Novel Conditions on the Non-Normal Cayley Graphs of Valency Six

Mahtab Hashemian and Mehdi Alaeiyan*
Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran; alaeiyan@iust.ac.ir

Abstract

A Cayley graph $X=\operatorname{Cay}(G, S)$ on a group G is said to be normal if the right regular representation $R(G)$ of G is normal in the full automorphism group $\operatorname{Aut}(X)$. In this paper, two novel conditions are outlined to identify the non-normal Cayley graphs of valency six. As an application, some non-normal Cayley graphs of valency six on A_{6} and A_{5} are obtained.

Keywords: Automorphism Groups, Cayley Graph, Normal Cayley Graph

1. Introduction

Let X be a finite simple undirected graph, we use $V(X)$, $E(X), A(X)$ and $\operatorname{Aut}(X)$ to denote its vertex set, edge set, arc set and full automorphism group, respectively. For every $u, v \in V(X),\{u, v\}$ is the edge incident to u and v in X. A graph is called vertex-transitive if its automorphism group is transitive on the vertex set. A graph is called edge-transitive if its automorphism group is transitive on the edge set. Similarly an arc-transitive graph is a graph whose automorphism group is transitive on the arc set. Throughout this paper the symmetric group of degree n and the alternating group of degree n are denoted by S_{n} and $A_{n^{\prime}}$, respectively.

Let G be a permutation group on a set A and $\alpha \in A$. Denote by G_{α} the stabilizer of α in G, that is, the subgroup of G fixing the point α. Permutation group G is semiregular on A if $G_{\alpha}=1$ for every $\alpha \in A$ and regular if G is transitive and semiregular. Let G be a finite group and let S be a subset of G such that $1 \notin S$ and $S^{-1}=S$. The Cayley graph $X=\operatorname{Cay}(G, S)$ on G with respect to S is defined as the graph with a vertex set $V(X)=G$ and an edge set $E(X)=\left\{\{g, h\} \mid g, h \in G, g h^{-1} \in S\right\}$. A Cayley graph Cay (G, S) is connected if and only if $G=\langle S\rangle$. Let $A=\operatorname{Aut}(\operatorname{Cay}(G, S))$. It is obvious that $R(G)$ are contained in A. Also is regular on the set $V(X)$. Thus a Cayley
graph is vertex transitive. If A_{1} denotes the stabilizer of the vertex 1 in A then $\operatorname{Aut}(G, S)=\left\{a \in \operatorname{Aut}(G) \mid S^{\alpha}=S\right\}$ is a subgroup of A_{1}. A Cayley graph $\operatorname{Cay}(G, S)$ is said to be normal if $R(G)$ is normal in A.

A lot of study has been done in normality of Cayley graphs. For example, normality of Cayley graphs of order p^{2} and $2 p$ has been determined by Dobson ${ }^{4}$ and Du^{5}, respectively. Disconnected normal Cayley graphs are highlighted by Wang9. Further, Preager ${ }^{8}$ has developed a perspective which identifies Cay (G, S) is normal if $N_{A}(R(G))$ is transitive on edges and Cay (G, S) is a connected cubic Cayley graph on a non-abelian simple group. Also vast majority of normal connected cubic Cayley graphs on non-abelian simple groups are specified by Fang ${ }^{6}$.

In 2005, Feng and Xu^{7} proved that every connected tetravalent Cayley graph on a regular p-group is normal when $p \neq 2$, 5 . One year later, normality of tetravalent Cayley graphs on dihedral groups have been discussed by Wang and Xu^{10}.

In 2007, normality of the connected Cayley graph of valency 5 on A_{5} has been determined by Feng and Zhou ${ }^{12}$, although in ${ }^{11}$ the normality of the connected Cayley graphs of valency 3 and 4 on A_{5} has been proved by Xu and Xu . For more results on the normality of Cayley graphs, we refer the reader to ${ }^{1-3}$.

[^0]In this paper, we have presented two main theorems with new conditions in order to ease the identification of non-normal Cayley graphs of valency 6.

2. Preliminaries

First we will give some preliminary results which use in the next.

Let $X=\operatorname{Cay}(G, S)$ be a Cayley graph of G with respect to S and $\operatorname{Aut}(G, S)=\left\{\alpha \in \operatorname{Aut}(G) \mid S^{\alpha}=S\right\}$. Set $A:=A u t(X)$ and denote by A_{1} the stabilizer of the vertex 1 in A. The following proposition is basic.

