
Abstract
A Cayley graph X = Cay(G, S) on a group G is said to be normal if the right regular representation R(G) of G is normal in the 
full automorphism group Aut(X). In this paper, two novel conditions are outlined to identify the non-normal Cayley graphs 
of valency six. As an application, some non-normal Cayley graphs of valency six on A6 and A5 are obtained.
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1. Introduction
Let X be a finite simple undirected graph, we use V(X), 
E(X), A(X) and Aut(X) to denote its vertex set, edge set, 
arc set and full automorphism group, respectively. For 
every u,v ∈V(X), {u, v} is the edge incident to u and v in 
X. A graph is called vertex-transitive if its automorphism 
group is transitive on the vertex set. A graph is called 
edge-transitive if its automorphism group is transitive on 
the edge set. Similarly an arc-transitive graph is a graph 
whose automorphism group is transitive on the arc set. 
Throughout this paper the symmetric group of degree n 
and the alternating group of degree n are denoted by Sn 
and An, respectively.

Let G be a permutation group on a set Α and α ∈ Α. 
Denote by Gα the stabilizer of α in G, that is, the sub-
group of G fixing the point α. Permutation group G is 
semiregular on A if Gα = 1 for every α ∈ Α and regular 
if G is transitive and semiregular. Let G be a finite group 
and let S be a subset of G such that 1 ∉ S and S-1 = S. The 
Cayley graph X = Cay (G, S) on G with respect to S is 
defined as the graph with a vertex set V(X) = G and an 
edge set E X g h g h G gh S( ) , | , ,= { } ∈ ∈{ }-     1 . A Cayley 
graph Cay (G, S) is connected if and only if G = 〈S〉. Let  
A = Aut(Cay (G, S)). It is obvious that R(G) are contained 
in A. Also is regular on the set V(X). Thus a Cayley 

graph is vertex transitive. If A1 denotes the stabilizer of 
the vertex 1 in A then Aut G S Aut G S S( , ) ( ) |= ∈ ={ }a a is 
a subgroup of A1. A Cayley graph Cay(G, S) is said to be 
normal if R(G) is normal in A.

A lot of study has been done in normality of Cayley 
graphs. For example, normality of Cayley graphs of 
order p2 and 2p has been determined by Dobson4 and 
Du5, respectively. Disconnected normal Cayley graphs 
are highlighted by Wang9. Further, Preager8 has devel-
oped a perspective which identifies Cay (G, S) is normal 
if NA (R(G)) is transitive on edges and Cay (G, S) is a 
connected cubic Cayley graph on a non-abelian simple 
group. Also vast majority of normal connected cubic 
Cayley graphs on non-abelian simple groups are speci-
fied by Fang6.

In 2005, Feng and Xu7 proved that every connected 
tetravalent Cayley graph on a regular p-group is normal 
when p ≠ 2, 5. One year later, normality of tetravalent 
Cayley graphs on dihedral groups have been discussed by 
Wang and Xu10. 

In 2007, normality of the connected Cayley graph of 
valency 5 on A5has been determined by Feng and Zhou12, 
although in 11 the normality of the connected Cayley 
graphs of valency 3 and 4 on A5 has been proved by Xu 
and Xu. For more results on the normality of Cayley 
graphs, we refer the reader to 1–3.
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In this paper, we have presented two main theorems 
with new conditions in order to ease the identification of 
non-normal Cayley graphs of valency 6.

2. Preliminaries
First we will give some preliminary results which use in 
the next.

Let X = Cay(G, S) be a Cayley graph of G with 
respect to S and Aut G S Aut G S S( , ) ( ) |= ∈ ={ }a a . Set  
A : = Aut(X) and denote by A1 the stabilizer of the vertex 1  
in A. The following proposition is basic.

Lemma 2.1 [6, Proposition 1.1]
As the above notations:

(i) Aut(X) contains the right regular representation 
R(G) of G and so X is vertex-transitive.

(ii) X is undirected if and only if S-1 = S. Hence, all 
Cayley(di) graphs are vertex-transitive.

(iii) X is connected if and only if G = 〈S〉.

Lemma 2.2 [6, Proposition 1.3]
We have:

(i) NA (R(G)) = R(G)Aut(G, S),
(ii) A = R(G) Aut(G, S) if and only if R(G) is normal  

in G.

Lemma 2.3 [11, Proposition 1.5]
The Cayley (di) graph is normal if and only if  
A1 = Aut(G, S).

3. Discussion of Main Theorems
Now two sufficient conditions are given on the non-nor-
mal Cayley graphs of valency 6 for a finite group.

