
Indian Journal of Science and Technology, Vol 8(16), DOI: 10.17485/ijst/2015/v8i16/65812, July 2015
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

* Author for correspondence

1. Introduction

Today we live in an information era, where we consume
and produce massive amount of data that ranges from
a simple query to large scientific computations. Table 1
shows the data generated for every minute by various
social applications. Can you think of the storage capacity
required to store the data generated in a day? Advancement
in the storage and semiconductors technology provides us
with a variety of options for data storage and processing.
Most of the data generated contains personal information
such as address, passwords, family photos, credit card
numbers, etc. Such sensitive data needs to be stored in
such a way that only authorized user can access to it. To
make this feasible data security can be provided through

secure authentication and encryption mechanisms
which restricts the unauthorized access by insiders and
outsiders.

Table 1. Data generation by various applications
Application Data
Apple 47,000(Downloads)
Facebook 68,4478(Shares), 34,722(Likes)
Google 2000,000(Queries)
Gmail 204,166,667(Messages)
Instagram 3600(Photos)
Tumblr blog 27,778(Posts)
Twitter 100,000(Tweets)
WordPress blog 347(Posts)
YouTube 48 hours (Video)

Abstract
The importance of electronic data and its rapid growth leads to gradual increase to the data usage over the network servers
and on the other side high priority is needed for the data security and privacy. The existing keyword search schemes for
data retrieval from the centralized storage uses keyword as a valid parameter. Even though, keywords are encrypted and
then used, intruders are able to guess keywords and can verify it using offline dictionary attack. The ability of guessing
keywords by intruders reveals the stored data which affects data security and privacy. We need an additional parameter to
the keyword used for search which will make the keyword guessing attack impossible. The additional parameter we used
in our encryption framework is a signature file whose content needs to be independent of data. The content of signature
file can be any data such as image, table, text, etc. which depends on the choice of user. This signature is hashed with
keyword which makes the adversary difficult to guess the content of signature of the user. The existing approaches used
keyword along with private key as search parameters, the guessing of appropriate keyword reveals the private key of user.
In our framework, addition of signature along with keyword ensures both authentication as well as data privacy.

Keywords: Data Privacy, Data Retrieval, Keyword Guessing Attack, Keyword Privacy, Keyword Search Scheme, Signature
Hashing

A Novel Methodology to Mitigate Keyword Guessing
Attack using Keyword and Signature Hash

A. Gangaa*, Nivethitha Somu and V. S. Shankar Sriram

School of Computing, SASTRA University, Thanjavur - 613401, Tamil Nadu, India; er.gangaacse@gmail.com,
nivethithasomu@gmail.com, sriram@it.sastra.edu

Vol 8 (16) | July 2015 | www.indjst.org Indian Journal of Science and Technology2

A Novel Methodology to Mitigate Keyword Guessing Attack using Keyword and Signature Hash

Consider a user a and a file server T where the user
files are stored in a secure manner. To provide security,
files are encrypted using any encryption algorithms and
stored in the file server. Thus a user considers his files and
data to be secure. What happens when it is transferred
from the user or client applications to the server? Is the
channel secure? If so can it prevent the attacker from
accessing or replaying the content transferred? Lot of
questions arises from the researches community when
it covers to security. As the file server contains/stores N
number of files which belongs to N number of users i.e.
one user can store more than one file there needs to be a
file search mechanism. In general, whenever a user needs
to access his file, he searches using keyword search i.e.,
if a user want to access his file named cloud. datatwin.
docx, he can use cloud/data/twin or combination of these
keywords to search his file. Existing keyword search
algorithms uses trapdoor function with search keyword
and user’s private key as its parameters for user validation.
The problem with respect to security is that when an
attacker comes to know about any one of the trapdoor
function parameters, then with minimal computational
power he can find another parameter.

Our proposed work on searchable encryption
technique uses encryption and hashing to store and
retrieve the files in the server. Files are encrypted using
AES with 256-bit key, whereas using SHA-512 the hash
values for the search keyword and signature are generated
independently in client side. Here, search keyword is a
part of the file name and the signature can be anything
irrelevant to the file content. Best part of the proposed
technique is that even if the attacker makes his guess on
the search keyword, it is infeasible for him to guess the
signature file as it nowhere related to the file accessed. It
makes the keyword guessing attack harder to perform
with the present computational techniques.

