistov in 20062 stated, 
“the ability of an EA to find a global optimal solution depends 
on its ability to find the right relation between exploitation 
of the elements found so far and exploration of the search 
space”. The EAs which do not balance the exploration and 
exploitation processes lose their search capability and fall 
in premature convergence or stagnation problems accord-
ing to Zaharie in the year 20013, Zaharie and Zamfirache, 
20064, Angela et al., 20085, Zaharie, 20016.

To improve the performance of EAs, by balancing 
exploration and exploitation, advanced techniques are 
proposed by the researchers of EC community. The tech-
nique of parallelization of EAs is one among them. An 
extensive review on parallelization models used in evo-
lutionary algorithms is presented by Alba and Tomassini 
in 20027.

Potter and DeJong in 1994 put forward the idea of co-
operative co-evolution for genetic algorithm (CCGA)8. 
The concept of CCGA had been applied to all the EAs by 
Liu et al.9 Sofge et al.10 and Bergh and Engelbrecht, 200411. 
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It follows Divide-and-Conquer strategy of problem 
solving. The co-operative co-evolution architecture was 
designed with three components viz. Problem decompo-
sition, Subcomponent optimization and Subcomponent 
co-adaptation. The wide acceptance of the Evolutionary 
Algorithms and its repository has led to its widespread 
usage in almost all the fields of science like data cluster-
ing12, congestion management13, medicine14, etc

One of the parallelization model with co-operative co-
evolutionary concept is island based distributed model. 
The efficacy of this model is due to many parameters 
involved in the distribution. In the year 2004 and 2005, 
Skolicki and Jong15, 16and Cantu-Paz in 200117 analyzed 
the influence of that parameters. The distributed mod-
els of EAs follow the exchange process called migration, 
to send and receive candidates among the populations. 
The migration process itself involves many parameters as 
stated in Cantu-Paz17 in 2001 and Skolicki and Jong15, in 
2004. The successful application of island based distrib-
uted model was extended to almost all of algorithms in EA 
repository. Extensive empirical analysis on performance 
efficacy of island models for DE algorithm are reported in 
various studies18-20.

Since the migration process is the root cause for the 
success of dEA, which also brings changes in the diversity 
of the subpopulations in the island, we are motivated to 
measure and analyze the population diversity during the 
migration process. The population diversity is a measure 
to state how diversified the candidates are in the popula-
tion. This may give a NULL value (if all the candidates are 
same), a HIGH value (if all the candidates are totally dif-
ferent) or a MEDIUM value (for other cases). According 
to Zaharie21, the mathematical way to measure the pop-
ulation diversity is to measure the population variance. 
The higher value of population variance indicates HIGH 
diversity, zero value indicates NULL diversity and other 
values indicate MEDIUM diversity. Zaharie22 in the year 
2003 stated that this value can be used as an indicator to 
balance the exploration and exploitation process.

Zaharie made a significant contribution by deriv-
ing an equation to measure the expected population 
variance in 20013 and extended the work in 200223,24. 
However, this equation is to measure the variance for a 
single population classical Differential Evolution (DE) 
variant named ‘DE/rand/1/bin’. In 2010, Jeyakumar and 
ShunmugaVelayutham25, and Thangavelu et al., in 201526 
derived the expressions to measure the expected popula-
tion variance of other variants of Differential Evolution 

algorithm. Extending this idea to dEAs, which involve 
distributed subpopulations coevolving with migration, is 
a noteworthy research direction. This paper is taking ini-
tial steps, by analysing the migration and diversity, in this 
direction of research.

3. � Modelling the Migration 
Process

The migration process of dEAs depends on many 
parameters: Number_of_Islands, Migration_Policy, 
Migration_Topology, Migration_Frequency and Migration_
Size. The Number_of_Islands is the number of nodes/
processes used for scattering the subpopulations of the 
initial population. Migration_Policy uses selection policy 
to decide the candidate to migrate and uses replacement 
policy to decide candidate to be replaced. Migration_
Frequency is the migration interval. Migration_Size is 
the number of candidates being migrated. Migration_
Topology decides the interconnection among the islands. 
A migration scheme is depicted in Figure 1. In the depicted 
scheme Number_ of_Islands = 4, Selection_Policy selects 
best candidate, Replacement_Policy selects random can-
didate, Migration_Topology = ring, Migration_frequency 
= 10 generations and migration_size = 1. An empirical 
analysis of migration with different parameters, for DE 
algorithm, is presented by Jeyakumar and Shunmuga 
Velayutham in 201027.

