Novel Conditions on the Non-Normal Cayley Graphs of Valency Six

Mahtab Hashemian and Mehdi Alaeiyan*

Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran; alaeiyan@iust.ac.ir

Abstract

A Cayley graph X = Cay(G, S) on a group G is said to be normal if the right regular representation R(G) of G is normal in the full automorphism group Aut(X). In this paper, two novel conditions are outlined to identify the non-normal Cayley graphs of valency six. As an application, some non-normal Cayley graphs of valency six on A_6 and A_5 are obtained.

Keywords: Automorphism Groups, Cayley Graph, Normal Cayley Graph

1. Introduction

Let *X* be a finite simple undirected graph, we use V(X), E(X), A(X) and Aut(X) to denote its vertex set, edge set, arc set and full automorphism group, respectively. For every $u, v \in V(X)$, $\{u, v\}$ is the edge incident to u and v in *X*. A graph is called vertex-transitive if its automorphism group is transitive on the vertex set. A graph is called edge-transitive if its automorphism group is transitive on the vertex set. Throughout this paper the symmetric group of degree n and the alternating group of degree n are denoted by S_n and A_n , respectively.

Let *G* be a permutation group on a set *A* and $\alpha \in A$. Denote by G_{α} the stabilizer of α in *G*, that is, the subgroup of *G* fixing the point α . Permutation group *G* is semiregular on *A* if $G_{\alpha} = 1$ for every $\alpha \in A$ and regular if *G* is transitive and semiregular. Let *G* be a finite group and let *S* be a subset of *G* such that $1 \notin S$ and $S^{-1} = S$. The Cayley graph X = Cay(G, S) on *G* with respect to *S* is defined as the graph with a vertex set V(X) = G and an edge set $E(X) = \{\{g, h\} \mid g, h \in G, gh^{-1} \in S\}$. A Cayley graph Cay(G, S) is connected if and only if $G = \langle S \rangle$. Let A = Aut(Cay(G, S)). It is obvious that R(G) are contained in *A*. Also is regular on the set V(X). Thus a Cayley graph is vertex transitive. If A_1 denotes the stabilizer of the vertex 1 in A then $Aut(G, S) = \{a \in Aut(G) | S^a = S\}$ is a subgroup of A_1 . A Cayley graph Cay(G, S) is said to be normal if R(G) is normal in A.

A lot of study has been done in normality of Cayley graphs. For example, normality of Cayley graphs of order p^2 and 2p has been determined by Dobson⁴ and Du⁵, respectively. Disconnected normal Cayley graphs are highlighted by Wang⁹. Further, Preager⁸ has developed a perspective which identifies *Cay* (*G*, *S*) is normal if N_A (*R*(*G*)) is transitive on edges and *Cay* (*G*, *S*) is a connected cubic Cayley graph on a non-abelian simple group. Also vast majority of normal connected cubic Cayley graphs are specified by Fang⁶.

In 2005, Feng and Xu⁷ proved that every connected tetravalent Cayley graph on a regular *p*-group is normal when $p \neq 2$, 5. One year later, normality of tetravalent Cayley graphs on dihedral groups have been discussed by Wang and Xu¹⁰.

In 2007, normality of the connected Cayley graph of valency 5 on A_5 has been determined by Feng and Zhou¹², although in ¹¹ the normality of the connected Cayley graphs of valency 3 and 4 on A_5 has been proved by Xu and Xu. For more results on the normality of Cayley graphs, we refer the reader to ^{1–3}.

In this paper, we have presented two main theorems with new conditions in order to ease the identification of non-normal Cayley graphs of valency 6.

2. Preliminaries

First we will give some preliminary results which use in the next.

Let X = Cay(G, S) be a Cayley graph of G with respect to S and $Aut(G,S) = \{a \in Aut(G) | S^a = S\}$. Set A := Aut(X) and denote by A_1 the stabilizer of the vertex 1 in A. The following proposition is basic.

