
Indian Journal of Science and Technology, Vol 8(16), DOI: 10.17485/ijst/2015/v8i16/55122, July 2015
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

* Author for correspondence

1. Introduction

Web services are modular, comprehensive and reusable
software components that based on open XML-based
standards to support business-to-business interactions
over distributed environments1.

Web service selection plays an essential role is SOA
systems. Web services are considered as self-contained,
self-describing, modular applications that can be
published, located, and invoked across the Web. QoS-
based service selection causes can identify the best
component services that satisfy user requirements2.

One of the most important challenges in Service-
oriented Architecture is selecting appropriate services
dynamically such that finally have the best composition
from services according to business process, policies and
non-functional constraints.

Web Service selection is a key component in service-
oriented computing. The QoS based web service selection
mechanisms plays an essential role in service-oriented
architectures, because most of the applications want to
use services that accurately meet their requirements3.
In this paper an algorithm for web service selection is
introduced.

Web service selection and discovery system is essential
to provide clients with proper results according to their
requirements. It is impossible to fulfill this task without
considering the ranking relation between thousands of
available candidates with similar functionalities. Ranking
process is a fundamental step in a Web service selection
system, as it integrates the results gathered from previous
stages (functional and non-functional matching process)
and presents them to the requestors. In this work is
focused on the ranking process by considering user’s
QOS requirements.

Abstract
Background: Nowadays, web services are one of the most widely used groups of SOA and service computing. The problem
of QoS based selecting a web service dynamically and composing a set of web services to conduct a business task has
been investigated in this paper. One of the main objectives of this paper is selecting web services based on non-functional
properties and QoS score. Methods: In this paper is assumed that there are web services with similar functionality for
each task and these web services have different non-functional properties and QoS parameters. To select a web service for
eachtask SAW method is used, but this method don’t apply SAW method on all of web services. It use user requirements for
ranking set of candidate web services and finally apply SAW method on set of candidate web services. Result: This method
will help to select web services based on QoS score and user requirements. Select web services among many number of
web service with this method can use to composition web service and finally will help to optimize response time of web
service composition. Application: .NET Application with Visual Studio Environment and C# Programming Language.

Keywords: Composition, Quality of Service, Selection, Service Oriented, Web Service

Improving Response Time of Web Service
Composition based on QoS Properties

Marzieh Karimi*, Faramarz Safi Esfahani and Nasim Noorafza

Department of Computer Engineering, Najafabad Branch, Islamic Azad University, Isfahan, Iran;
karimi.marzieh@gmail.com, faramarz.safi@yahoo.com, n_noorafza@yahoo.com

Vol 8 (16) | July 2015 | www.indjst.org Indian Journal of Science and Technology2

Improving Response Time of Web Service Composition based on QoS Properties

2. QOS Properties

The QoS based web service selection mechanisms
plays an essential role in service-oriented architectures,
because most of the applications want to use services that
accurately meet their requirements3–5. In this section a
number of criteria is presented that should be considered
when comparing service selection mechanisms because
in this paper is concentrated on approaches that consider
non-functional properties.

2.1 Response Time
The maximum time that elapses from the moment that a
web service receives a SOAP request until it produces the
corresponding SOAP response. It is calculated as

RT = T1-T2

Where T1 = Time at which web service produces soap
response.

T2 = Time at which web service receives soap request.

2.2 Execution Time
The execution time measures the expected delay between
the moment when a request is sent and the moment when
the result are received. It is denoted by

qdu (s, op)=Tprocess(s, op)+Ttrans(s, op)

2.3 Throughput
The number of Web service requests R for an operation o
that can be processed by a service S within a given period
of time.

() ()#, secRtp s op in ond
timeperiod

=

Where,
S service within a given period of time.
#R number of web service request.

2.4 Scalability
A Web service that is scalable has the ability to not get
overloaded by a massive number of parallel requests. It is
calculated as,

()
= rt

rt

SC
throughput

t
t

Where,
trt(throughput) is the round trip time which is

evaluated during the throughput test.