The migration process, at the interval of migration 
frequency, among the subpopulations exchanges the can-
didates among them. This process alters the diversity of 
the subpopulations, which suitably redirect the search. 
The success of dEA is largely due to this mechanism. 
The pattern of changes (increasing or decreasing) in the 

Figure 1.  A Simple Migration Scheme.
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population diversity, can be measured and analyzed with 
proper modelling of the migration process. The objective 
of the modelling presented in this paper is to measure the 
population variance after migration from the value of the 
population variance before the migration.

We followed three different methodologies to model 
the migration process, to get clear insight about calculat-
ing the diversity in the population before and after the 
migration process. There exists many ways to measure the 
population diversity. We used population variance, which 
is the most commonly used in the literature. The method-
ologies used in our study are named as follows.

Theoretical Approach•	
Statistical Approach and•	
Empirical Approach•	

3.1  Theoretical Approach
In dEA, the initial population is divided into sub-
populations and scattered to all the islands. For easy 
understanding, in our distributed model the parameters 
for the migration process are assumed as follows

Number_of_Islands•	 = 2 (named as S1 and S2).
Migration_Policy •	 : Selection_Policy: best, Replacement_
Policy: random
Migration_Topology:•	  ring
Migration•	 _Interval = 10 
Migration_Size:•	 1

During migration, each subpopulation replaces a local 
candidate by a foreign candidate sent by its neighbour. 
In our model, the foreign candidate is the best candidate 
of the sender subpopulation and the local candidate is a 
random candidate of the receiver subpopulation. With 
ring as migration_topology and migration_size as 1, each 
node receives only one best candidate from its previous 
neighbour and sends only one best candidate to its next 
neighbour. The Figure 2 shows our distributed model. 

Since the migration scheme specifies the migration_
interval, the migration takes place only at that particular 
interval. Usually, migration_interval specifies the num-
ber of generations after which the migration should 
take place. Until reaching the next migration point, each 
of the subpopulation evolves only with the candidates 
available at the subpopulation. Hence, the change in the 
population diversity at each subpopulation, at the end 
of every generation, is due to the evolutionary processes 

(mutation, crossover and selection) done only with the 
local candidates. In this phase of evolution, the popula-
tion variance can be mathematically measured. For DE 
algorithm, theoretical equations are given by Zaharie 
in 20013, by Jeyakumar and Shunmuga Velayutham in 
201025 and by Thangavelu et al, 201526 to measure popula-
tion variance at any arbitrary generation.

At the migration point (assume nth generation), a 
best candidates of S1 (S2) replaces a random candi-
date of S2(S1). Since a local candidate is replaced by 
a foreign candidate, the diversity of the subpopulation 
eitherwill increase or decrease or remain unchanged. 
If the population variance before the migration point 
(at n-1th generation) is Vold, then new variance (Vnew) 
after the migration is expressed as a theoretical equa-
tion below

	 � (1)

Where ChangeV is the amount of change (±) in the popu-
lation variance after migration. Equation (1) states that 
the population variance after migration is calculated by 
adding or subtracting either a zero or a non zero value 
with the population variance before migration. If node 
S1’s random candidate (S1.r) is replaced by node S2’s best 
candidate (S2.best). The value for the variable Change_V, 
at node S1, can be proportionally calculated by finding 
any one of the following

(1) � Similarity of (or distance between) the candidates 
S1.r and S2.best

(2) � Similarity of (or distance between) S2.best and S1’s 
centre of the population.

Based on the population representation the similarity 
values will vary for different EAs. The similarity value is 
denoted as SVal. This can be calculated using usual distance 

Figure 2.  The distributed model used.
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metrics viz Euclidean distance, Manhattan distance etc. 
With sufficient sample analysis, a threshold range for Sval 
for three different changes (increase, decrease and no 
change) in the population variance can be described as 
follows

	 � (2)

Where, cv is a value to be calculated proportional to Sval, 
from Sval.

lb and ub are the lower and upper bound for Sval.
From the equations (1) and (2) the cases of population 

variance with increasing, decreasing and unchanged are 
modelled with the equation (3)

	 � (3)

This section has presented the theoretical view of measur-
ing the population variance of the subpopulations after 
migration, from the known population variance at pre-
vious generation. This analysis was done to understand 
the impact of migration process in altering population 
diversity of the subpopulation. The critical issue found 
in this analysis is calculating the cv value proportional to 
Sval, from Sval. The next subsection is intended to provide 
a different perspective for population variance calcula-
tion, without taking into account the similarity between 
the local candidate and the foreign candidate of the 
subpopulation.

