
Abstract
Numerical solutions for the moving flat plat in a parallel stream with heat flux is to be constant have been studied. By using 
non-similar transformation, the governing equations be able to reduced to an ordinary differential equation. Then, results 
of the equations can be solved by shooting method with maple implementation. Numerical results reveal that the velocity 
ratio parameter λ<0, the non-unique solutions do exist. Then, the analysis of stability is carried out into two non-unique 
solutions to determine which is more stable between both of the solutions by bvp4c solver in Matlab. From the result of 
stability analysis, the eigenvalues for the first solution is positive at the same time as second solution is negative. 
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1.  Introduction
There exists two ways of motion of heat transfer from a 
surface, either it is moving or stationary fluid. Whereas 
in engineering, the heat transfer’s motion can be applied 
in many areas1. To the best of our knowledge, in3–5 was 
the first who did a research about a moving surface in the 
boundary layer flow. Then, the problem within moving 
surface has been studied in different situations by many 
researchers such as6–9,11. However, as reported by10, the 
papers by12–15 shows the dual solution in their numerical 
results. 

In general, constant for both wall temperature and 
surface heat flux are common applications with in heat 
transfer problem by researchers. For constant wall heat 
flux, the temperature is increasing with distance along the 
wall while for constant the wall temperature, the wall tem-
perature is constant. In this study, the boundary condition 
is constant heat flux is considered. 

Recently, a study regarding stability analysis had 
sparked an interest in research. This analysis is important 
in this fluid dynamics to identify which solution is stable 

if there are non–unique solutions exist in computation. 
However, the papers regarding this problem are limited in 
view since it is very new in our research. Some papers can 
be viewed towards this interest such as papers by12,15–21. In 
this present study, the aim is to examine the stability of 
the existence dual solution reported by10.

Nomenclature Greek symbols

g
acceleration due to 

gravity α thermal diffusivity 

f
non-dimensional stream 

function ψ stream function 
T fluid temperature η similarity variable

T∞

ambient uniform 
temperature λ velocity ratio parameter

qw local heat flux μ dynamic viscosity
Tw surface temperature ρ fluid density
Pr Prandtl number ν kinematic viscosity
Cf skin friction coefficient
Re Reynolds number  
Nu Nusselt number    
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2.  Mathematical Formulation
Let consider a viscous, an incompressible fluid two – 
dimensional boundary layer flow on a rigid or constantly 
moving flat surface. The plate moves is assumed in similar 
or reverse direction to the free stream and the surface is 
a constant heat flux. The velocities for both also assumed 
be constant. By the assumptions, the governing equations 
for this study are10
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and the conditions at the boundary are
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where u is the velocity along the x- direction whereas v 
is the velocity along the y-directions. U

∞
 is free stream 

velocity and wU is plate velocity with both are constants. 
Furthermore, α is refer to thermal diffusivity, k is denotes 
the thermal conductivity and wq  is surface heat flux. In 
order to find a similarity solution of Equation (1) - (4), we 
apply the following similarity transformations
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Where wU U U
∞

= + is the composite velocity. Further, 
y is known as stream function and usually declare as 

/u yy= ∂ ∂  and /v xy= −∂ ∂ . Employing the similar-
ity variables Equation (5), the Equation (1) is automatically 
convinced while the Equations (2) and (3) change to the 
ordinary differential equations as below:
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Then, the boundary conditions in Equation (4) reduce 
to the forms:

(0) 0,f = (0) ,f l′ = (0) 1q ′ = −

	 ( ) 1 ,f h l′ → − ( ) 0q h → ash →∞ � (8)

with Pr is defined as Pr /n a= , primes stand for 
differentiation respect to h  and velocity ratio parameter 
l  define as 
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The skin friction coefficient fC  along with the local 
Nusselt number xNu  acknowledged as 
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with the wall shear stress wt and the local heat flux 
wq  are known as
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Then, apply the Equation (5) into Equation (11), 
which becomes
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Where, Re /x Ux n= is known as Reynolds number

3.  Solution of Stability
The first step to analyze a stability analysis is to consider 
the problem is an unsteady problem. Then, Equations (2) 
and (3) are replaced by
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Where, t refers to time. As identified by the variable in 
Equation (5), the new dimensionless variable for the 
unsteady problem can be introduced as	
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and the boundary conditions are

0 (0) 0,F = 0 (0) 0,F ′ = 0 (0) 0G =

	 0 ( ) 0,F h′ → ( )0 0G h → ash →∞ � (25)