2.5 Reputation
The reputation of a service is the measure of its
trustworthiness. It mainly depends on the end users
experience of the service. Different end users may have
different opinions on the same service. The value of the
reputation is defined as the average ranking given to the
service by the end users.It is calculated as,

1

n

i
i

rep n

R
q ==

å

2.6 Availability
Availability of the web service is the probability of the
service is accessible. It is calculated using the following
expression,

()
()

= i
av

s
s

n
Tq

2.7 Accessibility
It is the capability of serving the Web Service request.
The Web service might be available but not accessible
because of a high volume of requests. Accessibility can be
represented by the following formula:

1accessability
downtime

uptimeP
æ öæ ö÷ç ÷ç ÷÷ç= -ç ÷÷ç ç ÷÷ç ÷ç è øè ø

Time is measured in minutes.
So far, there are many different approaches and

frameworks that have been developed in order to web
service selection. In this paper, some of approaches
are discussed that is QoS-based web service selection.
The aim of this selection is to give a summary of these
approaches. This is achieved by creating a table, listing
all of frameworks that have been discussed in this paper
and listing some of the most important features that were
identified to categories the selection frameworks (Table 1).

In6 authors present an overall service selection and
ranking framework which firstly classify candidate

Marzieh Karimi, Faramarz Safi Esfahani and Nasim Noorafza

Vol 8 (16) | July 2015 | www.indjst.org Indian Journal of Science and Technology 3

web services to different QoS levels respect to user’s
QoS requirements and preferences with an Associative
Classification algorithm and then rank the most qualified
candidate services based on their functional quality
through semantic matching. This algorithm consists of
two phases. In the first phase, authors use a classification
data mining algorithm to classify web service candidates
into different QoS levels respect to the defined QoS
constraints form the user and using the result of this
classification to define a utility value for each of the service
candidates. In the second phase they focus on composing
the best services of each task and more specifically on
their functional level that aims to selecting and inter-
connecting web services by means of their semantic
connections.

In7–9 authors propose an architecture that makes
an automatic selection of best service provider that is
based on mixed context and QoS ontology for a given set
of parameters of QoS. The key idea is to rely on multi-
dimensional QoS. In this paper goal is to find the best
provider of e-service that responds to a request for service.
To achieve that, the following steps are required:
•	 Submit the query with terms and values of quality

without and within their context.
•	 Compare the qualities of provider services with the

qualities of request.
•	 Select the best provider service.

In the last step, to select the best provider, they first
compute the matching degree of published qualities and
required qualities for each service without using the
context of quality. Second, they make use of the context
of quality and compare the two cases10.

In11,12 authors propose an integrated service query
framework that facilitates users in accessing their desired
services. The framework incorporates a service query
model and a two-phase optimization strategy. The
query model defines service communities that are used
to organize the large and heterogeneous service space.
The service communities allow users to use declarative
queries to retrieve their desired services without worrying
about the underlying technical details. The two-phase
optimization strategy automatically generates feasible
service execution plans and selects the plan with the
best user-desired quality. In particular, they present an
evolutionary algorithm that is able to “co-evolve” multiple
feasible execution plans simultaneously and allows them
to compete with each other to generate the best plan.

Proposed work in13,14 is a Web Service (WS) discovery
model in which the functional and nonfunctional
requirements are taken into account during service
discovery. The proposed infrastructure includes a set of
services and tools to support an integrated WS discovery
and selection solution. A mechanism is introduced that
supports three different functional policies. It is able to
take advantage of quality information located into a Web
Service description language description file that might be
located in a proprietary universal description, discovery
and integration registry server or in an independent
URL. Moreover, it implements a database supported
WS intermediary (Broker) that it is also possible to
store Quality of Service (QoS) information for WSs. A
selection module is also presented that delivers the WS
that maximizes the value of QoS characteristics among
others with the same functionality.