3.2  Statistical Approach
The objective of this section is to analyze the differ-
ent cases of changes in population variance (increase, 
decrease and no change) after migration, with random 
samples of numbers. This analytical work was done using 
MS-Excel spreadsheet software. We used two set of num-
bers from 1 to 10 as our initial subpopulations, named as 
S1 and S2. A basic schematic diagram to show this migra-
tion model, used in this study, is presented in Figure 3. 
Now, the migration process among S1 and S2is replacing 
any one of the integer (randomly) in S1 by any one of the 
best integer (any integer) from S2.Themigration process 
was simulated by replacing all the integers in S1, one by 
one, by all the integers in S2. For example, the result of 
replacing the number 3 (for example) of S1by all the num-
bers ofS2 is shown in Table 1.

It is observed from Table 1 that, after migration there 
is a pattern of change in population variance in relation to 
the centre of the population (ie, average of the population, 
for S1 it is 5.50). The population variance after migration 
either increases or decreases proportionally with respect 
to the distance of the replacing candidate from the cen-
tre of the population. This change is also dependent on 
the distance of the replaced candidate from the centre of 
the population. The simulation experiment conducted by 
replacing all the candidates of S1, one by one, by all the 
candidates of S2, resulted in the combined result shown 
in Table 2. The graph depicting the population variance 
changes is shown in Figure 4.a and 4.b.The graphs show 
bell shaped patterns for the changes in the variance, in 
all the cases. It was evident from our simulation results 

Figure 3.  Migration Modelling of two populations with 
integers.

Table 1.  A sample migration – with changes in 
population variance

 
S1’s

Replaced by S2’s

  1 2 3 4 5 6 7 8 9 10

  1 1 1 1 1 1 1 1 1 1 1

  2 2 2 2 2 2 2 2 2 2 2

  3 1 2 3 4 5 6 7 8 9 10

  4 4 4 4 4 4 4 4 4 4 4

  5 5 5 5 5 5 5 5 5 5 5

  6 6 6 6 6 6 6 6 6 6 6

  7 7 7 7 7 7 7 7 7 7 7

  8 8 8 8 8 8 8 8 8 8 8

  9 9 9 9 9 9 9 9 9 9 9

  10 10 10 10 10 10 10 10 10 10 10

Variance= 9.17 10.68 9.82 9.17 8.71 8.46 8.40 8.54 8.89 9.43 10.18

Average= 5.50 5.30 5.40 5.50 5.60 5.70 5.80 5.90 6.00 6.10 6.20
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3.2.1  Statistical Equation 
This section is intended to present the statistical equation 
derived, by the authors, to measure the variance of a pop-
ulation after migration. For a set of random numbers, the 
variance and mean are denoted as σ2

old and µold, respec-
tively. If a number in the set Xold (replaced candidate) is 
replaced by a new number Xnew (replacing candidate), the 
new mean (µnew) is

	 � (4)
The general equation for finding variance of n num-

bers is

	 σ2
old = 2 � (5)
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Table 2.  The combined result of the simulation

S2’s
Population Variance on Replacing S1’s Candidate

1 2 3 4 5 6 7 8 9 10
1 9.17 10.04 11 11 11 11 11 10 9.34 8.27
2 8.27 9.17 9.8 10 10 10 10 9.4 8.62 7.57
3 7.57 8.49 9.2 9.6 9.8 9.7 9.4 8.9 8.1 7.07
4 7.07 8.01 8.7 9.2 9.4 9.3 9.1 8.5 7.78 6.77
5 6.77 7.73 8.5 8.9 9.2 9.2 8.9 8.4 7.66 6.67
6 6.67 7.66 8.4 8.9 9.2 9.2 8.9 8.5 7.73 6.77
7 6.77 7.78 8.5 9.1 9.3 9.4 9.2 8.7 8.01 7.07
8 7.07 8.10 8.9 9.4 9.7 9.8 9.6 9.2 8.49 7.57
9 7.57 8.62 9.4 10 10 10 10 9.8 9.17 8.27

10 8.27 9.34 10 11 11 11 11 11 10 9.17

(a)

(b)

Figure 4.  Change in Population Variance of S1 after 
migration. (a) For replacing number 1 to 5. (b) For replacing 
numbers 6 to 10.

that the variance of a population after migration either 
decreases or increases based on a close relationship 
between the replaced, replacing and centre candidates of 
the population.
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Thus the equation derived to measure the variance of 
a population of numbers after replacing any of its number 
by a new number is

