
Indian Journal of Science and Technology, Vol 9(20), DOI: 10.17485/ijst/2016/v9i20/94694, May 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

* Author for correspondence

1. Introduction

Thanks to recent advancements in hardware technology,
the price of storage systems required per gigabyte of
data has decreased. However, the rapid growth of the
volume of digital data has resulted in an increase in
the cost for investment in a large number of systems.
Recently, there are much attention to data duplication
technology to reduce the cost required for data storage
and management. The key concept of data duplication is
to remove the duplicate part of data by comparing a file
with other existing files stored in a server in order to store

only unique part of the data, rather than simply store the
entire data in a storage system. File similarity evaluation
schemes are underlying scheme in data deduplication1–4. In
data de-duplication, file similarity scheme is very effective
tools to find and eliminate duplicated data blocks5,6. We
can find similar files using similarity evaluation and get
rid of duplicated data blocks by using de-duplication
algorithm. Through data de-duplication techniques, we
can achieve the improvement of storage utilization and
minimize network bandwidth. File similarity also can be
used for digital forensics that compares suspected files to
malicious software by using their hash values7.

Abstract
Background/Objectives: Recently, storage systems and backup systems are popularly used and the number of duplicated
data is increased drastically. To minimize data storage size and efficient use of network bandwidth, we proposed de-
duplication systems and file similarity measurement schemes with GPGPU scheme. The GPGPUs are applied to file
similarity measurement for computation speedup. Methods/Statistical Analysis: To cope with the problem accompanying
the parallelization of the measurement, we compare two implementations with shared memory and preprocessing. In
addition, we propose an alternative to Rabin fingerprinting algorithm to lessen the computational burden of the algorithm
to the GPUs. We compare the performance of the systems in time elapsed for several files. Findings: First, we found
through experiments that the preprocessing was slightly faster than the shared memory scheme for the overlapped
region of consecutive data segments which were assigned to different cores. This region should be shared by two cores
for fingerprinting. By adapting GPGPU parallelization with the preprocessing technique for file similarity measurement,
the proposed system outperformed the systems with a multi-core CPU. Also, it gets faster for the bigger file. In addition,
we made the system three times faster by adapting an alternative to Rabin fingerprinting algorithm. It eliminates the
computational burden of the algorithm and provides comparable results to the system with the latter. Improvements:
The procedure will be beneficial to de-duplication system in determining file similarity and finding duplicated regions of
two files. We achieved speedup in the measurement of file similarity by parallelization on GP-GPUs with two methods for
overlaps of consecutive data segments and an alternative fingerprinting algorithm.

Keywords: File Similarity, Fingerprinting, Parallelization on GPUs

Design and Implementation of GPU-based
File Similarity Evaluation System

Yeong-Dae Kim1, Byung-Kwan Kim1, Sung-Bong Jang2, Saang-Yong Uhmn1 and Young Woong Ko1*

1Department of Computer Engineering, College of Information and Electronic Engineering, Hallym University,
Chuncheon, Gangwon, 200-702, Republic of Korea; alexkim@hallym.ac.kr, kwani@hallym.ac.kr,

suhmn@hallym.ac.kr, yuko @hallym.ac.kr
2Department of Computer Software Engineering, Kumoh National Institute of Technology, 61 Daehak-ro,

Gumi, Kyoung-Buk, 730-701, Republic of Korea;
sungbong.jang@kumoh.ac.kr

Vol 9 (20) | May 2016 | www.indjst.org Indian Journal of Science and Technology2

Design and Implementation of GPU-based File Similarity Evaluation System

The meaning of file similarity is a numerical value
expressed in the percentage that how many chunks
are the same to each other. For this reason, for the
measurement of file similarity, the target files should be
divided into a number of chunks and these chunks are
compared to each other. Thus, the required time will
be increased with the size of target files. To reduce the
operation time, a new method of the measurement of file
similarity based on GPU is suggested in the recent. GPU
has a lot of cores roughly several hundreds of cores and
these cores are connected in parallel to each other. GPU
cores manipulates massive arithmetic operations within
very short time, therefore we can reduce overall time for
parallel computation.