The seven QoS parameters considered in3,15,16 are
execution time, response time, throughput, scalability,
reputation, accessibility and availability. The objective
of the framework is to provide QoS based Semantic
Web Service Selection. The framework consists of four
major components namely OWL-S converter, Semantic
Repository, QoS Broker and Matchmaker. OWL-S
converter converts the syntactically described web service
into a semantic web service. The Semantic repository
contains the advertisements of the web services in OWL-S
format. QoS broker assigns and stores the rank of all the
accessed services based on the Web service Relevancy
factor. Matchmaker identifies a set of services that satisfies
the client’s functional and non-functional requirements.

In17,18 authors propose a method for automatic
selection of the most relevant service for composition
based on non-functional properties and the user’s context.
In doing this they also propose a method of obtaining and
evaluating non-functional aspects.

The complexity of business processes and the dynamic
nature of the co-operations make it difficult for the
business modeler to select appropriate services, manage
the compositions efficiently and understand requirements
within a dynamic context correctly. In this paper they
present the service management layer developed as part
of the in Context project which is aimed at addressing
the above issue, in particular considering that a service’s
suitability depends largely on the user’s context. They
will focus on a specific aspect of this management layer:
namely the service lookup and relevance ranking. What

Vol 8 (16) | July 2015 | www.indjst.org Indian Journal of Science and Technology4

Improving Response Time of Web Service Composition based on QoS Properties

is special about this lookup is that in addition to the
functional aspects of a service non-functional aspects
are considered both when looking up a service as well as
when finding the most suitable service18.

The in Context platform provides means of integrating
services to support collaborative teams. In that sense it is
a quite a complex structure and not all of it is relevant for
this paper.

In19,20 authors propose a QoS broker based architecture
for dynamic web service selection which facilitates the
clients to specify the non-functional requirements like QoS
along with functional requirements. The paper presents
an efficient mechanism for finding the most suitable
web service according to the consumer’s requirements.
The architecture consists of the basic web service model
components like the web service provider, web service
consumer and the UDDI registry. In addition, UDDI
registry has the capability to store QoS information using
tModel data structure and a WS QoS Broker component.
The WS-QoS Broker assists clients in selecting web
services based on a set of QoS parameters. The WS-QoS
Broker has four components: Service Publisher23, Verifier
and Certifier, Service Selector23 and Web Service Storage
(WSS)24. Broker services may be used to facilitate service
registry access. The broker performs the interaction with
the UDDI.

QoS-based service selection aims at finding the best
component services that satisfy the end-to-end quality
requirements. In22,25 problem is modeled as a multi-
dimension multi-choice 0-1 knapsack problem, which is
known as NP-hard. Recently published solutions propose
using linear programming techniques to solve the
problem. However, the poor scalability of linear program
solving methods restricts their applicability to small-size
problems and renders them inappropriate for dynamic
applications with run-time requirements. In this paper,
they address this problem and propose a scalable QoS
computation approach based on a heuristic algorithm,
which decomposes the optimization problem into small
sub-problems that can be solved more efficiently than the
original problem.

Table 1. Web Services Selection models
Framework Selection Strategy Execution

Selection
QoS

Modeling
Zeng L, et
al.21

Using classification
data mining

Semantic
selection

Yes

Dai Y, et al.7 Mixed Context and
Quality of ServiceOn-

tology

Automatic
selection

Yes

Chatel P, et
al.11

Using service query
and evolutionary

algorithm

Automatic
selection

Yes

Ying Y, et
al.13

Using functional
and non-functional

requirements

Static
selection

Yes

Anonymous3 QoS based Semantic
Web Service Selection

Semantic
selection

Yes

Ardagna D,
et al.17

Using user-context
and non-functional

requirements

Automatic
selection

Yes

Salehie M19 Using UDDI and QoS
information

Dynamic
selection

Yes

Ardagna D22 Selection using heuris-
tic algorithm

Dynamic
selection

Yes

3. Proposed Algorithm

Suppose there are n services that have similar functional
properties and k required QoS attributes determined by
user. Based on the proposed method, k ranked lists will
be generated according to each attribute. To involve
user requirements in the algorithm, query attributes is
considered as a sample service Sq and add it to the list of
offered services. In this phase, all of the services that is
located after the user’s requirement will be deleted. Thus
the remaining services fulfill user request. Now among
these services, a service with the higher score will be
selected.