Lemma 2.1 [6, Proposition 1.1]

As the above notations:
(i) $\operatorname{Aut}(X)$ contains the right regular representation $R(G)$ of G and so X is vertex-transitive.
(ii) X is undirected if and only if $S^{-1}=S$. Hence, all Cayley(di) graphs are vertex-transitive.
(iii) X is connected if and only if $G=\langle S\rangle$.

Lemma 2.2 [6, Proposition 1.3]

We have:
(i) $\quad N_{A}(R(G))=R(G) \operatorname{Aut}(G, S)$,
(ii) $A=R(G) \operatorname{Aut}(G, S)$ if and only if $R(G)$ is normal in G.

Lemma 2.3 [11, Proposition 1.5]

The Cayley (di) graph is normal if and only if $A_{1}=\operatorname{Aut}(G, S)$.

3. Discussion of Main Theorems

Now two sufficient conditions are given on the non-normal Cayley graphs of valency 6 for a finite group.

Theorem 3.1

Let G be a finite group and $S=\left\{s_{1}, s_{2}, s_{3}, s_{4}, s_{5}, s_{6}\right\}$ be a subset of G which $S^{-1}=S$ and s_{5}, s_{6} are involutions. Suppose that S contains at least three involutions and there exists an involution h in $G \backslash S$ such that $s_{2}=h s_{1}, s_{3}=s_{1} h, s_{4}=s_{2} h$, $s_{5} s_{6}=h . \quad(*)$

Then the Cayley graph $\operatorname{Cay}(G, S)$ is not normal.

Proof

By the equations (*) and because $h \notin S$, we have $1 \notin S$. Consider $\sigma=\left(s_{3} s_{4}\right)\left(s_{6} s_{3} s_{6} s_{4}\right)$. Clearly $s_{6} s_{3} \neq s_{3}$ and $s_{6} s_{3} \neq$ s_{4}, because if $s_{6} s_{3} \neq s_{4}$ then by the last equation of $(*)$ we have $s_{5} h s_{3}=s_{4}$ so $s_{5} s_{4}=s_{4}$ and it implies that $s_{5}=1$, a contradiction.

Thus $s_{6} s_{3} \neq s_{4}$. Similarly we can see $s_{6} s_{4} \neq s_{3}, s_{4}$. It shows that σ is a permutation on G.

Let $X=\operatorname{Cay}(G, S)$ and $A=\operatorname{Aut}(X)$. Denote by A_{1} the stabilizer of 1 in A. To prove that $X=\operatorname{Cay}(G, S)$ is not normal, by Proposition 2.3, it suffices to show that $\sigma \in A_{1}$ and $\sigma \notin \operatorname{Aut}(G, S)$.

By the equations (*), $s_{4}=s_{2} h=h s_{1} h=s_{1}{ }^{h}$ and $s_{3}=s_{1}$ $h=h h s_{1} h=h s_{2} h=s_{2}{ }^{\text {h }}$.

Since $s_{5} s_{6}$ are involutions and by the assumption, S contains at least three involutions, implying that either s_{4} and s_{1} or s_{3} and s_{2} are involutions. If s_{4} and s_{1} are not involutions, then s_{3} and s_{2} must be involutions. It means that s_{3} and s_{4} have different orders. If s_{4} and s_{1} are involutions, then $s_{2}{ }^{-1}=\left(h s_{1}\right)^{-1}=s_{1}{ }^{-1} h^{-1}=s_{1} h=s_{3}$, which means that s_{3} and s_{2} are not involutions and then s_{3} and s_{4} have different orders. Thus, $\sigma \notin \operatorname{Aut}(G, S)$ because σ permutes s_{3} to s_{4}. Further, $s_{6} s_{3} \neq 1$ and $s_{6} s_{4} \neq 1$ because s_{6} is an involution. Hence, σ fixes ${ }^{1}$. So we need only to show that $\sigma \in A=\operatorname{Aut}(X)$ and for this, it is enough to show that σ keeps adjacency of edges.

