
*Author for correspondence

Indian Journal of Science and Technology, Vol 9(36), DOI: 10.17485/ijst/2016/v9i36/102158, September 2016
ISSN (Print) : 0974-6846 

ISSN (Online) : 0974-5645

Error Analysis of Heat Conduction Partial Differential 
Equations using Galerkin’s Finite Element Method

S. M. Afzal Hoq1,3*, Erwin Sulaeman1 and Abdurahim Okhunov2

1Department of Mechanical Engineering, International Islamic University, Malaysia; esulaeman@iium.edu.my
2Department of Science and Engineering, International Islamic University, Malaysia; abdurahimokhun@iium.edu.my

3Department of Civil Engineering, Southern University Bangladesh, Bangladesh; afzalhoqsu@gmail.com

Keywords: Error Analysis, Finite Element Method, Galerkin’s Weight Residual Approach, Heat Conduction, Laplace 
Equation, Partial Differential Equation

Abstract
The present work explores an error analysis of Galerkin finite element method (GFEM) for computing steady heat 
conduction in order to show its convergence and accuracy. The steady state heat distribution in a planar region is modeled 
by two-dimensional Laplace partial differential equations. A simple three-node triangular finite element model is used 
and its derivation to form elemental stiffness matrix for unstructured and structured grid meshes is presented. The error 
analysis is performed by comparison with analytical solution where the difference with the analytical result is represented 
in the form of three vector norms. The error analysis for the present GFEM for structured grid mesh is tested on heat 
conduction problem of a rectangular domain with asymmetric and mixed natural-essential boundary conditions. The 
accuracy and convergence of the numerical solution is demonstrated by increasing the number of elements or decreasing 
the size of each element covering the domain.  It is found that the numerical result converge to the exact solution with the 
convergence rates of almost O(h²) in the Euclidean L2 norm, O(h²) in the  discrete perpetuity L∞norm and O(h1) in the 1H  
norm.

1. Introduction
Finite Element Method (FEM) is one of the power-
ful numerical approaches to solve Partial Differential 
Equations (PDE). FEM is commonly used in multi-
directional fields to solve partial differential equation 
problems occurring in solid mechanics, biomechanics, 
fluid mechanics, electromagnetic, thermodynamics etc.1–8 
The Galerkin’s Finite Element Method (GFEM) is one 
of the weight residual methods. In this weight residual 
method, an approximating function called trial or basis 
function9–11 satisfying elemental boundary conditions is 
substituted into the given differential equation to give 
the residual function. The residual is then weighted and 
the integral of the product, taken over the domain, is set 
to zero.  In the GFEM method, the weighted function 
is constructed based on the first derivative of the trial 
function with respect to the nodal variables12.  For this 

reason, GFEM is perhaps the most appropriate solution 
of PDE using weak formulation12.  Therefore, in GFEM, 
the governing PDE is first developed in the form of the 
weak formulation. It is also called a variational formula-
tion of the problem or the method of weight residuals.  
This follows by the integration of the residual over the 
whole domain and, if necessary, the Green’s integration 
on the boundary.  The integration on the domain is per-
formed by discretizing geometrically into as many finite 
elements as required.  Each element has their nodal coor-
dinates and nodal variables. For each of this element, the 
Galerkin’s approximation of the given PDE is selected by 
taking into account the nodal coordinates and variables. 
After that, the integration of each element is performed 
resulting in the element matrix formulation as well as 
the boundary condition vector matrix. Finally, the sys-
tem of liner equations is solved to examine the quality of 
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the approximation solutions. The current work attempts 
to implement the GFEM procedure above to solve the 
Laplace partial differential equations (time independent 
with no heat source) in a rectangular domain where the 
exact solution is available. Considering essential and 
natural boundary conditions for the solution domain, 
the non-linear partial differential equations are solved.  A 
simplified stiffness matrix that can be used for a homog-
enous rectangular domain problem that allow for a 
structured grid mesh generation with uniform distribu-
tion of element sizes is presented where its scheme can 
reduce significantly the CPU time.