In order to evaluate two attributes fairly, it is necessary
to consider their direction or tendency of their values. In
other word, if the tendency of the attribute is positive,
it means a bigger value is better. On the contrary if
the tendency is referred as negative, it means smaller
values are preferred. For example for attribute “cost” the
smaller value is usually preferred, so the tendency of this
parameter is negative, whereas for attribute “availability”

Marzieh Karimi, Faramarz Safi Esfahani and Nasim Noorafza

Vol 8 (16) | July 2015 | www.indjst.org Indian Journal of Science and Technology 5

the bigger value indicates a better quality for the specified
parameter, so the tendency is positive.

3.1 QoS Normalization
For negative criteria, values are scaled according to
(Equation 2). For positive criteria, values are scaled
according to (Equation 1)7.

,
min

i j i
max min
i j

Q Q
Q Q

-

-
					 (1)

,
max
i i j
max min
i j

Q Q
Q Q

-

- 					 (2)

In this paper the values of n QoS attributes of a service
S as a vector: Qs = (Qs1, Qs2, ..., Qsn) are modeled and the
values of QoS requirements requested by a consumer
as a vector Qr = (Qr1, Qr2, ..., Qrn) are considered. The
consumer’s preferences values are set on each QoS
attribute in a vector pr = (pr1, pr2, ..., prn) where pri  [1,
n]. If the consumer has no preferences for an attribute, n
will be considered as the preference value for that specific
parameter. We represent the vector of weights assigned to
attributes as: W = (w1,w2,, wn)

Where , wi  (0,1). We set prmax as the

maximum value in vector pr and use the following
equations to compute the weight for each attribute:

Where

Where and

4. Evaluation

In all of the following experiments different subsets
derived from the QWS dataset provided by Al-Masri,
and Mahmoud is used26. The original dataset includes
information of over 2000 web services available on the
Web. The dataset includes real data for various QoS
attributes such as response time, availability, throughput,

successability, reliability, compliance, best practices,
latency and documentation. The service name and its
WSDL address are also included in the dataset.

To study the proposed performance is used the QWS
Dataset38, the 2 set case is created that impacting the
performance.

•	 Altering number of attributes (increasing the number
of QoS attributes).

•	 Altering the number of candidate web services. Each
set of test cases is solved with proposed algorithm and
the LP algorithm21. The response time and the value
of the objective function of proposed algorithm to LP
algorithm are compared.

4.1 �Experiment 1: Different Datasets with
Different Sizes

In the following scenario the effect of increasing the size
of dataset on the performance of each model is studied.
To fulfill the task, the applications on different datasets
containing 10, 50, 100, 150, 200, 300, 500, 1000, 1500 and
2000 Web services are run. In this experiment three QoS
numeric attributes including: response time, availability,
and reliability is considered (Table 2).

We measured the execution time of algorithms by
running each application 500 times and get the average
value of the results. A sample query could be: response
time <1000ms, availability >95%, reliability >70%.
Then the query vector is set as: (1000, 95, 70). A sample
preference vector for this query could be: (1, 3 and 2.
Figure 1 shows comparison of computation time between
proposed algorithm and SAW algorithm (Figure 1).

Table 2. Results of varying the number of
candidate Web Services
Average
Execution Time
of SAW (ms)

Average Execution
Time of Proposed

Algorithm (ms)

Candidate
Web Services

6 2.5 10
22 3.7 50
30 6.7 100
43 7.1 150
55 7.4 200
78 15.1 300
109 19.5 500
200 40.7 1000
280 60.5 1500
340 90 2000

Vol 8 (16) | July 2015 | www.indjst.org Indian Journal of Science and Technology6

Improving Response Time of Web Service Composition based on QoS Properties

Figure 1. Comparison of computation time.