There are several well-known research results for file
similarity8,9 are widely known file similarity evaluation
algorithms. Both algorithms generate block-unit hash
information for original files and complete a file digest
based on the generated hash information. Sdhash is
a tool that implements the similarity digest hashing
algorithm that selects features with probabilistic methods
using Shannon entropy instead of Rabin fingerprint10. In
sdhash, a fixed-size, 256-byte Bloom filter was created. A
maximum of 128 features are allocated per Bloom filter.
All created Bloom filters are compared independently
with the Bloom filters of other files, thereby evaluating file
similarity through an average of entire compared values.
Ssdeep is a tool that implements the Context Triggered
Piecewise Hash algorithm that performs file similarity
evaluation using two hash methods. Ssdeep creates a 170-
byte file digest regardless of the original file size, which is
an advantage because of the reduction in storage space.
However, it has a limitation of large error in the file
similarity evaluation results.

In this paper, we suggest a measurement method
for file similarity using GPGPU parallel system. The
proposed system adapt variable-length chunking scheme
and accelerates hashing computation using GPU cores.
In this paper, we provide efficient GPU computation
scheme avoiding gray-area problem which occurs on
multi-thread computation. By comparing the proposed
method to CPU-based parallel algorithm, we can provide
the usefulness of GPU parallel computation scheme. The
rest of this paper is organized as follows. In Section 3, we
explain the design principle of proposed GPU-based file
similarity system and implementation details. In Section
4, we show performance evaluation result of the proposed
system and we conclude and discuss future research plan.

2. GPU-based File similarity
Evaluation System

The key idea of the proposed system is to minimize
computation time of file similarity evaluation system
using GPGPU scheme. To accomplish computation
speedup, we divide the similarity computation module
into several piece of GPU computation. This technique
is much faster than traditional file similarity evaluation
systems which assign computation on CPU cores. In the
proposed system, we divide a file stream into variable-
sized chunks, calculates a hash value for each chunk
and finally computes similarity by comparing how many
chunks exist within files. In this system, we accelerates
chunking and hashing stage using GPGPU scheme. The
chunking stage computes Rabin fingerprints for every
offsets of a file to find regions with the target pattern and
creates chunks. The hashing stage computes hash values
for all chunks and puts them in a hash list. The final stage,
the comparison, compares the list with the other of a
file to find same values. The chunks with the same hash
value are considered being identical. Figure 1 depicts the
process of three stages for similarity measurement that the
system utilizes for similarity between files. The similarity
index is computed based on the differences between the
lists and used as a file similarity measurement.

Figure 1. The process of similarity measurement.

2.1 System Architecture
Figure 2 shows the components of the system and workflow
between them. Compared to traditional systems, the
chunking stage is divided into two tasks for a gray area
problem: Find anchors and marshal them. The problem
occurs when a window for proper fingerprinting spans

Yeong-Dae Kim, Byung-Kwan Kim, Sung-Bong Jang, Saang-Yong Uhmn and Young Woong Ko

Vol 9 (20) | May 2016 | www.indjst.org Indian Journal of Science and Technology 3

two segments for two threads. To cope with the problem,
the results from the anchor finding stage are collected and
arranged in the marshalling. Actually, the anchor finding
determines all candidate locations for anchors without
considering the maximum and minimum for the chunk
size.

Figure 2. The flow of the proposed system.

An anchor is nothing but a boundary between
consecutive chunks. Traditional systems have the
minimum and the maximum sizes for a chunk. If all
candidates are anchors, the accuracy of the measurement
may improve at the costs of many small chunks that result
in overheads. The system imposes the minimum chunk size
to avoid this phenomenon. On the contrary, the maximum
size is to limit the chunks when it does not find an anchor.
With these values, the unavailability of previous anchors
in the multi-thread system causes difference in the sets
of chunks compared to a single-thread system. From this
observation, the proposed system does not impose these
values for the threads except the first one at the anchor
finding. Because Rabin fingerprint computes a hash for
data in a window shifting by byte and a file is divided into
segments for threads, a window spanning consecutive
segments that we call a gray area should be noticed. Our
system adopted a shared memory and preprocessing and
compared their performance by experiments.