2. �Existing Searchable Encryption
Framework

Existing searchable encryption frameworks such as
PEKS1,3,4–6, etc. were based on bilinear pairing2 and
trapdoor functions. The User Authentication process
involved in data retrieval from centralized storage is
discussed clearly in existing frameworks10–16 Figure 1

depicts a generic system model for data storage and
retrieval in a remote server. Consider a scenario where
the user wants to upload his files to a remote server.
Initially user and server agree on a set of cryptographic
parameters for secure file storage and retrieval. In order
to store a file in a secure manner, user encrypts the file
along with its associated keyword using his private key.

I = EK (F, W)					 (1)

Where,
I – Index of the encrypted file and keyword
K – Encryption Key (User’s Public or Private Key)
F – File that needs to be stored in a secure manner on

remote server
W (W1, W2… Wn) – Keywords related to the file name

and content
Index I is created by the encryption of file and

keyword using the user’s private key. In order to search
data the user generates Trapdoor (K, W). This trapdoor is
used by the server to verify whether the given keyword is
present in the index I. If it exists, then server returns the
appropriate document related to that keyword.

Figure 1. Generic system model for searchable
encryption technique.

Whenever a file needs to be retrieved, user sends a request
to the server via trapdoor function. As the trapdoor
function contains the keyword and user’s private key,
the server validates it against the stored index. Once the
validation is successful, the requested file is sent to the user,
else the access to the requested file gets denied. The major
drawback in the existing searchable encryption technique
is that an attacker can easily perform cryptanalysis to
extract the keyword or the private key from the trapdoor
function.

A. Gangaa, Nivethitha Somu and V. S. Shankar Sriram

Vol 8 (16) | July 2015 | www.indjst.org Indian Journal of Science and Technology 3

Until now, there exist only mathematical models and
proofs to ensure the security provided by the prevailing
techniques. Random oracle model have been used as a
benchmark to analyze the strength of existing searchable
encryption techniques7,8. It provides restriction on the
ability of an attacker to perform cryptanalysis. Hence, this
model cannot ensure the level of security provided by the
searchable encryption techniques in a real time scenario.

3. �Proposed Secure Keyword
Encryption Framework

Access to valid trapdoor function and guess on appropriate
keywords makes keyword guessing attacks easy and
conceivable. Based on the state of art, standard security
model provides a real time analysis on the security
provided by any encryption algorithm. We propose
an efficient and a secure keyword search encryption
framework using encryption and hashing of file and
signature respectively which makes it hard for an attacker
to perform keyword guessing attack.

Figure 2 depicts the proposed encryption framework
which follows a simple client server system model.
Whenever user wants to store his data on a remote storage
he has to perform client side encryption and hashing to
ensure confidentiality and integrity. Initially, the file that
needs to be stored is encrypted using AES with 256 bit
key. In order to provide authentication, the user creates a
signature file which consists of text, images, etc. supported
by any word processor.

Figure 2. Proposed Searchable Encryption Techniques
using AES and SHA-512.

Contents of the signature file can be related or
unrelated to the file name and content. Using SHA 512,
signature file and appropriate keywords are hashed to
produce independent message digest values. Now, the
message digest for the keyword and the signature file
will be stored in the user’s local repository. On the server,
the encrypted file, combined hash of the keyword and
the signature file are stored in a particular index I. Data
transmission is made through Secure Socket Layer (SSL)
which prevents the data access by the intruders in transit.
Algorithm 1 explains the procedure to upload data in a
remote server using AES and SHA-512.

Input - D: Data; W: Keyword; S: Signature;
Output - �E(D): Encrypted File; H(W): Hashed Keyword;

H(S): Hashed Signature; CHs: H(W+S):
Hashed Keyword and Signature;

Procedure -
1. Get D, W and S as an input from the user;
2. Encrypt D using AES with 256 bit key;
3. Store key K in the local repository;
4. Hash W and S using SHA-512;
5. Store key E(D), H(W) and H(S) in the local repository;
6. Connect to the server using secure connection (SSH);
7. Send E(D), H(W) and H(S) to the server;
8. Compute the combined hash (CHs);
9. Store the E(D) along with its CHs in server;

Algorithm 1 – Secure File Upload to Remote Server

For data retrieval, the user submits H (W) and H(S) to
the server. Once the server receives the user request,
it computes the combined hash of H (W) and H(S)
and compares the resulting hash value with the stored
combined message digest. If a match is found, the
requested document in an encrypted form is returned
to the user, else the access is denied. As the user knows
the key used to encrypt the file, he can easily decrypt
the file. The encryption key is stored in the client side
local repository. Algorithm 2 explains the procedure to
download the requested file from the remote server in a
secure manner.