	 � (7)

The equation (7) was validated with two sample set 
of numbers A ={29, 23, 21,29, 34, 37, 48, 24, 15, 20} and 
B={29, 23, 21, 19, 1, 37, 48, 2, 15, 20}. The mean and 
variance of the set A are  and σ2

old = 101.33, 
respectively. For replacing 34 (Xold) of A by 1 (Xnew) of B, 
the new variance after replacement (s2

new) is calculated 
using the equation (7) as

= 
	 = 101.33 + 75.11 – 5.44 – 12.10
	 = 158.90

The obtained result was verified with the MS-Excel’s 
VAR function, which returns the sample variance for a 
sample. A comparison of new variances calculated for 
various sample replacements by using the equation (7) 
and VAR function is presented in Table 3. The results in 
Table 3 proved the validity of the equation derived in this 
paper.

Even though, the validity of the equation (7) was 
verified in the above section, it was done for two pop-
ulations with only set of numbers. But, in EAs the 
populations are of two-dimensional structure. In EA’s 
population structure, each row means a candidate of the 
population and each column means a particular prop-
erty of the candidate. Thus the population is the group 
of candidates with similar properties. Hence, it necessi-
tates verifying the validity of the equation for migration 
among populations of EAs. This study is done in the next 
section.

3.3  Empirical Approach
To get sample populations for this study, we used Differential 
Evolution algorithm. DE, introduced by R. Storn and K. 
Price28, is one of the most powerful addition to EA reposi-
tory. Two random samples of populations were generated 
by running DE algorithm, for the benchmarking function 
‘Sphere Model’. DE is a powerful stochastic algorithm which 
is a recent addition to the EA repository. There are diffe-
rent variants for the DE algorithm which are compared for 
multi objective optimization by Aswani et al.29 and for glo-
bal optimization by Efrnn et al30. For the two dimensional 
population structures, the population variance is calculated 
as the average of the population variances of the indivi-
dual parameters (columns). In our study we considered a 
population of 15 candidates, with 4 parameters each. The 
Figure 5 shows the initial subpopulations (S1 and S2) gene-
rated by DE algorithm. The mean and variance calculated 
using MS-Excel formula are also shown in the Figure. Now, 
to simulate the migration process, we selected (randomly) 
the candidate 8 of S1 as replaced candidate and candidate 
13 of S2 as replacing candidate. The migration from S2 to 
S1 is performed by replacing the candidate 8 of S1 by the 
candidate S2 of 13. The subpopulation S1 after migration is 
shown in Table 4. The new population variance of the para-
meters of S1 is calculated using the equation (7), and the 
average of all these measures is calculated as the variance 
of the population after migration.

This simulation was repeated for many sample 
replacing and replaced candidates, and the new popu-
lation variance is calculated using the equation (7) and 
MS-Excel formula. We found that the results obtained 
using the equation (7) is exactly matching with the results 
calculated using MS-Excel (Table 5). This is reiterating the 
validity of the equation derived for measuring population 
variance for the population chosen from EAs (DE) also. 

Table 3.  Validation Results for the Equation (7)

Sno
σ2

new

Using MS Excel Using Equation (7)
1 158.9 158.9
2 207.6556 207.6556
3 274.4 274.4001
4 204.5444 204.5444
5 183.2111 183.2111
6 135.73244 135.7322
7 205.8727 205.8727
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(b)(a)

Figure 5.  Initial Subpopulations generated by DE algorithm. (a) Subpopulation S1 and (b) Subpopulation S2.

Table 5.  Validation Results of the equation (7) for 
population migration

Sno
σ2

new

Using MS Excel Using formula
1 2639.10 2639.10
2 2911.29 2911.29
3 3411.29 3411.29
4 1236.96 1236.96
5 1400.15 1400.15
6 3744.17 3744.17
7 2415.82 2415.82
8 3213.45 3213.45

Table 4.  The subpopulation S1, after migration

Candidate
Parameters

1 2 3 4
1 –14.96 52.04 –88.65 –59.59
2 –36.83 –97.34 91.96 40.70
3 55.88 –4.14 8.82 –45.95
4 96.29 35.64 –51.04 –47.74
5 51.00 87.05 –57.51 –35.90
6 –4.19 45.01 47.71 –57.76
7 –43.41 –12.91 58.45 45.17
8 –10.85 19.73 25.71 –7.03
9 9.88 33.39 –43.55 –51.73