Let $T=\left\{s_{3}, s_{4}, s_{6} s_{3}, s_{6} s_{4}\right\}$. For any $\omega \in T$, we have $T=\left\{\omega, h \omega, s_{6} \omega, s_{6} h \omega\right\}$.

For example if $\omega=s_{3}$, then

$$
\begin{gathered}
\omega=h s_{3}=h s_{1} h=s_{2} h=s_{4} \\
s_{6} \omega=s_{6} s_{3} \\
h \omega=s_{6} h s_{3}=s_{6} h s_{1} h=s_{6} s_{4}
\end{gathered}
$$

Also if $\omega=s_{6} s_{3}$, then

$$
\begin{gathered}
h \omega=h s_{6} s_{3}=s_{6} h s_{3}=s_{6} h s_{1} h=s_{6} s_{4} \\
s_{6} \omega=s_{6} s_{6} s_{3}=s_{3} \\
s_{6} h \omega=s_{6} h s_{6} s_{3}=s_{6} s_{6} h s_{3}=h s_{1} h=s_{4}
\end{gathered}
$$

Similarly, if $\omega=s_{4}$ or $\omega=s_{6} s_{4}$ the same result is obtained. Thus it is assumed that for any $\omega \in T$, $T=\left\{\omega, h \omega, s_{6} \omega, s_{6} h \omega\right\}$ and $\sigma=(\omega h \omega)\left(s_{6} \omega s_{6} h \omega\right)$. Clearly, σ fixes every element in G\T.

Now let $\{u, v\} \in E(X)$. We aim to prove that $\{u, v\}^{\sigma} \in E(X)$. Consider two cases:

Case 1. If $\{u, v\} \cap T=\varnothing$, then $\{u, v\} \notin T$ and $\{u, v\}^{\sigma}=\{u, v\} \in E(X)$.
Case 2. If $\{u, v\} \cap T \neq \varnothing$, without loss of generality we can assume $\mathrm{u} \in T$, then $T=\left\{u, h u, s_{6} \mathrm{u}, s_{6} h u\right\}$ and $\sigma=(u h u)$ $\left(s_{6} u s_{6} h u\right)$. Thus $u^{\sigma}=h u$, since $E(X)=\{(g, s g) \mid g \in G, s \in S\}$ and $\{u, v\} \in E(X)$, we have $v=s_{i} u$ for some i, where $1 \leq i \leq 6$.

If $v=s_{5} u$, then $v=s_{6} h u$ and $\{u, v\}^{\sigma}=\left\{h u, s_{6} u\right\} \in E(X)$. Similarly if $v=s_{6} u$, then $\{u, v\}^{\sigma}=\left\{h u, s_{6} h u\right\} \in E(X)$. Now, suppose that $v=s_{j} u$ for some $j, 1 \leq j \leq 4$. It is clear that $v=s_{j} u \neq u$ and $v \neq h u$. Because if $v=h u$, then $s_{j} u=h u$ for some $j, 1 \leq j \leq 4$. So $s_{j}=h$ and it is a contradiction. Similarly, $v=s_{j} u \neq s_{6} u$ or $s_{6} h u$ for some $j, 1 \leq j \leq 4$. Therefore $v \notin T$ and $v^{\sigma}=v$. Now If $j=1$ then $v=s_{1} u=s_{3} h u$ and $\{u, v\}^{\sigma}=\left\{h u, s_{3} h u\right\} \in E(X)$. If $j=2$, then $v=s_{2} u=h s_{1} u$ and $\{u, v\}^{\sigma}=\left\{h u, h s_{1} u\right\} \in E(X)$. Similarly, for $j=3,4$ we have $\{u, v\}^{\sigma} \in E(X)$.

Therefore, both Cases 1,2 implies that $\sigma \in A$. Thus $\sigma \in A_{1}$ and $\sigma \operatorname{Aut}(G, S)$, so by Lemma 2.3, $\operatorname{Cay}(G, S)$ is not normal.

Theorem 3.2

Let G be a finite group and $S=\left\{s_{1}, s_{2}, s_{3^{3}}, s_{4}, s_{5} s_{6}\right\}$ be a subset of G such that $1 \notin S, G=\langle S\rangle$ and $S^{-1}=S$. Suppose that s_{1} is an involution, $N=\left\{1, s_{1}, s_{2}, s_{3}\right\}$ be a subgroup of G and $H=\left\langle s_{1}, s_{4}, s_{5}, s_{6}\right\rangle$ such that $s_{2}, s_{3} \notin H$. If $|G: H| \geq 4$ and $\left\{s_{1} s_{4}, s_{1} s_{5}, s_{1} s_{6}\right\}=\left\{s_{4} s_{1}, s_{5} s_{1}, s_{6} s_{1}\right\}$, then the Cayley graph $\operatorname{Cay}(G, S)$ is not normal.