The selection web services are displayed in following
Table (Table 3 and 4).

Table 3. Selection Web Service of varying the number
of candidate Web Services
Reli-
ability

Avail-
ability

Response
Time

Web Service Name Candidate
Web

Services
73 87 107 CasUsers 10
50
83 96 123 UniquesubsService 100
83 96 123 UniquesubsService 150
83 96 123 UniquesubsService 200
83 96 123 UniquesubsService 300
89 98 190 eUtilsService 500
89 96 149 eUtilsService(2) 1000
89 96 149 eUtilsService(2) 1500
89 96 149 eUtilsService(2) 2000

Table 4. Selection Web Service of 50 number of
candidate Web Services

Reli-
ability

Avail-
ability

Re-
sponse
Time

Web Service Name Candidate
Web Service
with 50 Web

Service
83 83 408 VersionService SAW

Algorithm
73 94 124.17 XFormWebService Proposed

Algorithm

4.2 Experiment 2: Varying Number of QoS
To study the impact of increasing the number of QoS
attributes on execution time of different algorithms,
a different set of experiments with a combination of
number of Web services and different number of QoS

attributes is did. The two algorithms on datasets with
sizes containing 2000 candidates are run. In this section,
the performance results on each dataset in a separate
table are presented (Tables 5, 6, 7, 8). The first row of
each table shows the result when there are three numeric
attribute, i.e. response time, availability, and reliability.
The user’s preference vector is set as (1, 3, 2) and the query
is submitted as (response time <= 1000 ms, availability
>= 95%, reliability >= 70. The second line shows the
results with 6 QoS attributes: response time, availability,
reliability, throughput, successability and compliance. In
this case the query was submitted as (response time <=
1000, availability >= 95%, throughput >= 20, sucessability
>= 95%, reliability >= 70%, compliance >= 85%) and
consumer’s preference vector is set as: (1, 1, 3, 3, 2, 3).
The last row shows the execution time of each algorithm
based on 9 QoS attributes: response time, availability,
reliability, throughput, successability, compliance, best
practice, latency and documentation. The query and
preference vector in this case are (response time <= 1000,
availability >= 95%, throughput >= 20, sucessability >=
95%, reliability >= 70%, compliance >= 80%, best practice
>= 50%, latency <= 50ms, Documentation >= 50) and
consumer’s preference vector is set as (1, 1, 3, 3, 2, 3, 2, 2,
2) respectively. The average execution time was computed
over 500 runs. (Table 4) represents the performance of the
algorithms on a dataset including 2000 Web services. In
the following tables the comparison of computation time
and selection web service with varying the number of
Quality of Service is displayed.

Table 5. Results of varying the number of Quality of
Services
Average Execution
Time of SAW
Algorithm (ms)

Average Execution
Time of Proposed

Algorithm (ms)

QoS Properties

340 90 3
358 24 6
375 11.7 9

Table 6. Selection Web Service with 3 number of
Quality of Services
Reli-
ability

Avail-
ability

Re-
sponse
Time

Web Service
Name

Algo-
rithm

Number
of QoS

89 96 149 eUtilsService(2) SAW 3
89 96 149 eUtilsService(2) Proposed 3

Marzieh Karimi, Faramarz Safi Esfahani and Nasim Noorafza

Vol 8 (16) | July 2015 | www.indjst.org Indian Journal of Science and Technology 7

5. Conclusion

An approach is proposed to solve the QOS-aware Web
Service selection problem. For this, an algorithm is
presented based on QoS properties which reveal that this
selection is extremely fast and leads to results that are very
close to the optimal solution.

6. References
1.	 W3C Working Group: Web Services Architecture. 2012

May. Available from: http://www.w3.org/TR/ws-arch/
2.	 Dustdar S, Schreiner W. A survey on web services composi-

tion. International Journal of Web and Grid Services. 2005;
1:1–30.