10 76.37 –51.13 33.50 –9.88
11 –41.41 –16.46 54.35 0.03
12 –1.13 –86.67 –15.89 –5.11
13 48.12 –75.46 88.74 –23.47
14 –75.84 –20.75 6.37 –40.13
15 –53.35 3.44 96.48 29.44

s2
new

2639.10 2911.29 3411.29 1236.96
Population Variance: 2549.66

4.  Conclusions
The mathematical modelling of the migration process of 
the Distributed Evolutionary Algorithms (dEAs) presented 
in this paper followed three approaches: 1) Theoretical 
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2) Statistical and 3) Empirical. The theoretical approach 
explained the conceptual view of the migration process 
among the population, and also a theoretical expression 
to measure the population diversity. In the statistical 
approach, the migration process was modelled for pop-
ulation with a set of numbers. This approach expressed 
a view that the changes in the population diversity after 
migration depend on the positional difference between 
the replaced, replacing and centre of the population. An 
equation to measure the population variance after migra-
tion from the current variance is also derived and verified 
for sample population. In empirical approach, the pop-
ulation structure of EAs is explained and the migration 
process is modelled with two subpopulations derived 
from DE algorithm. The validity of the statistical equation 
derived above is also verified with each of the subpopula-
tion of DE. 

As an attempt in the direction of analyzing the migra-
tion process of dEAs, the insight provided in this paper 
is in its basic form. We admit that the authors need to 
investigate more in this direction to come up with more 
simplified equation to measure the diversity during 
migration, which may state a strong one-to-one rela-
tionship between the migration policy and the diversity 
enhancement policy.

5.  References
1.	 Beyer HG. On the Explorative Power of ES/EP like algo-

rithms, In: Porto VW, Saravanan N, Waagen DE, Eiben 
AE editors. Proceedings of the 7th Annual Conference on 
Evolutionary Programming, Springer. 1998. p. 323–34. 

2.	 Feoktistov V. Differential Evolution In Search of Solutions, 
Springer-Optimization and its applications, Springer. 2006; 
1–24.

3.	 Zaharie D. On the explorative power of differential evo-
lution algorithms. Proceeding of the 3rd International 
Workshop on Symbolic and Numeric Algorithms on 
Scientific Computing, SYNASC-2001, 2001. 

4.	 Zaharie D, Zamfirache F. Diversity enhancing mechanism 
for evolutionary optimization in static and dynamic envi-
ronments. Proceedings of the 3rd Romanian-Hungarian 
Joint Symposium on Applied Computational Intelligence. 
2006; 460–71. 

5.	 Angela, AR, Adriano S, Andrade O, Soares AB. Exploration 
vs exploitation in differential evolution. Proceedings of the 
AISB 2008 Symposium on Swarm Intelligence Algorithms 
and Applications, Aberdeen, Scotland. 2008; 57–63. 

6.	 Zaharie D. Recombination operators for evolutionary algo-
rithms. In: Ivanchev D, Todorov MD editors. Proceedings 

of the 27th Summer School of Applications of Mathematics 
in Engineering and Economics. 2001; 625–27. 

  7.	 Alba E, Tomassini M. Parallelism and evolutionary algo-
rithms. IEEE Transactions on Evolutionary Computation. 
2002; 6(5):443–62.

  8.	 Potter MA, DeJong KA. A cooperative co-evolutionary 
approach to function optimization. Proceedings of the 3rd 
International Conference on Parallel Problem Solving from 
Nature, Springer-Verlag. 1994. p. 249–57. 

  9.	 Liu Y, Yao D, Zhao Q, Higuchi T. Scaling up fast evolutionary 
programming with cooperative coevolution. Proceedings 
of the IEEE Congress on Evolutionary Computation. 2001; 
2. p. 1101–108.

10.	 Sofge D, DeJong KA, Schultz A. A blended population 
approach to cooperative coevolution for decomposition of 
complex problems. Proceedings of the IEEE Congress on 
Evolutionary Computation. 2002; 413–18. 

11.	 Van den Bergh F, Engelbrecht AP. A cooperative approach 
to particle swarm optimization. IEEE Transactions on 
Evolutionary Computation. 2004; 8(3):225–39.

12.	 Bouyer A, Ghafarzadeh H, Tarkhaneh O. An efficient hybrid 
algorithm using cuckoo search and differential evolution for 
data clustering. Indian Journal of Science and Technology. 
2015 Sep; 8(24).