Proof

Since $|G: H| \geq 4$ and $s_{1}, s_{4}, s_{5}, s_{6} \in H$, there is a coset $H g$ such that $s_{i} \notin H g$ for each $i, 1 \leq i \leq 6$. It implies that $H g \neq H s_{i}$. Let $X=\operatorname{Cay}(G, S)$ and $A=\operatorname{Aut}(X)$. Now define a permutation s on G. If $v \in H g$, then $v^{\sigma}=s_{1} v$, and if $v \in G \backslash H g$, then $v^{\sigma}=v$. Clearly for each $i, 1 \leq i \leq 6, s_{i}^{\sigma}=s_{i}$. Further, $1_{\sigma}=1$ because $1 \notin H g$. If $\sigma \in \operatorname{Aut}(G)$, then σ fixes each element of G, because $G=\langle S\rangle$ and $s_{i}^{\sigma}=s_{i}$, and it means $\sigma=1$, a contradiction. Thus, $\sigma \notin \operatorname{Aut}(G, S)$, and it is enough to show that $\sigma \in \operatorname{Aut}(X)$.

Let $\{u, v\} \in E(X)$. We claim that $\{u, v\}^{\sigma} \in E(X)$. For this we consider two cases.
Case 1. If $\{u, v\} \cap H g=\varnothing$, then $u, v \notin H g$ and $\{u, v\}^{\sigma}=\{u, v\}$ so $\sigma \in \operatorname{Aut}(X)$.
Case 2. If $\{u, v\} \cap H g \neq \varnothing$. We may assume that $u \in H g$, thus $u^{\sigma}=s_{1} u$ and since $\{u, v\} \in E(X)$ it is easy to see $v=s_{k} u$ for some $k, 1 \leq \mathrm{k} \leq 6$. If $k=1$, then $v=s_{1} u \in H g$ because $s_{1} \in H$ and $u \in H g$, so we have $\{u, v\}^{\sigma}=\left\{s_{1} u, u\right\} \in E(X)$. If $k=2$, then $v=s_{2} u \notin H g$ because $s_{2} \notin H$. Since $N=\left\{1, s_{1}, s_{2}, s_{3}\right\}$ be a group of order 4 and s_{1} is an involution, we have $s_{2}=s_{3} s_{1}$. Therefore, $\{u, v\}^{\sigma}=\left\{s_{1} u, s_{2} u\right\}=\left\{s_{1} u, s_{3} s_{1}\right.$ $u\} \in E(X)$. Similarly if $k=3$, then $v=s_{3} u \notin H g$ and $\{u, v\}^{\sigma}$ $=\left\{s_{1} u, s_{3} u\right\}=\left\{s_{1} u, s_{2} s_{1} u\right\} \in E(X)$. If $k=4$, then $v=s_{4} u$ $\in H g$ because $s_{4} \in H$ and $u \in H g$. So $v^{\sigma}=s_{1} s_{4} u$. By the assumption, we know that $s_{1} s_{4} \in\left\{s_{4} s_{1}, s_{5} s_{1}, s_{6} s_{1}\right\}$. Thus there is an s_{l} such that $s_{1} s_{4}=s_{l} s_{1}$, where $l=4$ or 5 or 6. So $=\left\{s_{1} u, s_{1} s_{4} u\right\}=\left\{s_{1} u, s_{l} s_{1} u\right\} \in E(X)$. Similarly, if
$k=5$, then $v=s_{5} u \in H g$ and $\{u, v\}^{\sigma}=\left\{s_{1} u, s_{1} s_{5} u\right\}=\left\{s_{1} u, s_{r}\right.$ $\left.s_{1} u\right\} \in E(X)$, where $r=4$ or 5 or 6 . Finally, if $k=6$, then v $=s_{6} u \in H g$ and $\{u, v\}^{\sigma}=\left\{s_{1} u, s_{1} s_{6} u\right\}=\left\{s_{1} u, s_{t} s_{1} u\right\} \in E(X)$, where $t=4$ or 5 or 6 .