Lemma 2.1 [6, Proposition 1.1]

As the above notations:

- (i) Aut(X) contains the right regular representation R(G) of G and so X is vertex-transitive.
- (ii) X is undirected if and only if $S^{-1} = S$. Hence, all Cayley(di) graphs are vertex-transitive.
- (iii) *X* is connected if and only if $G = \langle S \rangle$.

Lemma 2.2 [6, Proposition 1.3]

We have:

- (i) $N_{A}(R(G)) = R(G)Aut(G, S),$
- (ii) A = R(G) Aut(G, S) if and only if R(G) is normal in *G*.

Lemma 2.3 [11, Proposition 1.5]

The Cayley (di) graph is normal if and only if $A_1 = Aut(G, S)$.

3. Discussion of Main Theorems

Now two sufficient conditions are given on the non-normal Cayley graphs of valency 6 for a finite group.

Theorem 3.1

Let *G* be a finite group and $S = \{s_1, s_2, s_3, s_4, s_5, s_6\}$ be a subset of *G* which $S^{-1} = S$ and s_5 , s_6 are involutions. Suppose that *S* contains at least three involutions and there exists an involution *h* in *G*\S such that $s_2 = hs_1$, $s_3 = s_1h$, $s_4 = s_2h$, $s_5s_6 = h$. (*)

Then the Cayley graph Cay(G, S) is not normal.

Proof

By the equations (*) and because $h \notin S$, we have $1 \notin S$. Consider $\sigma = (s_3 \ s_4)(s_6 s_3 \ s_6 s_4)$. Clearly $s_6 \ s_3 \neq s_3$ and $s_6 \ s_3 \neq s_4$, because if $s_6 \ s_3 \neq s_4$ then by the last equation of (*) we have $s_5 h s_3 = s_4$ so $s_5 \ s_4 = s_4$ and it implies that $s_5 = 1$, a contradiction. Thus $s_6 s_3 \neq s_4$. Similarly we can see $s_6 s_4 \neq s_3$, s_4 . It shows that σ is a permutation on *G*.

Let X = Cay(G, S) and A = Aut(X). Denote by A_1 the stabilizer of 1 in A. To prove that X = Cay(G, S) is not normal, by Proposition 2.3, it suffices to show that $\sigma \in A_1$ and $\sigma \notin Aut(G, S)$.

By the equations (*), $s_4 = s_2 h = h s_1 h = s_1^{h}$ and $s_3 = s_1^{h} h = h h s_1 h = h s_2 h = s_2^{h}$.

Since s_5s_6 are involutions and by the assumption, *S* contains at least three involutions, implying that either s_4 and s_1 or s_3 and s_2 are involutions. If s_4 and s_1 are not involutions, then s_3 and s_2 must be involutions. It means that s_3 and s_4 have different orders. If s_4 and s_1 are involutions, then $s_2^{-1} = (hs_1)^{-1} = s_1^{-1} h^{-1} = s_1 h = s_3$, which means that s_3 and s_2 are not involutions and then s_3 and s_4 have different orders. Thus, $\sigma \notin Aut(G, S)$ because σ permutes s_3 to s_4 . Further, $s_6s_3 \neq 1$ and $s_6s_4 \neq 1$ because s_6 is an involution. Hence, σ fixes¹. So we need only to show that $\sigma \in A = Aut(X)$ and for this, it is enough to show that σ keeps adjacency of edges.

Let $T = \{s_3, s_4, s_6s_3, s_6s_4\}$. For any $\omega \in T$, we have $T = \{\omega, h\omega, s_6\omega, s_6h\omega\}$.