3.	 WS-Diamond Team. WS-DIAMOND: Web Services - Di-
Agnosability, MONitoring and Diagnosis. MIT press; 2009.
p. 213–39.

4.	 Rajendran T, Balasubramanie P, Cherian R, An Efficient
WS-QOS Broker Based Architecture for Web Services Se-
lection: ICJA Journal, 2010. Available from: http://www.ij-
caonline.org/archives/number9/194-333, http://journalda-
tabase.info/articles/efficient_ws-qos_broker_based.html,
http://www.researchgate.net/publication/265033497_QoS_
Based_Efficient_Web_Service_Selection

5.	 Vadivelou G, IIavarasan E, Manoharan R, Praveen P. A QoS
based web service selection through delegation. Interna-
tional Journal of Scientific and Engineering Research. May
2011; 2(5).

6.	 Makhlughian M, Hashemi M, Rastegari Y, Pejman E. Web
Service Selection based on ranking of qos using associative
classification; 2012.

7.	 Dai Y, et al. QOS-Driven self-healing web service composi-
tion based on performance prediction. Journal of Comput-
er Science and Technology. 2009 Mar; 24:250–61.

8.	 Keskes N. Context of qos In Web Service Selection. Ameri-

can Journal of Engineering Research (AJER); 2013.
9.	 Keskes N, Lehireche A. Web services selection based on

mixed context and quality of service ontology. Computer
and Information Science. 2011 May; 4(3).

10.	 Wenjuan L, et al. A framework to improve adaptability in
web service composition. 2nd International Conference on
Computer Engineering and Technology (ICCET); Cheng-
du. 2010.

11.	 Chatel P, et al. QOS-based late-binding of service invoca-
tions in adaptive business processes. Proceedings of the
2010 IEEE International Conference on Web Services;
2010. p. 227–34.

12.	 Yu Q, Rege M, Bouguettaya A, Medjahed B, Ouzzani M. A
two-phase framework for quality-aware Web service selec-
tion. Service Oriented Computing and Applications. 2010
Jun; 4(2):63–79. Available from: http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.225.1648

13.	 Ying Y, et al. A Self-healing composite Web service model.
Proceedings of the IEEE Asia-Pacific Services Computing
Conference (APSCC); 2009. p. 307–12.

14.	 Diamadopoulou V, Makris CH, Panagis Y. Internet and Mul-
timedia Technologies Research Unit. Available from: http://
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.75.617

15.	 Maheswari S, Karpagam GR. QoS based efficient web ser-
vice selection. European Journal of Scientific Research.
2011; 66(3):428–40. ISSN: 1450-216X. Available from:
http://www.researchgate.net/publication/265033497_QoS_
Based_Efficient_Web_Service_Selection

16.	 Achkoski J, Trakovik V. Metrics for service availability
and service reliability in service-oriented intelligence in-
formation system. IEEE Conference on ICT Innovations;
2012. Available from: http://www.researchgate.net/publi-
cation/236886122_Metrics_for_Service_Availability_and_
Service_Reliability

17.	 Ardagna D, et al. PAWS: A Framework for Executing Adap-
tive Web-Service Processes. IEEE Conference on Software;
2007. p. 39–46.

18.	 Reiff-Marganiec S , Yu H, Tilly M. Service selection based
on non-functional properties. International Conference on

Table 7. Selection Web Service with 6 number of Quality of Services
Compliance Reliability Throughput Successability Availability Response

Time
Web Service

Name
Algorithm Number of QoS

100 80 36.3 100 99 80 Service1 Proposed 6
78 80 13.6 96 89 165 HelloService SAW 6

Table 8. Selection Web Service with 9 number of Quality of Services
Number
of QoS

Algorithm Web
Service
Name

Response
Time

Avail-
ability

Reliabil-
ity

Throughput Success-
ability

Com-
pliance

Best
Practice

Latency Documen-
tation

9 Proposed getJoke 207 99 80 29 100 100 87 2 95
9 SAW getJoke 207 99 80 29 100 100 87 2 95

Vol 8 (16) | July 2015 | www.indjst.org Indian Journal of Science and Technology8

Improving Response Time of Web Service Composition based on QoS Properties

Service-Oriented Computing (ICSOC); 2009. p. 128–38.
Available from: https://lra.le.ac.uk/bitstream/2381/4715/3/
NFPSLA09.pdf.txt

19.	 Salehie M, Tahvildari L. Self-adaptive software: Landscape
and research challenges. ACM Transactions on Autono-
mous and Adaptive Systems. 2009; 4:1–42.