2.2 Minimum and Maximum Sizes for a
Chunk

In multi-thread systems, each thread manipulates a
segment of a predefined size to create a list of non-
overlapping chunks. It adopts Rabin fingerprint algorithm
with the pattern of a marker. For the segments of the file
except the first, it finds all occurrences of the marker.

Figure 3(a) depicts the segment S2 with all occurrences
of the marker. Several possible sets of chunks in the segment
are shown in Figures 3(b), 3(c) and 3(d) depending on
the last anchor in segment S1. Figure 3(b) shows a case
in which the first location of the marker becomes an
anchor. Figure 3(c) is a case in which the second location
becomes an anchor. The maximum chunk size is imposed
for chunks in the case of Figure 3(d) in which there is an
anchor before the first location. For this difference, the
system finds all occurrences of the marker in all segments
without considering the limits of the chunk size except
the first. The marshalling stage handles the assignment
of anchors to the occurrences of the marker. The CPU
performs it from the segment S1 with the limits so that the
result of the assignments is identical to that by the single-
thread system.

Figure 3. Anchor position changes according to the
parallel processing.

2.3 Gray Area
It was above-mentioned that there is another cause of
the different assignments on the multi-thread system:
The gray area problem. A file is divided into a set of non-
overlapping segments that are assigned to the threads. The
gray area is the area spanning consecutive segments that
should be considered for the proper fingerprinting. In
Figure 4(a), all occurrences of the marker are indicated.
Figure 4(b) depicts the result by the single-thread system
with the limits. An anchor is not created at the location C
in 4(b) because the size of the chunk between the location
B and C is smaller than the minimum, 4 KB. Figure 4(c)
shows a case in which an anchor B is not found because of

Vol 9 (20) | May 2016 | www.indjst.org Indian Journal of Science and Technology4

Design and Implementation of GPU-based File Similarity Evaluation System

the gray area problem: The shaded regions at the location
B is not included in the segment S2. These two systems
generate different results even with identical algorithm,
which should be minimized to improve the reliability of
the result.

To cope with the problem, the last part of the previous
segment, Si-1, is included for fingerprinting the segment Si.
However, a same portion of the memory allocated among
threads may cause performance degradation. To deal with
this situation, we first adopted two methods, a shared
memory and preprocessing gray areas and compared
their performance.

Figure 4. Gray area problem.

2.4 Lightweight Rabin-Fingerprint
The lightweight Rabin-fingerprint algorithm is a method
for implementing fingerprints using polynomials over a
finite field.

The algorithm is presented in Figure 5. It accepts
three items: A segment of the input file and its size and
the size of the window for fingerprinting. It generates a
list of anchors and the number of them. Each thread finds
anchors in the given segment by comparing the hashes
with that of the patter by shifting a window by byte. When
two hashes are identical, an anchor is assigned to that
location.

Figure 5. Lightweight Rabin-fingerprint algorithm.

3. Experiment Results

As stated above, the proposed system generates anchors
which are identical to that by the single-thread system. We
carried out the experiments on a system with an i7-4770K
CPU, 16 GB RAM and a GTX-980 with 4 GB memory
running Windows 7 64 bit edition. The experiments were
carried out in three scenarios. First, we tried to compare
the effects of two methods for the gray area problem in
execution time: A shared memory and preprocessing of
the area. Second, we compared the performance of the
system on a CPU and GPUs. Third, we compared the
proposed algorithm with traditional Rabin fingerprint.
We generated eight files randomly of 10, 20, 50, 100, 200,
300, 400 and 500 MB respectively. For each size of the file,
we generated three files: The original and two others with
the similarity of 10% and 60%, respectively.