Theorem 3.1
Let G be a finite group and S = {s1, s2, s3, s4, s5, s6} be a sub-
set of G which S-1 = S and s5, s6 are involutions. Suppose 
that S contains at least three involutions and there exists 
an involution h in G\S such that s2 = hs1, s3 = s1h, s4 = s2h,  
s5 s6 = h.     (*)

Then the Cayley graph Cay(G, S) is not normal.

Proof
By the equations (*) and because h ∉ S, we have 1 ∉ S. 
Consider s = ( )( )s s s s s s3 4 6 3 6 4 . Clearly s6 s3 ≠ s3 and s6 s3 ≠ 
s4, because if s6 s3 ≠ s4 then by the last equation of (*) we have 
s5hs3 = s4 so s5s4 = s4 and it implies that s5 = 1, a contradiction.  

Thus s6 s3 ≠ s4. Similarly we can see s6 s4 ≠ s3, s4. It shows that 
σ is a permutation on G.

Let X = Cay(G, S) and A = Aut(X). Denote by A1 the 
stabilizer of 1 in A. To prove that X = Cay(G, S) is not 
normal, by Proposition 2.3, it suffices to show that σ ∈ A1 
and σ ∉ Aut(G, S). 

By the equations (*), s4 = s2h = hs1h = s1
h and s3 = s1  

h = hhs1h = hs2h = s2
h.

Since s5s6 are involutions and by the assumption, S 
contains at least three involutions, implying that either 
s4 and s1 or s3 and s2 are involutions. If s4 and s1 are not 
involutions, then s3 and s2 must be involutions. It means 
that s3 and s4 have different orders. If s4 and s1 are involu-
tions, then s2

-1 = (hs1)
-1 = s1

-1 h-1 = s1h = s3, which means 
that s3 and s2 are not involutions and then s3 and s4 have 
different orders. Thus, σ ∉ Aut(G, S) because σ permutes 
s3 to s4. Further, s6s3 ≠ 1 and s6s4 ≠ 1 because s6 is an invo-
lution. Hence, σ fixes1. So we need only to show that  
σ ∈ A = Aut(X) and for this, it is enough to show that  
σ keeps adjacency of edges.

Let T = {s3, s4, s6s3, s6s4}. For any ω ∈ T, we have  
T = {ω, hω, s6ω, s6hω}.

For example if ω = s3, then

w
w

w

= = = =
=

= = =

hs hs h s h s
s s s

h s hs s hs h s s

3 1 2 4

6 6 3

6 3 6 1 6 4

Also if ω = s6s3, then 

h hs s s hs s hs h s s
s s s s s

s h s hs s s s hs

w
w

w

= = = =
= =

= =

6 3 6 3 6 1 6 4

6 6 6 3 3

6 6 6 3 6 6 33 1 4= =hs h s

Similarly, if ω = s4 or ω = s6s4 the same result is 
obtained. Thus it is assumed that for any ω ∈ T,  
T = {ω, hω, s6ω, s6hω} and σ = (ω hω)(s6ω s6hω). Clearly, σ 
fixes every element in G\T.

Now let {u, v} ∈ E(X). We aim to prove that  
{u,v}σ ∈ E(X). Consider two cases:

Case 1. If {u, v} ∩ T = ∅, then {u, v} ∉ T and  
{u, v}σ = {u, v} ∈ E(X).
Case 2. If {u, v} ∩ T ≠ ∅, without loss of generality we can 
assume u ∈ T, then T = {u, hu, s6u, s6hu} and σ = (u hu) 
(s6u s6hu). Thus uσ = hu, since E X g sg g G s S( ) , | ,= ( ) ∈ ∈{ }  
and {u, v} ∈ E(X), we have v = si u for some i, where  
1 ≤ i ≤ 6.
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If v = s5u, then v = s6hu and {u, v}σ = {hu, s6u} ∈E(X). 
Similarly if v = s6u, then {u,v}σ = {hu, s6hu} ∈E(X). Now, 
suppose that v = sju for some j, 1 ≤ j ≤ 4. It is clear that  
v = sj u ≠ u and v ≠ hu. Because if v = hu, then sju = hu for 
some j, 1 ≤ j ≤ 4. So sj = h and it is a contradiction. Similarly,  
v = sju ≠ s6u or s6hu for some j, 1 ≤ j ≤ 4. Therefore 
v ∉ T and vσ = v. Now If j = 1then v = s1 u = s3hu and  
{u,v}σ = {hu, s3 hu} ∈E(X). If j = 2, then  v = s2u = hs1u and 
{u,v}σ = {hu, hs1u} ∈ E(X). Similarly, for j = 3, 4 we have 
{u,v}σ ∈ E(X).