13.	 Suganthi ST, Devaraj D, Hosmin Thilagar S. An improved 
differential evolution algorithm for congestion management 
considering voltage stability. Indian Journal of Science and 
Technology. 2015 Sep; 8(24).

14.	 Balamurugan V, Marimuthu T. Mining the amino acid 
dominance in gene sequences. Indian Journal of Science 
and Technology. 2015 Jul; 8(14).

15.	 Skolicki Z, Jong KD. Improving evolutionary algorithms 
with multi-representation island models. Proceedings 
of the 8th International Conference on Parallel Problem 
Solving from Nature – PPSN VIII, Springer- Verlag: Berlin 
Heidelbeg. 2004; 3242. p. 420–29. 

16.	 Skolicki Z, Jong KD. The influence of migration sizes and 
intervals on island models. Proceedings of the 7th Annual 
Conference on Genetic and Evolutionary Computation. 
2005. p. 1295–302. 

17.	 Cantu-Paz E. Migration policies, selection Pressure and 
parallel evolutionary algorithms. Journal of Heuristics. 
2001; 7(4):311–34.

18.	 Jeyakumar G, Shunmuga Velayutham C. Distributed Mixed 
Variant Differential Evolution Algorithms for Uncon
strained Global Optimization. Memetic Computing. 2013; 
5(4):275–93.

19.	 Jeyakumar G, Shunmuga Velayutham C. Distributed 
Heterogeneous Mixing of Differential and Dynamic 
Differential Evolution Variants for Unconstrained 
Global Optimization. Soft Computing – Springer. 2014; 
18(10):1949–65.



Mathematical Modelling of Migration Process to Measure Population Diversity of Distributed Evolutionary Algorithms

Indian Journal of Science and Technology10 Vol 9 (31) | August 2016 | www.indjst.org

20.	 Jeyakumar G, Shunmuga Velayutham C. Hybridizing 
Differential Evolution Variants Through Heterogeneous 
Mixing in a Distributed Framework. Hybrid Soft Computing 
Approaches, Springer, India. 2015; 107–51.

21.	 Zaharie D. Parameter adaptation in differential evolution 
by controlling the population diversity. In: Petcu D et al 
editors. Proceedings of the 4th International Workshop 
on Symbolic and Numeric Algorithms for Scientific 
Computing. 2002; 385–97.

22.	 Zaharie D. Control of population diversity and adaptation in 
differential evolution algorithms. In: Matousek R, Osmera 
P editors. Proceedings of the Mendel’s 9th International 
Conference on Soft Computing. 2003. p. 41–6.

23.	 Zaharie D. Critical values for the control parameters 
of differential evolution algorithms. Proceedings of the 
8th International Conference on Soft Computing. 2002. 
p. 62–7.

24.	 Zaharie D. Statistical properties of differential evolu-
tion and related random search algorithms, In: Brito P 
editors. Proceedings of the International Conference on 
Computational Statistics Porto. 2008. p. 473–85.

25.	 Jeyakumar G, Shunmuga Velayutham C. A Comparative 
Study on Theoretical and Empirical Evolution of the 
Population Variance of the Differential Evolution Variants. 

In Proceeding of Simulated Evolution and Learning, 
Springer-Verlag, Berlin Heidelberg. 2001; 75–9.

26.	 Thangavelu S, Jeyakumar G, Balakrishnan RM, Shunmuga 
Velayutham C. Theoretical analysis of expected popula-
tion variance evolution for a differential evolution variant. 
Computational Intelligence in Data Mining, Springer. 2005; 
2:403–16.

27.	 Jeyakumar G, Shunmuga Velayutham C. Empirical Study 
on Migration Topologies and Migration Policies for Island 
Based Distributed Differential Evolution Variants. In pro-
ceedings of Swarm, Evolutionary and Memetic Computing, 
Springer-Verglet, Berlin Heidelberg. 2010; 29–37.

28.	 Storn R, Price K. Differential Evolution – A simple and 
efficient adaptive scheme for global optimization over con-
tinuous spaces. 1995; 1–12.

29.	 Aswani, Praveen VV, Thangavelu S. Performance Analysis 
of Variants of Differential Evolution on Multi-Objective 
Optimization Problems. Indian Journal of Science and 
Technology. 2015 Aug; 8(17).

30.	 Mezura-Montes E, Velazquez-Reyes J, Coello Coello 
CA. A comparative study of differential evolution vari-
ants for global optimization, GECCO ‘06. Proceedings of 
the 8th Annual Conference on Genetic and Evolutionary 
Computation. 2006. p. 485–92.