2. Mathematical Formulation

We consider a steady state heat conduction/flow problem 
with no heat source, in a homogeneous domain that leads 
to Laplace’s equation which can be combined with inho-
mogeneous Dirichlet or Neumann conditions as shown 
in Figure 18–11.

Figure 1. Physical domain of Ω bounded by Γ.

The leading partial differential equation for a steady 
state heat conduction can be expressed as
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where, bu  and bf  are the prescribed essential / 
Dirichlet and natural / Neumann boundary conditions, 
respectively. The strong formulation of the weighted 

residual of the PDE and its boundary of Eqs. (1) and (2) 
can be written as

2 2
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 ∂ ∂ ∂= + Ω − Γ   ∂∂ ∂ 
∫ ∫Ñ 	     (3)

where, w is the weighted function formulated using 
Galerkin approach. The weak formulation of Eq. (3) can 
be performed by integration by part to give

w u w u uI w d w d
x x y y nΩ Γ

 ∂ ∂ ∂ ∂ ∂= − + Ω + Γ ∂ ∂ ∂ ∂ ∂ 
∫ ∫Ñ 	      (4)

In the GFEM, the domain Ω is discretized into finite 
elements and the integration is performed per element to 
form the so called stiffness matrix.

3. Basis Function and Stiffness 
Matrix
One of the simplest two–dimensional elements is the 
three-node triangular linear elements. The basic element 
suitable for unstructured grid mesh is shown in Figure 
2(a).  Assume that each triangular element has three 
nodes (x1, y1), (x2, y2) and (x3, y3) and their three nodal 
variables u1, u2 and u3 at the vertices of the triangle. The 
value of the variable u at arbitrary location (x, y) in the 
elemental triangular domain region is approximated by 
the interpolation/basis function as follows12:

( ) ( ) ( )1 1 2 2 3 3, , ,u H x y u H x y u H x y u= + + 	    (5)

where, ( )yxHi , is the shape function for linear trian-
gular element which can be derived as functions of the 
three triangular geometry coordinates as follows:
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and A is the triangular geometric area which can be 
evaluated as

( )( ) ( )( ) ( )( )1 2 1 2 2 3 2 3 3 1 3 1
1
2

A y y x x y y x x y y x x = + − + + − + + −    (9)

Equations (5) – (12) show that the trial function u 
represents all the three nodal variables at the vertices 
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through the shape function H.  The Galerkin approach 
adopts the assumption that the weight function w in Eq. 
(4) is the derivative of the trial function with respect to 
the nodal variables as

i

uw
u

∂=
∂

					        (10)

Figure 2. Linear triangular elements (a) For unstructured 
grid mesh (b) for structured grid mesh.

such that, by considering the first integral of the 
weak formulation given in Eq. (4), the elemental stiffness 
matrix can be derived as
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where,  is the element domain.  It can be shown 
that the elemental stiffness matrix is a 3 by 3 symmetric 
matrix as follow
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where the diagonal elements of the stiffness matrix are
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and the off-diagonal elements of the stiffness matrix 
are
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with the symmetric properties of the off-diagonal ele-
ment as

21 12 31 13 23 32, ,k k k k k k= = = 	 (15)

The element stiffness matrix given in Equations (13) 
and (14) is applicable for unstructured grid mesh with 
arbitrary geometry coordinates of the three vertices as 
shown in Fig. 2a.  For a structured grid mesh, the triangu-
lar has one right angle such as shown in Fig. 2b.  For this 
type of mesh, the stiffness matrix can be further simpli-
fied by taking into account the advantage that the adjacent 
sides of the right angle are parallel to the x and y coordi-
nate axes.  For example, for the triangular element shown 
in Fig. 2b, the diagonal element of the stiffness matrix can 
be simplified as
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and the off–diagonal matrix elements can be simpli-
fied to
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where the triangular element area is simply  