Therefore, both Cases 1, 2 implies that σ ∈ A. Thus  
σ ∈ A1 and σ Aut(G,S), so by Lemma 2.3, Cay(G,S) is not 
normal.

Theorem 3.2
Let G be a finite group and S = {s1, s2, s3, s4, s5, s6}be a sub-
set of G such that 1 ∉ S, G = 〈S〉 and S-1 = S. Suppose 
that s1 is an involution, N = {1, s1, s2, s3} be a subgroup of 
G and H = 〈s1, s4, s5, s6〉 such that s2, s3 ∉ H. If |G:H| ≥ 4 
and s s  s s  s s s s  s s  s s1 4 1 5 1 6 4 1 5 1 6 1, , , , ,{ } = { }  then the Cayley 
graph Cay(G,S) is not normal.

Proof
Since |G:H| ≥ 4 and s1, s4, s5, s6 ∈ H, there is a coset Hg 
such that si ∉ Hg for each i, 1 ≤ i ≤ 6. It implies that  
Hg ≠ Hsi. Let X = Cay(G,S) and A = Aut(X). Now define 
a permutation s on G. If v ∈ Hg, then vσ = s1v, and if  
v ∈ G\Hg, then vσ = v. Clearly for each i, 1 ≤ i ≤ 6, s si i

s = .  
Further, 1σ = 1 because 1 ∉ Hg. If σ ∈ Aut(G), then σ fixes 
each element of G, because G = 〈S〉 and s si i

s = , and it 
means σ = 1, a contradiction. Thus, σ ∉ Aut(G,S), and it is 
enough to show that σ ∈ Aut(X).

Let {u,v} ∈ E(X). We claim that {u,v}σ ∈ E(X). For this 
we consider two cases.
Case 1. If {u,v} ∩ Hg = ∅, then u,v ∉ Hg and  
{u,v}σ = {u,v} so σ ∈ Aut(X).
Case 2. If {u,v} ∩ Hg ≠ ∅. We may assume that u ∈ Hg, 
thus uσ = s1u and since {u,v} ∈ E(X) it is easy to see v = sku 
for some k, 1 ≤ k ≤ 6. If k = 1, then v = s1u ∈ Hg because  
s1 ∈ H and u ∈ Hg, so we have {u,v}σ = {s1u, u} ∈ E(X).  
If k = 2, then v = s2u ∉ Hg because s2 ∉ H. Since  
N = {1, s1, s2, s3} be a group of order 4 and s1 is an involution, 
we have s2 = s3s1. Therefore, {u,v}σ = {s1u, s2u} = {s1u, s3s1 
u} ∈ E(X). Similarly if k = 3, then v = s3u ∉ Hg and {u,v}σ  
= {s1u, s3u} = {s1u, s2 s1u} ∈ E(X). If k = 4, then v = s4u 
∈ Hg because s4 ∈H and u ∈ Hg. So vσ = s1s4u. By the 
assumption, we know that s1s4 ∈ {s4s1, s5s1, s6s1}. Thus 
there is an sl such that s1 s4 = sl s1, where l = 4 or 5 or 
6.  So = {s1u, s1 s4u} = {s1u, sl s1u} ∈ E(X). Similarly, if  

k = 5, then v = s5u ∈ Hg  and {u,v}σ = {s1u, s1 s5u} = {s1u, sr 

s1u} ∈ E(X), where r = 4 or 5 or 6. Finally, if k = 6, then v 
= s6u ∈ Hg  and {u,v}σ = {s1 u, s1 s6u} = {s1u, st s1u} ∈ E(X), 
where t = 4 or 5 or 6.

It implies that in each case, {u,v}σ ∈ E(X) and so  
σ ∈ Aut(X). Therefore, σ ∈ A1 but σ ∉ Aut(G,S) and by 
Lemma 2.3, Cay(G,S) is not normal.

4. Conclusion
Now we construct an infinite family of non-normal 
Cayley graphs of valency 6 by using Theorem 3.1 in the 
following example.