It implies that in each case, $\{u, v\}^{\sigma} \in E(X)$ and so $\sigma \in \operatorname{Aut}(X)$. Therefore, $\sigma \in A_{1}$ but $\sigma \notin \operatorname{Aut}(G, S)$ and by Lemma 2.3, $\operatorname{Cay}(G, S)$ is not normal.

4. Conclusion

Now we construct an infinite family of non-normal Cayley graphs of valency $\mathbf{6}$ by using Theorem 3.1 in the following example.

Example 4.1

Let $n(>2)$ be an even integer and $m>1$. If $G=\langle a, b, c| a^{n}=$ $b^{2}=c^{m}=1, b^{-1} a b=a^{-1}, b^{-1} c b=c^{-1}$, then, the Cayley graph $\operatorname{Cay}\left(G,\left\{a^{\frac{n}{2}}, a^{\frac{n}{2}} b, c, c^{-1}, b c, c b\right\}\right)$ is a non-normal Cayley graph of valency 6

Proof

It is clear that, $a^{\frac{n}{2}}, c, c^{-1} \neq 1$. Further $b c \neq 1$, because if $b c=1$ then $c=b$ a contradiction. Similarly, $c b \neq 1$. Also $a^{\frac{n}{2}} b \neq 1$, because if $a^{\frac{n}{2}} b=1$ then $a^{\frac{n}{2}}\left(a^{\frac{n}{2}} b\right)=\left(a^{\frac{n}{2}} a^{\frac{n}{2}}\right) b=a^{n} b=b \in S$ a contradiction. Thus, $1 \notin S$.

Now, let $h:=b \in G \backslash S$ and consider $s_{1}=c b, s_{2}=c^{-1}$, $s_{3}=c, s_{4}=b c, s_{5}=a^{\frac{n}{2}}$ and $s_{6}=a^{\frac{n}{2}} b$. It is easy to see that h is an involution, S has at least three involutions and $s_{5} s_{6}=$ $h, s_{2}=s_{1} h, s_{4}=s_{2} h$. Thus the conditions of Theorem 3.1 are hold and $\operatorname{Cay}(G, S)$ is not normal.

In following examples some non-normal Cayley graphs of valency $\mathbf{6}$ on A_{6} and A_{5} are determined.

Example 4.2

Let $W_{1}=\{(12)(45),(564),(465),(64)(12),(56)(34)$, (12)(34)\}. Then the $\operatorname{Cay}\left(A_{6}, W_{1}\right)$ is not normal.

Proof

Consider $h=(12)(56)$. It is clear that $h \in A_{6} \backslash W_{1}$ and h is an involution. Now suppose that $s_{1}=(12)(45)$, $s_{2}=(564), s_{3}=(465), s_{4}=(64)(12), s_{5}=(56)(34)$ and $s_{6}=(12)(34)$. It is easy to see the conditions of Theorem 3.1 are hold and the Cayley graph $\operatorname{Cay}\left(A_{6}, W_{1}\right)$ is not normal.

Example 4.3

Let $W_{2}=\{(13)(26),(526),(256),(52)(13),(56)(24)$, (13) (2 4)\}. Then the $\operatorname{Cay}\left(A_{6}, W_{2}\right)$ is not normal.

Proof

Consider $h=(13)(56)$. It is clear that $h \in A_{6} \backslash W_{2}$ and h is an involution. Let $s_{1}=(13)(26), s_{2}=(526), s_{3}=(256)$, $s_{4}=(52)(13), s_{5}=(56)(24)$ and $s_{6}=(13)(24)$. It is easy to see the conditions of Theorem 3.1 are hold and the Cayley $\operatorname{graph} \operatorname{Cay}\left(A_{6}, W_{2}\right)$ is not normal.

Example 4.4

Let $W_{3}=\{(14)(26),(326),(236),(32)(14),(36)(25)$, (14)(25)\}. Then the $\operatorname{Cay}\left(A_{6}, W_{3}\right)$ is not normal.

Proof

Similarly, by consider $\mathrm{h}=(14)(36)$, the $\operatorname{Cay}\left(A_{6}, W_{3}\right)$ is not normal.