Vol 8 (16) | July 2015 | www.indjst.org Indian Journal of Science and Technology4

A Novel Methodology to Mitigate Keyword Guessing Attack using Keyword and Signature Hash

Input - H(W); H(S); K: Key; CHc: Computed combined
hash value for validation
Output: E(D);
Procedure -
1. �User connects to the server through secure connection

(SSH);
2. �User submits H(W) and H(S) of the requested file to

the server;
3. �Combined Hash (CHc) is computed from H(W) and

H(S);
4. Compare CHcwith CHs;
5. If (CHc = = CHs)
6. Return E(D);
7. Disconnect the server;
8. Get K from the local repository;
9. Decrypt E(D) using K;
10. Else
11. Goto Step 2;

Algorithm 2 – Secure File Download from the Remote
Server

The best part of the proposed searchable encryption
framework is that even if the attacker tries to guess
the keyword using Brute force attack, he fails to make
a guess on the signature file as it is nowhere related to
the file contents. The combined hash of signature and
keyword provides a gateway to access the file. Table 2
summarizes the prevailing attacks on AES. Differential
and linear cryptanalysis on SHA9 inferred that it would
require huge known and chosen plaintexts, making it
hard for an attacker to decrypt SHA-512 with the current
computational power which is depicted in Table 3.

Table 2. Summary of attacks on AES
Attacks Key

Size
No of

Rounds
Data
Com-
plexity

Time
Com-
plexity

Memory

Square All 6 232 272 232

Partial Sum All 6 6×232 244 232

Collision 256 7 232 2192 232

Impossible
Differential

128 5 229.5 231 242

Boomerang 128 5 239 239 233

Impossible
related-key
Differential

192 7 2111 2116 -

4. Performance Evaluation
Consider a scenario where a user wants to store a file
(word document) named guess.doc in a remote server. To
ensure confidentiality and integrity, the file needs to be
encrypted using the user’s private key. Encrypted file does
not assure complete security; hence we need to provide
something on the top of it. In the proposed searchable
encryption technique, we use the hash of signature and
keyword for user validation. Store the keyword and
signature in a separate text file guesskey.txt and guesssign.
txt respectively. File encryption is carried using AES
256 bit key and the encrypted file is stored in the local
repository. To create a hash of the keyword and signature
file, pass the guesskey.txt and guesssign.txt as an input
to the SHA-512 algorithm. Hash file named guesskey.
txt.hash and guesssign.txt.hash are generated and stored
in the local repository along with the encrypted file.
User uploads the encrypted file, guesskey.txt.hash and
guesssign.txt.hash to the server, where the combined
hash is generated using the given hash of keyword and
signature. Encrypted file along with the combined hash is
stored on the server in an index.

Table 3. Comparisons on SHA based on Key size
Algorithm Output

size
(bits)

Internal
state size

(bits)

Block
size

(bits)

Max
message

size (bits)

Rounds

SHA2-224 224 256 512 264-1 64
SHA2-256 256 256 512 264-1 64
SHA2-384 384 512 1024 2128-1 80
SHA2-512 512 512 1024 2128-1 80
SHA3-224 224 1600 1152 Unlimited 24
SHA3-256 256 1600 1088 Unlimited 24
SHA3-384 384 1600 832 Unlimited 24
SHA3-512 512 1600 576 Unlimited 24

Figure 3. Time taken to upload file of different sizes.

A. Gangaa, Nivethitha Somu and V. S. Shankar Sriram

Vol 8 (16) | July 2015 | www.indjst.org Indian Journal of Science and Technology 5

Figure 4. Time taken to download file of different sizes.

To retrieve the file from the server user submits
guesskey.txt.hash and guesssign.txt.hash. Server computes
the combined hash of the given input and compares the
resulting hash with the stored hash value. If a match exists,
then the server returns the encrypted file requested by the
user. On the client side as the user has his key, decrypts the
file. Existing searchable encryption techniques performs
server side processing for encryption and hashing. In our
proposed work, we perform the entire computation on
the client side and store the encrypted file and combined
hash value of W+K. We have also used signature in
addition with the keyword and hashed them to enhance
confidentiality and integrity for making it hard for the
attacker to perform any type of guessing attack.