Example 4.1
Let n(> 2) be an even integer and m > 1. If G = ·a, b,c Áan = 
b2 = cm= 1, b–1 ab = a–1, b–1 cb = c–1, then, the Cayley graph 

Cay G a a b c c bc cb
n n

, , , , , ,2 2 1-




















 is a non-normal Cayley 

graph of valency 6

Proof

It is clear that, a c c
n
2 1 1, , - ≠ . Further bc ≠ 1, because if bc = 1 

then c = b a contradiction. Similarly, cb ≠ 1. Also a b
n
2 1≠ , 

because if a b
n
2 1=  then a a b a a b a b b S

n n n n
n2 2 2 2









 =









 = = ∈  

a contradiction. Thus, 1 ∉ S.
Now, let h: = b ∈ G \ S and consider s1 = cb, s2 = c–1,  

s3 = c, s4 = bc, s a
n

5
2=  and s a b

n

6
2= . It is easy to see that h 

is an involution, S has at least three involutions and s5 s6= 
h, s2 = s1h, s4 = s2h. Thus the conditions of Theorem 3.1 are 
hold and Cay(G,S) is not normal.

In following examples some non-normal Cayley 
graphs of valency 6 on A6 and A5 are determined.

Example 4.2
Let W1 = {(1 2) (4 5), (5 6 4), (4 6 5), (6 4)(1 2), (5 6)(3 4), 
(1 2)(3 4)}. Then the Cay(A6, W1) is not normal.

Proof
Consider h = (1 2)(5 6). It is clear that h ∈A6\W1 and 
h is an involution. Now suppose that s1 = (1 2)(4 5),  
s2 = (5 6 4), s3 = (4 6 5), s4 = (6 4)(1 2), s5 = (5 6)(3 4) and  
s6 = (1 2) (3 4). It is easy to see the conditions of Theorem 3.1 
are hold and the Cayley graph Cay(A6, W1) is not normal.
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Example 4.3
Let W2 = {(1 3) (2 6), (5 2 6), (2 5 6), (5 2)(1 3), (5 6)(2 4), 
(1 3) (2 4)}. Then the Cay(A6, W2) is not normal.

Proof
Consider h = (1 3)(5 6). It is clear that h ∈ A6\W2 and h is 
an involution. Let s1 = (1 3)(2 6), s2 = (5 2 6), s3 = (2 5 6), 
s4 = (5 2)(1 3), s5 = (5 6)(2 4) and s6 = (1 3)(2 4). It is easy to 
see the conditions of Theorem 3.1 are hold and the Cayley 
graph Cay(A6 , W2) is not normal.

Example 4.4
Let W3 = {(1 4)(2 6),(3 2 6),(2 3 6), (3 2)(1 4), (3 6)(2 5),  
(1 4)(2 5)}. Then the Cay(A6, W3) is not normal.

Proof
Similarly, by consider h = (1 4)(3 6), the Cay(A6, W3) is 
not normal.

Example 4.5
Let W4 = {(1 5)(3 4), (2 3 4), (3 2 4), (2 3)(1 5), (2 4)(3 6), 
(1 5)(3 6)}. Then the Cay(A6, W4) is not normal.

Proof
Similarly, by consider h = (1 5)(2 4), the Cay(A6, W4) is 
not normal.

Example 4.6
Let W5 = {(1 6)(3 5), (2 5 3), (3 5 2), (2 5)(1 6), (2 3)(4 5), 
(1 6)(4 5)}. Then the Cay(A6, W5) is not normal.

Proof
Similarly, by consider h = (1 6)(2 3), the Cay(A6, W5) is 
not normal.

Example 4.7
Let U1 = {(1 2)(4 5), (3 5 4), (4 5 3), (3 5)(1 2), (1 4)(2 3), 
(1 3)(2 4)}. Then the Cay(A5, U1) is not normal.

Proof
Consider h = (1 2)(3 4). It is clear that h ∈A5\U1 and h is 
an involution. Let s1 = (1 2)(4 5), s2 = (3 5 4), s3 = (4 5 3), 
s4 = (3 5)(1 2), s5 = (1 4)(2 3) and s6 = (1 3)(2 4). It is easy 
to see that  and s2 = hs1, s3 = s1h, s4 = s2h and s6 s5 = h. So by 
the Theorem 3.1, the Cay(A5,U1) is not normal.

Example 4.8
Let U2 = {(1 5)(2 4), (2 3 4),(2 4 3), (3 4)(1 5), (1 3)(2 5),  
(1 2)(5 3)}. Then the Cay(A5,U2) is not normal.

Proof
Consider h =(1 5)(2 3). It is clear that h ∈ A5\U2 and h is 
an involution. Similarly we have s2 = hs1, s3 = s1h, s4 = s2h 
and s6 s5 = h. So by the Theorem 3.1, the Cay(A5,U2) is not 
normal.
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