Example 4.5

Let $W_{4}=\{(15)(34),(234),(324),(23)(15),(24)(36)$, (15)(36)\}. Then the $\operatorname{Cay}\left(A_{6}, W_{4}\right)$ is not normal.

Proof

Similarly, by consider $\mathrm{h}=(15)(24)$, the $\operatorname{Cay}\left(A_{6}, W_{4}\right)$ is not normal.

Example 4.6

Let $W_{5}=\{(16)(35),(253),(352),(25)(16),(23)(45)$, (16)(45)\}. Then the $\operatorname{Cay}\left(A_{6}, W_{5}\right)$ is not normal.

Proof

Similarly, by consider $h=(16)(23)$, the $\operatorname{Cay}\left(A_{6}, W_{5}\right)$ is not normal.

Example 4.7

Let $U_{1}=\{(12)(45),(354),(453),(35)(12),(14)(23)$, (13)(2 4)\}. Then the $\operatorname{Cay}\left(A_{5}, U_{1}\right)$ is not normal.

Proof

Consider $h=(12)(34)$. It is clear that $h \in A_{5} \backslash U_{1}$ and h is an involution. Let $s_{1}=(12)(45), s_{2}=(354), s_{3}=(453)$, $s_{4}=(35)(12), s_{5}=(14)(23)$ and $s_{6}=(13)(24)$. It is easy to see that and $s_{2}=h s_{1}, s_{3}=s_{1} h, s_{4}=s_{2} h$ and $s_{6} s_{5}=h$. So by the Theorem 3.1, the $\operatorname{Cay}\left(A_{5}, U_{1}\right)$ is not normal.

Example 4.8

Let $U_{2}=\{(15)(24),(234),(243),(34)(15),(13)(25)$, (1 2)(53)\}. Then the $\operatorname{Cay}\left(A_{5}, U_{2}\right)$ is not normal.

Proof

Consider $h=(15)(23)$. It is clear that $h \in A_{5} \backslash U_{2}$ and h is an involution. Similarly we have $s_{2}=h s_{1}, s_{3}=s_{1} h, s_{4}=s_{2} h$ and $s_{6} s_{5}=h$. So by the Theorem 3.1, the $\operatorname{Cay}\left(A_{5}, U_{2}\right)$ is not normal.

5. References

1. Alaeiyan M. Normal 6 -valent Cayley graphs of abelian groups with valency, Four. International Journal of Industrial Engineering and Production Research. 2008; 19(1):1-11.
2. Alaeiyan M, Talebi AA, Paryab K. Arc-transitive Cayley graphs of valency five on abelian groups. Southeast Asian Bull Math. 2008; 32(6):1029-35.
3. Alaeiyan M, Tavallaee H, Talebi AA. Cayley graphs of abelian groups which are not normal edge-transitive. Vietnam Journal of Mathematics. 2005; 33(3):309.
4. Dobson E, Witte D. Transitive permutation groups of primesquared degree. J Algebraic Combin. 2002; 16:43-69.
5. Du SF, Wang RJ, Xu MY. On the normality of Caley digraphs of order twice a prime. Australian Journal of Combinatorics. 1998; 18:227-34.
6. Fang XJ, Li CH, Wang DJ, Xu MY. On cubic Cayley graphs of finite simple groups. Discrete Math. 2002; 244:67-75.
7. Feng YQ, Xu MY. Automorphism groups of tetravalent Cayley graphs onregular p-groups. Disceret Math. 2005; 305:354-60.
8. Preager CE. Finite normal edge-transitive graphs. Bull Austral Math Soc. 1999; 60:207-20.
9. Wang CQ, Wang DJ, Xu MY. On normal Cayley graphs of finite groups. Science in China Ser A. 1998; 28:131-9.
10. Wang CQ, Xu MY. Non-normal one-regular and 4 -valent Cayley graphs of dihedral groups D2n. European J Combin. 2006; 27:750-66.
11. Xu MY, Xu SJ. The Symmetry properties of Cayley graphs of small valencies on the alternating group A5. Science in China Ser A. 2004; 47:593-604.
12. Zhou JX, Feng YQ. Two sufficient conditions for non-normal Cayley graphs and their applications. Science in China Ser A. 2007; 50:201-16.

[^0]: *Author for correspondence