dbA 2
1=

For a homogenous rectangular domain where a 
structured grid mesh can be performed with a uniform 
distribution of the length b and height d of each element, 
the element stiffness matrix given in Equations (16) and 
(17) is actually the same for each element having the same 
orientation.  Therefore, the stiffness matrix needs to be 
calculated one time only for each type of orientation.  This 
scheme will significantly reduce CPU time especially if 
huge number of finite elements is used since no need to 
construct the stiffness matrix for each element.
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4. Performance Evaluation and 
Result Discussion
This section presents a number of numerical approxima-
tion examples to show the features of the GFEM based on 
triangular element and linear interpolation/basis function 
for Laplace partial differential equations.  The steady state 
heat conduction problem of rectangular domain shown 
in Figure 3 is used.  The length and width of domain are 
10 and 5 respectively. The Dirichlet and Neuman bound-
ary conditions imposed are as follows:
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Figure 3. Steady state heat conduction problem of 
rectangular domain.

This problem has been presented in 12 by using trian-
gular linear element.  In the present work, the problem is 
solved using the simplified stiffness matrix of the trian-
gular element with the modified scheme of the stiffness 
calculation.  The whole rectangular Cartesian mesh are 
refined or the elements sizes will be decreased as large 
error is usually found within the elements13. The conver-
gence of the Galerkin method solution and exact solution 
are shown in Figure 4. Note that the exact solution to the 
problem within the rectangular domain is as follow12.

( ) ( ) ( )ppp sinh/1.0sinh1.0sin100 yxu = 	    (12)

Figure 4. Graphical comparison between numerical solution 
and exact solutions.

In Table 1 A,
0
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usual semi 1H norm, and obviously all norm are com-

puted numerically subsequent to the mesh used14–16. The 
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∞

. is the discrete infinite norm ∞L that shows 
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Table 1. ∞L , 2L and 1H error of the Galerkin method 
solution

Nel Size(h)
0

~
ii uu −

2
~

ii uu −
∞

− ii uu~

4 1.23 7.1264 7.1264 1.0349
8 0.625 7.3429 1.1313 0.27015
16 0.3125 7.2243 0.55609 0.069297
32 0.15625 7.979 0.27469 0.017373
64 0.099125 7.036 0.13639 0.0043522
128 0.039063 6.9972 0.067954 0.009996
256 0.019531 6.9799 0.033931 0.00027255
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Generated general regression form Error = bha

bE ah= 					       (21)

where, h  is the elements size,  and a  and b  are two 
constants to be determine from the actual values of the 
interpolation and solution errors for each case. For error 
analysis with linear regression we can see that the data in 
Table 1. Obey.

1.9902
0 0.2269i iu u h− ≈% 			      (22)

1.0419
2 0.08310 ,i iu u h− ≈% 		     (23)

1.93810.4342i iu u h∞− ≈% 			      (24)

which indicates that the result uh converge to the exact 
solution with the convergence rates of almost O(h²) in the 

2L  norm, O(h) in the 1H  norm and O(h²) in the  dis-
crete perpetuity norm. Figures 5(a) and 5(b) illustrate 
that inaccuracy results for the growing number of the ele-
ments and decreasing size of the elements.

 

(a) 

(b) 
Figure 5. Error analysis for (a) increasing of the elements 
number, (b) decreasing of the elements size.

Figure 6. Surface plot for 2D heat conduction PDEs.

(a)

(b)
Figure 7. Contour plot using by (a) present method  and (b) 
Ansys.

Figure 6 presents a surface plot for the 2D heat con-
duction. Figure 7(a) depicting the contour plot of the 
present solution and Figure 7(b) depicting the contour 
plot of ANSYS solutions show that the heat temperature 
distribution in the whole region. It is clear from the con-
tour plot that results obtained by the present work are 
very close to the ANSYS solution.

5.  Conclusion
The Galerkin finite element method using three-nodes 
triangular element models constructed in the present 
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work shows a convergence result by increasing the 
number of elements or decreasing the size of elements. 
The accuracy of the present model is demonstrated by 
comparison with analytical solution as well as ANSYS 
result.
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