For example if $\omega = s_3$, then

$$\omega = hs_3 = hs_1h = s_2h = s_4$$
$$s_6\omega = s_6s_3$$
$$h\omega = s_6hs_3 = s_6hs_1h = s_6s_4$$

Also if $\omega = s_6 s_3$, then

$$h\omega = hs_6s_3 = s_6hs_3 = s_6hs_1h = s_6s_4$$
$$s_6\omega = s_6s_6s_3 = s_3$$
$$s_6h\omega = s_6hs_6s_3 = s_6s_6hs_3 = hs_1h = s_4$$

Similarly, if $\omega = s_4$ or $\omega = s_6 s_4$ the same result is obtained. Thus it is assumed that for any $\omega \in T$, $T = \{\omega, h\omega, s_6\omega, s_6h\omega\}$ and $\sigma = (\omega h\omega)(s_6\omega s_6h\omega)$. Clearly, σ fixes every element in G\T.

Now let $\{u, v\} \in E(X)$. We aim to prove that $\{u, v\}^{\sigma} \in E(X)$. Consider two cases:

Case 1. If $\{u, v\} \cap T = \emptyset$, then $\{u, v\} \notin T$ and $\{u, v\}^{\sigma} = \{u, v\} \in E(X)$.

Case 2. If $\{u, v\} \cap T \neq \emptyset$, without loss of generality we can assume $u \in T$, then $T = \{u, hu, s_6u, s_6hu\}$ and $\sigma = (u hu)$ (s_6us_6hu) . Thus $u^{\sigma} = hu$, since $E(X) = \{(g, sg) | g \in G, s \in S\}$ and $\{u, v\} \in E(X)$, we have $v = s_i u$ for some *i*, where $1 \le i \le 6$. If $v = s_5 u$, then $v = s_6 hu$ and $\{u, v\}^{\sigma} = \{hu, s_6 u\} \in E(X)$. Similarly if $v = s_6 u$, then $\{u, v\}^{\sigma} = \{hu, s_6 hu\} \in E(X)$. Now, suppose that $v = s_j u$ for some $j, 1 \le j \le 4$. It is clear that $v = s_j u \ne u$ and $v \ne hu$. Because if v = hu, then $s_j u = hu$ for some $j, 1 \le j \le 4$. So $s_j = h$ and it is a contradiction. Similarly, $v = s_j u \ne s_6 u$ or $s_6 hu$ for some $j, 1 \le j \le 4$. Therefore $v \notin T$ and $v^{\sigma} = v$. Now If j = 1then $v = s_1 u = s_3 hu$ and $\{u, v\}^{\sigma} = \{hu, s_3 hu\} \in E(X)$. If j = 2, then $v = s_2 u = hs_1 u$ and $\{u, v\}^{\sigma} = \{hu, hs_1 u\} \in E(X)$. Similarly, for j = 3, 4 we have $\{u, v\}^{\sigma} \in E(X)$.

Therefore, both Cases 1, 2 implies that $\sigma \in A$. Thus $\sigma \in A_1$ and $\sigma Aut(G,S)$, so by Lemma 2.3, Cay(G,S) is not normal.

Theorem 3.2

Let *G* be a finite group and $S = \{s_1, s_2, s_3, s_4, s_5, s_6\}$ be a subset of *G* such that $1 \notin S$, $G = \langle S \rangle$ and $S^{-1} = S$. Suppose that s_1 is an involution, $N = \{1, s_1, s_2, s_3\}$ be a subgroup of *G* and $H = \langle s_1, s_4, s_5, s_6 \rangle$ such that $s_2, s_3 \notin H$. If $|G:H| \ge 4$ and $\{s_1s_4, s_1s_5, s_1s_6\} = \{s_4s_1, s_5s_1, s_6s_1\}$, then the Cayley graph Cay(G,S) is not normal.

Proof

Since $|G:H| \ge 4$ and $s_1, s_4, s_5, s_6 \in H$, there is a coset Hg such that $s_i \notin Hg$ for each $i, 1 \le i \le 6$. It implies that $Hg \neq Hs_i$. Let X = Cay(G,S) and A = Aut(X). Now define a permutation s on G. If $v \in Hg$, then $v^{\sigma} = s_1v$, and if $v \in G \setminus Hg$, then $v^{\sigma} = v$. Clearly for each $i, 1 \le i \le 6$, $s_i^{\sigma} = s_i$. Further, $1_{\sigma} = 1$ because $1 \notin Hg$. If $\sigma \in Aut(G)$, then σ fixes each element of G, because $G = \langle S \rangle$ and $s_i^{\sigma} = s_i$, and it means $\sigma = 1$, a contradiction. Thus, $\sigma \notin Aut(G,S)$, and it is enough to show that $\sigma \in Aut(X)$.