3.1 The Gray Area Problem Solution
Figure 6 shows the results by the shared memory and
the preprocessing for the gray area. For the files of size
less than 300 MB, two methods performed similarly and
showed difference for the files larger than 400 MB. Because
the preprocessing technique outstripped the other, the
former was utilized in the following experiments:

Yeong-Dae Kim, Byung-Kwan Kim, Sung-Bong Jang, Saang-Yong Uhmn and Young Woong Ko

Vol 9 (20) | May 2016 | www.indjst.org Indian Journal of Science and Technology 5

Figure 6. Performance comparison of two methods for the
gray area problem.

3.2 n-Threads vs. GPUs
Figure 7 shows the difference in performance obtained by
different number of threads. Although the single-thread
system outperformed others for the file of 10 MB, the
more the threads are used, the faster the job finished in
general. The difference increases drastically as the size
grows.

Figure 7. Similarity measurement time per threads.

3.3 Rabin-Fingerprint vs. Lightweight
Rabin-Fingerprint

We applied lightweight Rabin-fingerprint to make the
kernel lighter and suitable to GPUs and compared
its performance with one with Rabin fingerprint by
experiments with files of different sizes.

Figure 8. Comparison of file similarity measurement time.

Figure 8 shows the elapsed time by two kernels.
The lightweight Rabin-fingerprint algorithm was three
times faster in time for all the cases. Although it found
different positions for anchors, it provided similar errors
in similarity measurements.

4. Conclusion

In this paper, we analyze the performance of a file
similarity measurement system based on VLC scheme
through parallel processing using GPU. We applied
GPU to file similarity system and obtained performance
improvement compared to the system on conventional
CPUs. To cope with the gray area problem, the data is
preprocessed. The proposed algorithm for GPUs resulted
in performance improvement with comparable errors.
The future works include improvement in query capability
of the system.

5. Acknowledgment

This research was supported by Basic Science Research
Program through the National Research Foundation of
Korea (NRF) funded by the Ministry of Science, ICT and
future Planning (2014R1A2A1A11054160).

6. References
1. Meyer DT, Bolosky WJ. A study of practical deduplication.

ACM Transactions on Storage (TOS). 2012 Jan; 7(4):1–14.

Vol 9 (20) | May 2016 | www.indjst.org Indian Journal of Science and Technology6

Design and Implementation of GPU-based File Similarity Evaluation System

2. Lillibridge M, Eshghi K, Bhagwat D, Deolalikar V, Trezis G,
Camble P. Sparse indexing: Large scale, inline deduplica-
tion using sampling and locality. FAST; 2009 Feb. p. 111–23.

3. Venish A, Sankar KS. Framework of data de-duplication:
A survey. Indian Journal of Science and Technology. 2015
Oct; 8(26):1–7.

4. Anand SK, Karthigha M. A survey on removal of duplicate
records in database. Indian Journal of Science and Technol-
ogy. 2013 Apr; 6(4):1–6 .

5. Kulkarni P, Douglis F, LaVoie JD, Tracey JM. Redundancy
elimination within large collections of files. USENIX Annu-
al Technical Conference, General Track; 2004 Jun. p. 59–72.

6. Jung HM, Park SY, Lee JG, Ko YW. Efficient data de-dupli-

cation system considering file modification pattern. Inter-
national Journal of Security and its Applications. 2012 Apr;
6(2):1–6.

7. Roussev V. An evaluation of forensic similarity hashes. Dig-
ital Investigation. 2011 Aug; 8:S34–41.

8. Roussev V. Data fingerprinting with similarity digests. Ad-
vances in Digital Forensics VI; 2010 Jan.p. 207–26.

9. Kornblum J. Identifying almost identical files using context
triggered piecewise hashing. Digital Investigation. 2006
Sep; 3:91–7.

10. Muthitacharoen A, Chen B, Mazieres D. A low-bandwidth
network file system. ACM SIGOPS Operating Systems Re-
view. 2001 Oct; 35(5):174–87.