It is necessary to point out that for the specific values 
of Pr and g , the stability of the steady flow solutions for 
both 0( )f h  as well as 0( )q h can be tested via the small-
est eigenvalue g . It is necessary to point out that, if an 
initial increment of interruption during computation, 
then the flow is declared as unstable once the smallest 
of eigenvalue shown negative. On the other hand, if an 
initial decomposition, then the flow is declared as stable 
when smallest g eigenvalue is a positive value. As it has 
been suggested by22, as a result of relaxing a boundary 
condition on 0( )F h  and 0( )G h , we can determine the 
possible range of eigenvalues. Then, in this present prob-
lem, the condition 0 0F ′→  as h →∞ is selected to be 
relaxed and we solved the Equations (23) and (24) with 
the updated boundary condition as 0 (0) 1F ′′ =

4.  Result and Discussion
In order to achieve the infinity boundary conditions 
asymptotically, the thickness of boundary layer known as 
h
∞ was used between 5 and 15 values. By guessing the 

difference between initial values for f ′′(0) and (0)q ′−

, the dual solutions are obtained where both profiles sat-
isfy the boundary condition in Equation (8). The Pr and 
tl number is kept constant at Pr = 1 with various value 
of velocity ratio parameter λ. The numerical results have 
shown in good agreement with previously work by2,3,10 
as shown in Table 1. In this study, the solution is unique 
when 0 1l≤ ≤ , dual solution when 0.5482 0l− ≤ ≤  
and no solution when 0.5482l ≤ − .

Further, we perform a stability analysis since the 
numerical computation admits dual solutions. The sta-
bility of the flow can be tested by looking at the polarity 
of the smallest eigenvalue itself. As has been noted, the 
flow will be stable if only if the smallest eigenvalue have 
shown positive result. On the other hand, when the small-
est eigenvalue g is shown negative, then the flow is surely 
unstable. Table 2 displays the smallest eigenvalue g for 
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so that Equations (2) and (3) will become as
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With a view to analysis the stability for the steady flow 
solution ( )0( )f fh h=  as well as ( )0( )q h q h=  comply 
with the boundary – value problem Equation (1) - (4), we 
put in writing16–19
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With ( , )F h t  is small relative to 0 ( )f h while ( , )G h t  
is small relative to 0 ( )g h and g  is an unknown eigenvalue 

. Introducing Equation (19) into Equation (16) and 
Equation (17), the result is
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and the new boundary conditions
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Then, the solutions 0( ) ( )f fh h=  and 0( ) ( )q h q h=  
of the steady solutions in Equation (6) and Equation (7) 
are obtained by replacing the value oft as 0 . Therefore, 

0 ( )F F h= and 0 ( )G G h= in Equation (16) and 
Equation (17) identify initial increment of the solution 
in Equation (19). For that case, we should deal with the 
linear eigenvalue problem
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5.  Conclusion
In solving the positive x-direction of the free stream, the 
range of λ< 0 admits the non-unique solutions as known 
as upper branch and lower branch with λc = -0.5482. 
Upper branch have shown linearly stable whereas the 
lower branch shown linearly unstable by performing the 
stability analysis. This statement is supported due to the 
fact that the eigenvalue g  is positive on behalf of upper 
branch while lower branch is shown negative.
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the variation values of λ with Pr = 1. We can see clearly 
that the value of g for the upper branch is real and posi-
tive and the value of g for the lower branch is real and 
negative. 

The velocity and temperature profile are illustrated in 
Figures 1 and 2 with velocity ratio parameter λ is –0.3. 
From the figures, we can see the chosen value of λ has 
shown non-unique solutions and it is supported by results 
and discussions in paper10. The thickness of boundary 
layer is thicker on behalf of lower branch and thinner 
towards upper branch for both velocity and tempera-
ture profile. It is as expected due to physically significant 
and stable for upper branch and it is unstable and physi-
cally insignificant for the lower branch. Finally, the most 
important, both profiles show the solutions satisfy the 
boundary conditions in Equation (11) as ( ) 1f h′ →  and 

( ) 0q h → asymptotically.

Table 1.  The values of ''(0)f  for certain values of λ

 λ Blasius2 Sakiadis3 Ishak10 Present results

1 (0)f ′′ 2 (0)f ′′ 1 (0)f ′′ 2 (0)f ′′

–0.5 0.3990 0.1710 0.3978 0.1710

–0.4 0.4357 0.0834 0.4356 0.0834

–0.3 0.4339 0.0367 0.4339 0.0367

–0.2 0.4124 0.0114 0.4124 0.0114

–0.1 0.3774 0.0010 0.3774 0.0001

0 0.332 0.3321 0.3221

0.5 0 0

1 –0.44375 –0.4438 –0.4438  

Table 2.  The smallest eigenvalues g at certain values 
of λ

λ Upper Branch Lower Branch

–0.40 0.19915 –0.09825

–0.30 0.26622 –0.09554

–0.28 0.27795 –0.09298

–0.26 0.28920 –0.08995

–0.24 0.30006 –0.08637

–0.22 0.31053 –0.08224

–0.20 0.32062 –0.07679

Figure 2.  Temperature profile for λ = – 0.3 with Pr = 1.

Figure 1.  Velocity profile for λ = – 0.3 with Pr = 1.
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