Let $\{u,v\} \in E(X)$. We claim that $\{u,v\}^{\sigma} \in E(X)$. For this we consider two cases.

Case 1. If $\{u,v\} \cap Hg = \emptyset$, then $u,v \notin Hg$ and $\{u,v\}^{\sigma} = \{u,v\}$ so $\sigma \in Aut(X)$.

Case 2. If $\{u,v\} \cap Hg \neq \emptyset$. We may assume that $u \in Hg$, thus $u^{\sigma} = s_1 u$ and since $\{u,v\} \in E(X)$ it is easy to see $v = s_k u$ for some $k, 1 \le k \le 6$. If k = 1, then $v = s_1 u \in Hg$ because $s_1 \in H$ and $u \in Hg$, so we have $\{u,v\}^{\sigma} = \{s_1u, u\} \in E(X)$. If k = 2, then $v = s_2 u \notin Hg$ because $s_2 \notin H$. Since $N = \{1, s_1, s_2, s_3\}$ be a group of order 4 and s_1 is an involution, we have $s_2 = s_3 s_1$. Therefore, $\{u,v\}^{\sigma} = \{s_1u, s_2u\} = \{s_1u, s_3s_1, u\} \in E(X)$. Similarly if k = 3, then $v = s_3u \notin Hg$ and $\{u,v\}^{\sigma} = \{s_1u, s_3u\} = \{s_1u, s_2 s_1u\} \in E(X)$. If k = 4, then $v = s_4u \in Hg$ because $s_4 \in H$ and $u \in Hg$. So $v^{\sigma} = s_1s_4u$. By the assumption, we know that $s_1s_4 \in \{s_4s_1, s_5s_1, s_6s_1\}$. Thus there is an s_1 such that $s_1 s_4 = s_1s_1$, where l = 4 or 5 or 6. So $= \{s_1u, s_1s_4u\} = \{s_1u, s_1s_1u\} \in E(X)$. Similarly, if k = 5, then $v = s_5 u \in Hg$ and $\{u, v\}^{\sigma} = \{s_1 u, s_1 s_5 u\} = \{s_1 u, s_r s_1 u\} \in E(X)$, where r = 4 or 5 or 6. Finally, if k = 6, then $v = s_6 u \in Hg$ and $\{u, v\}^{\sigma} = \{s_1 u, s_1 s_6 u\} = \{s_1 u, s_1 s_1 u\} \in E(X)$, where t = 4 or 5 or 6.

It implies that in each case, $\{u,v\}^{\sigma} \in E(X)$ and so $\sigma \in Aut(X)$. Therefore, $\sigma \in A_1$ but $\sigma \notin Aut(G,S)$ and by Lemma 2.3, Cay(G,S) is not normal.

4. Conclusion

Now we construct an infinite family of non-normal Cayley graphs of valency **6** by using Theorem 3.1 in the following example.

Example 4.1

Let n(>2) be an even integer and m > 1. If $G = \langle a, b, c | a^n = b^2 = c^m = 1$, $b^{-1} ab = a^{-1}$, $b^{-1} cb = c^{-1}$, then, the Cayley graph $Cay\left(G, \left\{a^{\frac{n}{2}}, a^{\frac{n}{2}}b, c, c^{-1}, bc, cb\right\}\right)$ is a non-normal Cayley

graph of valency 6

Proof

It is clear that, $a^{\frac{n}{2}}$, c, $c^{-1} \neq 1$. Further $bc \neq 1$, because if bc = 1then c = b a contradiction. Similarly, $cb \neq 1$. Also $a^{\frac{n}{2}}b \neq 1$, because if $a^{\frac{n}{2}}b = 1$ then $a^{\frac{n}{2}}\left(a^{\frac{n}{2}}b\right) = \left(a^{\frac{n}{2}}a^{\frac{n}{2}}\right)b = a^{n}b = b \in S$ a contradiction. Thus, $1 \notin S$. Now, let $h: = b \in G \setminus S$ and consider $s_1 = cb$, $s_2 = c^{-1}$,