20.	 Rajendran T, Balasubramanie P. An efficient architecture
for agent-based dynamic web service discovery with QoS.
Journal of Theoretical and Applied Information Technolo-
gy; Islamabad Pakistan. 2010 May; 15(2).

21.	 Zeng L, et al. QOS-Aware Middleware for Web Services
Composition: IEEE Trans Softw Eng. 2004; 30:311–27.

22.	 Ardagna D, Mirandola R. Per-flow optimal service selec-
tion for Web services based processes. Journal of Systems
and Software. 2010; 83:1512–23.

23.	 Ardagna D, et al. A service-based framework for flexible
business processes. IEEE Conference on Software; 2011. p.
61–7.

24.	 Bianculli D, et al. Automated dynamic maintenance of com-
posite services based on service reputation. Proceedings
of the 5th International Conference on Service-Oriented
Computing (ICSOC’07); Vienna, Austria. 2007. p. 449–55.

25.	 Alrifai M, Risse T, Dolog P, Nejdl W. A scalable ap-
proach for QoS-based web service selection. Internation-
al Conference on Service-Oriented Computing (ICSOC);
2008. Available from: http://link.springer.com/chap-
ter/10.1007/978-3-642-01247-1_20, http://www.sciencedi-
rect.com/science/journal/15708268/1

26.	 Al-Masri E, Mahmoud QH. Investigating web services on
the world wide web. 2008.

27.	 W3C Working Group: QOS for Web Services: Require-
ments and Possible Approaches. 2012 May. Available from:
http://www.w3c.or.kr/kr-office/TR/2003/ws-QOS/

28.	 Hwang SY, et al. A probabilistic approach to modeling and

estimating the QOS of web-services-based workflows. In-
formation Sciences. 2007; 177:5484–550.

29.	 Cardoso J, et al. Quality of service for workflows and Web
service processes: Web Semantics Science, Services and
Agents on the World Wide Web. 2004; 1:281–308.

30.	 Cardellini V, et al. MOSES: A framework for QOS driv-
en runtime adaptation of service-oriented systems. IEEE
Transactions on Software Engineering. 2011.

31.	 Erradi A, Maheshwari P. Dynamic binding framework for
adaptive web services. Proceedings of the 2008 Third Inter-
national Conference on Internet and Web Applications and
Services; 2008. p. 162–7. Available from: http://www.scirp.
org/journal/PaperInformation.aspx?paperID=22407

32.	 Canfora G, et al. A framework for QOS-aware binding and
re-binding of composite web services. The Journal of Sys-
tems and Software. 2008; 81:1754–69.

33.	 Calinescu R, et al. Dynamic QOS Management and Opti-
mization in Service-based Systems: IEEE Trans Softw Eng.
2011; 37:387–409.

34.	 Cardoso J, Sheth A, Miller J, Arnold J, Kochut K. Quality of
service for workflows and web service processes. Web Se-
mantics: Science, Services and Agents on the World Wide
Web. 2004; 1(3):281–308.

35.	 Aggarwal R, Verma K, Miller J, Milnor W. Constraint driv-
en web service composition in METEOR-S. IEEE Inter-
national Conference on Services Computing (SCC’2004);
Shanghai, China. 2004.

36.	 Cardoso J. Quality of Service and Semantic Composition of
Workflows [PhD Dissertation]. Athens, GA, USA: Depart-
ment of Computer Science, University of Georgia; 2002.

37.	 Huang AC, Steenkiste P. Building self-configuring services
using service-specific knowledge. Proceedings of the 13th
IEEE International Symposium on High Performance Dis-
tributed Computing; 2004. p. 45–54.