Figure 5. Time taken to encrypt file of different sizes.

Figure 6. Time taken to decrypt file of different sizes.

Figure 3, 4, 5 and 6 illustrates the time taken to upload,
download, encrypt and decrypt files of various sizes. From
this, we can conclude that with a minimal configured
system client side can process all the encryption and
hashing function. Hence, reduces the communication
overhead and transfer of sensitive data between the client
and the remote server.

5. Conclusion

We proposed a secure encryption framework, wherein the
files are encrypted using the user’s private key where the
hash of the signature plus keyword are provided to ensure
data confidentiality and integrity. The best part of this
technique is that even when the attacker can make a guess
on the keyword it is hard for him to find the signature as it
is nowhere related to the stored file. Experimental results
shows that with the computing resource provided by the
client system, we can process files of various sizes thus
reducing the communication overhead and the transfer
of sensitive data between two hosts.

6. References
1.	 Boneh D, Di Crescenzo G, Ostrovsky R, Persiano G, edi-

tors. Public key encryption with keyword search. Advances
in Cryptology-Eurocrypt. 2004; 3027:506–22.

2.	 Waters BR, Balfanz D, Durfee G, Smetters DK, editors.
Building an Encrypted and Searchable Audit Log. 11th An-
nual Network and Distributed Security Symposium (NDSS
‘04); 2004. p.1.

3.	 Fang L, Susilo W, Ge C, Wang J. A secure channel free pub-
lic key encryption with keyword search scheme without
random oracle. Cryptology and Network Security. 2009;
5888:248–58.

4.	 Park DJ, Kim K, Lee PJ. Public key encryption with con-
junctive field keyword search. Information Security Appli-
cations. 2005; 3325:73–86.

5.	 Fang L, Susilo W, Ge C, Wang J. Public key encryption
with keyword search secure against keyword guessing at-
tacks without random oracle. Information Sciences. 2013;
238:221–41.

6.	 Bellare M, Rogaway P, editors. Random oracles are practi-
cal: A paradigm for designing efficient protocols. Proceed-
ings of the 1st ACM conference on Computer and commu-
nications security; 1993; ACM; p. 62–73.

7.	 Canetti R, Goldreich O, Halevi S. The random oracle meth-
odology, revisited. Journal of the ACM (JACM). 2004;
51(4):557–94.

8.	 Biham E, Keller N, editors. Cryptanalysis of reduced vari-
ants of Rijndael. 3rd AES Conference; 2000; New York,
USA; p. 1–11.

Vol 8 (16) | July 2015 | www.indjst.org Indian Journal of Science and Technology6

A Novel Methodology to Mitigate Keyword Guessing Attack using Keyword and Signature Hash

9.	 Ganeshkumar K, Arivazhagan D. Generating a digital sig-
nature based on new cryptographic scheme for user au-
thentication and security. Indian Journal of Science and
Technology. 2014 Oct; 7(S6):1–5.

10.	 Mohit K, Ghrera SP. A new group key transfer protocol
using CBU hash function. Indian Journal of Science and
Technology. 2014 Jan; 7(1):19–24.

11.	 Lee J-Y. A Study on the use of secure data in cloud storage
for collaboration. Indian Journal of Science and Technolo-
gy. 2015 Mar; 8(S5):33–6.

12.	 Gomathi K, Parvathavarthini B. An enhanced distribut-
ed weighted clustering routing protocol for key manage-
ment. Indian Journal of Science and Technology. 2015 Feb;
8(4):342–8.

13.	 Boopathi K, Sreejith S, Bithin A. Learning Cyber Security
through Gamification. Indian Journal of Science and Tech-
nology. 2015 Apr; 8(7):642–9.

14.	 Mritha R, Isa NAM. A steganography approach over video
images to improve security. Indian Journal of Science and
Technology. 2015 Jan; 8(1):79–86.

15.	 Ganeshkumar K, Arivazhagan D. Generating a digital sig-
nature based on new cryptographic scheme for user au-
thentication and security. Indian Journal of Science and
Technology. 2014 Oct; 7(S6):1–5.

16.	 Nishioka M. Perfect keyword privacy in PEKS systems.
Provable Security. 2012; 7496:175–92.