 $s_3 = c$, $s_4 = bc$, $s_5 = a^{\frac{n}{2}}$ and $s_6 = a^{\frac{n}{2}}b$. It is easy to see that h is an involution, S has at least three involutions and $s_5 s_6 = h$, $s_2 = s_1 h$, $s_4 = s_2 h$. Thus the conditions of Theorem 3.1 are hold and Cay(G,S) is not normal.

In following examples some non-normal Cayley graphs of valency **6** on A_6 and A_5 are determined.

Example 4.2

Let $W_1 = \{(1\ 2)\ (4\ 5),\ (5\ 6\ 4),\ (4\ 6\ 5),\ (6\ 4)(1\ 2),\ (5\ 6)(3\ 4),\ (1\ 2)(3\ 4)\}$. Then the $Cay(A_{\epsilon},\ W_1)$ is not normal.

Proof

Consider $h = (1 \ 2)(5 \ 6)$. It is clear that $h \in A_6 \setminus W_1$ and h is an involution. Now suppose that $s_1 = (1 \ 2)(4 \ 5)$, $s_2 = (5 \ 6 \ 4)$, $s_3 = (4 \ 6 \ 5)$, $s_4 = (6 \ 4)(1 \ 2)$, $s_5 = (5 \ 6)(3 \ 4)$ and $s_6 = (1 \ 2) \ (3 \ 4)$. It is easy to see the conditions of Theorem 3.1 are hold and the Cayley graph $Cay(A_c, W_1)$ is not normal.

Example 4.3

Let $W_2 = \{(1 \ 3) \ (2 \ 6), \ (5 \ 2 \ 6), \ (2 \ 5 \ 6), \ (5 \ 2)(1 \ 3), \ (5 \ 6)(2 \ 4), \ (1 \ 3) \ (2 \ 4)\}$. Then the *Cay*(A_6, W_2) is not normal.

Proof

Consider $h = (1 \ 3)(5 \ 6)$. It is clear that $h \in A_6 \setminus W_2$ and h is an involution. Let $s_1 = (1 \ 3)(2 \ 6)$, $s_2 = (5 \ 2 \ 6)$, $s_3 = (2 \ 5 \ 6)$, $s_4 = (5 \ 2)(1 \ 3)$, $s_5 = (5 \ 6)(2 \ 4)$ and $s_6 = (1 \ 3)(2 \ 4)$. It is easy to see the conditions of Theorem 3.1 are hold and the Cayley graph $Cay(A_6, W_2)$ is not normal.

Example 4.4

Let $W_3 = \{(1 \ 4)(2 \ 6), (3 \ 2 \ 6), (2 \ 3 \ 6), (3 \ 2)(1 \ 4), (3 \ 6)(2 \ 5), (1 \ 4)(2 \ 5)\}$. Then the $Cay(A_6, W_3)$ is not normal.

Proof

Similarly, by consider h = (1 4)(3 6), the $Cay(A_6, W_3)$ is not normal.

Example 4.5

Let $W_4 = \{(1 5)(3 4), (2 3 4), (3 2 4), (2 3)(1 5), (2 4)(3 6), (1 5)(3 6)\}$. Then the *Cay*(A_6 , W_4) is not normal.

Proof

Similarly, by consider h = (1 5)(2 4), the Cay(A_6 , W_4) is not normal.

Example 4.6

Let $W_5 = \{(1 \ 6)(3 \ 5), (2 \ 5 \ 3), (3 \ 5 \ 2), (2 \ 5)(1 \ 6), (2 \ 3)(4 \ 5), (1 \ 6)(4 \ 5)\}$. Then the $Cay(A_6, W_5)$ is not normal.

Proof

Similarly, by consider $h = (1 \ 6)(2 \ 3)$, the $Cay(A_6, W_5)$ is not normal.

Example 4.7

Let $U_1 = \{(1 \ 2)(4 \ 5), (3 \ 5 \ 4), (4 \ 5 \ 3), (3 \ 5)(1 \ 2), (1 \ 4)(2 \ 3), (1 \ 3)(2 \ 4)\}$. Then the $Cay(A_5, U_1)$ is not normal.

Proof

Consider $h = (1 \ 2)(3 \ 4)$. It is clear that $h \in A_5 \setminus U_1$ and h is an involution. Let $s_1 = (1 \ 2)(4 \ 5)$, $s_2 = (3 \ 5 \ 4)$, $s_3 = (4 \ 5 \ 3)$, $s_4 = (3 \ 5)(1 \ 2)$, $s_5 = (1 \ 4)(2 \ 3)$ and $s_6 = (1 \ 3)(2 \ 4)$. It is easy to see that and $s_2 = hs_1$, $s_3 = s_1h$, $s_4 = s_2h$ and $s_6s_5 = h$. So by the Theorem 3.1, the Cay (A_5, U_1) is not normal.

Example 4.8

Let $U_2 = \{(1 \ 5)(2 \ 4), (2 \ 3 \ 4), (2 \ 4 \ 3), (3 \ 4)(1 \ 5), (1 \ 3)(2 \ 5), (1 \ 2)(5 \ 3)\}$. Then the Cay (A_5, U_2) is not normal.

Proof

Consider $h = (1 \ 5)(2 \ 3)$. It is clear that $h \in A_5 \setminus U_2$ and h is an involution. Similarly we have $s_2 = hs_1$, $s_3 = s_1h$, $s_4 = s_2h$ and $s_6s_5 = h$. So by the Theorem 3.1, the $Cay(A_5, U_2)$ is not normal.

5. References

- Alaeiyan M. Normal 6-valent Cayley graphs of abelian groups with valency, Four. International Journal of Industrial Engineering and Production Research. 2008; 19(1):1–11.
- 2. Alaeiyan M, Talebi AA, Paryab K. Arc-transitive Cayley graphs of valency five on abelian groups. Southeast Asian Bull Math. 2008; 32(6):1029–35.
- 3. Alaeiyan M, Tavallaee H, Talebi AA. Cayley graphs of abelian groups which are not normal edge-transitive. Vietnam Journal of Mathematics. 2005; 33(3):309.
- 4. Dobson E, Witte D. Transitive permutation groups of primesquared degree. J Algebraic Combin. 2002; 16:43–69.
- Du SF, Wang RJ, Xu MY. On the normality of Caley digraphs of order twice a prime. Australian Journal of Combinatorics. 1998; 18:227–34.
- 6. Fang XJ, Li CH, Wang DJ, Xu MY. On cubic Cayley graphs of finite simple groups. Discrete Math. 2002; 244:67–75.
- Feng YQ, Xu MY. Automorphism groups of tetravalent Cayley graphs onregular p-groups. Disceret Math. 2005; 305:354–60.
- 8. Preager CE. Finite normal edge-transitive graphs. Bull Austral Math Soc. 1999; 60:207–20.
- 9. Wang CQ, Wang DJ, Xu MY. On normal Cayley graphs of finite groups. Science in China Ser A. 1998; 28:131–9.
- Wang CQ, Xu MY. Non-normal one-regular and 4-valent Cayley graphs of dihedral groups D2n. European J Combin. 2006; 27:750–66.
- 11. Xu MY, Xu SJ. The Symmetry properties of Cayley graphs of small valencies on the alternating group A5. Science in China Ser A. 2004; 47:593–604.
- 12. Zhou JX, Feng YQ. Two sufficient conditions for non-normal Cayley graphs and their applications. Science in China Ser A. 2007; 50:201–16.